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 This study introduced the Inversed Bi-segmented Average Crossover (IBAX), 
a novel crossover operator that enhanced the offspring generation of the 
genetic algorithm (GA) for variable minimization and numerical optimization 
problems. An attempt to come up with a new mating scheme in generating new 
offspring under the crossover function through the novel IBAX operator has 
paved the way to a more efficient and optimized solution for variable 
minimization particularly on premature convergence problem using GA. 
A total of 597 records of student-respondents in the evaluation of the faculty 
instructional performance, represented by 30 variables, from the four State 
Universities and Colleges (SUC) in Caraga Region, Philippines was used as 
the dataset. The simulation results showed that the proposed modification on 
the Average Crossover (AX) of the genetic algorithm outperformed the genetic 
algorithm with the original AX operator. The GA with IBAX operator 
combined with rank-based selection function had removed 20 or 66.66% of 
the variables while 13 or 43.33% of the variables were removed when GA with 
AX operator and roulette wheel selection function was used. 
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1. INTRODUCTION  

Data preprocessing [1-3] which is an imperative stride and considered to be one of the prime methods 
that is useful in data mining (DM), have led to the enhancement on the quality of data that positively contributes 
improvement to the precision and accuracy level as well as the mining efficiency of a prediction model [4, 5]. 

Data reduction, as an important data preprocessing technique in DM, is achieved through the selection 
and removal of unnecessary attributes and or variables in the dataset [6]. It is well known that in some cases, 
reducing original training set or variables by selecting the most representative information is advisable, yet 
obtaining nearly the same result or data-driven output [7-9]. Minimizing the size of the dataset aids in 
increasing the ability of generalization properties of the model. It also helped in lessening the space and 
computational time as well as minimizing the size of formulas used by the algorithm on the execution process 
[10]. Maximized accuracy through the reduced number of attributes [11, 6] and better understandability and 
interpretability of results are among the many benefits perceived in data reduction [12]. 

One of the competent data reduction, feature selection and global optimization algorithm that is 
widely used in related studies is the Genetic Algorithm [13-15]. Genetic Algorithms (GA), which was 
introduced by J.H. Holland in the 1970s, represents wide-ranging search method based on evolution and 
population genetics where its major executory mechanism relies on the crossover operator [16]. The unique 
integration of selection, crossover, and mutation operators serves as the driving force behind the successful 
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implementation of GA. According to [17], the most widely-known problem in GAs is premature convergence. 
It occurs when genetic operators converge in an early stage after a few generations have been made and get 
stagnated there (local optima). Premature convergence occurs when the genetic operators cannot produce 
offspring that are a better representative of their parents whilst it is associated due to the loss of diversity in the 
population. According to [18],  one of the technique to prevent premature convergence is to design an efficient 
crossover operator; thus, this study.  

 The activity that lies behind crossover is the creation of offspring that is achieved by combining 
information of the two parent chromosomes [19, 20]. For real encoding problems using the arithmetic function, 
the average crossover (AX) [21] is modified in this study. The simplicity of the average crossover has opened 
an avenue for improvements for better genetic algorithm performance. The modification will solve the 
weakness of the GA since a new method of pairing genes from the chromosomes will be observed, and those 
other researchers may use it for their experimental parameters setting. 

There is an appeal in the literature that encourages the enhancement of crossover operators for more 
effective optimization schemes of evolutionary algorithms. The influence of crossover operators is vital to the 
whole genetic algorithm process in the quest for optimal search space [22, 23].  

Therefore, this study proposed a novel crossover operator as an enhancement to the average crossover 
of the genetic algorithm. The novel crossover is called Inversed Bi-segmented Average Crossover (IBAX) that 
alters the offspring generation of parents that are instrumental for the next generation. The rest of the paper is 
arranged as follows. Section 2 discusses the literature review of Genetic Algorithm. Section 3 includes the 
design and methodology used in the study. Section 4 discusses the results and discussions while Section 5 
highlights the conclusion and recommendation. 
 
 
2. LITERATURE REVIEW  
2.1.  Genetic Algorithm 

Genetic algorithms as defined by [24], is one of the many evolutionary algorithms based on the rules 
of biological evolution for global optimization solution.  

GA is known as one of the most competent and widely held techniques that are used to search the best 
or ideal solution for problems with a huge search space especially in combinatorial problems where the search 
space is of factorial order. GA produce and controls some individuals through the integration of various suitable 
generic operators to look for optimal solutions. The bottleneck for an optimal genetic algorithm implementation 
relies on its three fundamental operations after creating the initial population viz., selection, crossover, and 
mutation functions. Figure 1 shows the flowchart of the genetic algorithm. 

 
 

 
 

Figure 1. Genetic algorithm flowchart 
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2.1.1. Initialization / Evaluation of Fitness Function 
Fitness function serves as the backbone of the evaluation process of fitted values; hence, a vital step 

in GA execution. This serves as a performance determinant for relevant judgment [25]. 
 

2.1.2.  Selection 
This stage of the genetic algorithm is where the members in the population are selected to enter into 

the mating pool for the next function which is the crossover stage. The selection of an optimal operator for this 
stage is vital to ensure that members of the population who have higher fitness values can have a bigger chance 
of being selected for mating. Although, members with lower fitness function do still have a slim chance of 
being selected for reproduction. It is important to select the best members of the population to ensure that the 
search process is global and does not simply meet the nearest local optimum [26]. Selection is one of the 
important aspects of the GA process, and there are several ways for the selection as to wit: Binary Tournament 
Selection, Stochastic Universal Sampling (SUS), Roulette Wheel Selection (RWS), Elitism Selection, and 
Rank-based Selection. For the detailed explanation of the abovementioned selection schemes, the study of [27] 
is recommended. Below are the following selection functions used in this study: 

 
- Roulette Wheel Selection (RWS) Function 

According to [28], Roulette selection is one of the simplest traditional GA selection technique. To 
execute, all the chromosomes in the population are placed on the roulette wheel according to their fitness value. 
A segment is assigned as representation to each individual commensurate to their fitness value; hence, the 
bigger the fitness value is, the larger the segment. Then, the virtual roulette wheel is spun. The individual 
corresponding to the segment on which roulette wheel stops are then selected. The process is repeated until the 
desired number of individuals is selected. Individuals with higher fitness have more probability of selection. 

 
- Rank-based Selection Function 

The rank-based selection function according to [29] can be assigned depending on the distribution of 
chromosomes according to their fitness values. This can be executed through positioning the chromosomes in 
decreasing order according to their fitness values. Next is to allocate a rank value on every chromosome  

That corresponds to its arrangement in the set and then calculate the new fitness value for every 
chromosome using (1): 
 

𝐹 ൌ 𝑚𝑎𝑥 െ ሺ𝑚𝑎𝑥 െ minሻ ∗ ିଵ

ேିଵ
 (1) 

 
where 1<max<=2 & min = 2-max 

 
2.1.3. Crossover 

The Crossover is identified to be the most important operator in genetic algorithms. It is responsible 
for generating new offspring that will be used for the next generation by combining features of two parent 
chromosomes [21]. 

A recent study was conducted by [22] that enhanced the Average Crossover (AX) operator of the 
genetic algorithm. The proposed operator is called Cross Average Crossover (CAX). The use of the modified 
genetic algorithm with CAX operator and rank-based selection function yielded to more decreased variables 
than the traditional genetic algorithm, but a degradation phenomenon [30] was depicted. The CAX operator 
with rank-based selection function eliminated those individuals with higher fitness values due to the structure 
of its mating scheme.  

According to [19], there are two categories of crossover development. They are called parent-centric 
and mean centric operators. The parent-centric approach generates offspring within the vicinity of each of the 
parent chromosomes while the mean centric generates offspring solutions by identifying the central tendencies 
of the parents involved. The Average Crossover which is a well-known crossover operator for real encoding 
problems found in the study of [21], that is modified this study, is outlined below along with the CAX operator: 
 
- Average Crossover (AX) 

Part or all of the genes are averages of the same alleles in both the parents. Select two parallel parents 
and compute its average to create offspring. 

 
- Cross Average Crossover (CAX)  

A modified version of Average Crossover (AX) where the first gene in the first chromosome and the 
last gene of the second chromosome are averaged and get its value. The resulting average values are considered 
as offspring. Repeat the steps until genes from chromosomes have crossed in creating offspring. 
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2.1.4. Mutation 
Studies have been carried out on the varieties of mutation techniques to improve GAs performance 

over the years. The purpose of mutation operation is to change the genes of the offspring and to increase the 
diversity of the population. This process enables GAs to jump out of local or suboptimal solutions to avoid 
premature convergence [19]. 
 
 
3. METHODOLOGY 

In this study, the average crossover which is one of the crossover operators in the genetic algorithm 
is modified. The use of the roulette wheel and rank-based selection function were observed. The variables who 
obtained the lowest fitness function in each generation for ten generations were removed. Instead of pairing 
the parallel genes from chromosomes x and y and compute its average to produce offspring z as shown in 
Figure 2, it is suggested to segment the chromosomes (x and y) into two and inversely compute the average of 
genes within each segment created as depicted in Figure 3. The modified crossover will be called Inversed Bi-
segmented Average Crossover (IBAX). 
 
3.1.  Existing Traditional Average Crossover 

The average crossover is simple and can be implemented through the following steps: 
Step 1: Take two parents from the selection pool.  
Step 2: Create offspring Z from two parallel parents X and Y 
Step 3: Use the formula 
 

𝑧 ൌ ሾ𝑥  𝑦ሿ/ 2 (2) 
 
Step 4: For i = 1 to n do formula (2) 
Step 5: End do 

 
 

 
 

Figure 2. Average crossover with roulette wheel selection function 
 
 

3.2.  Modified Average Crossover 
For the IBAX operator to be realized, the following steps must be executed: 

Step 1: Take the parents from the selection pool.  
Step 2: Count the number of genes found in the chromosomes. Identify if the dataset is in odd or even numbers. 
Step 3: Segment the chromosomes (x and y) by dividing the total number of genes in the chromosomes into 

two and make sure that both first and second segments must contain an equal number of genes in an 
even count.  

Step 4: On the first segment, create offspring Z for each gene by inversely pairing the first gene from 
chromosome X to the last gene on chromosome Y. Repeat until the last gene of the chromosome X and 
the first gene of the chromosome Y have inversely mated and have produced an offspring using  
formula (2).  

Step 5: Execute the same process on the second segment until genes from all segments have produced offspring. 
In the case of odd datasets, the last genes of the chromosomes will not be combined in the second 
segment and will automatically be mated with each other to produce offspring. 
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Figure 3. Inversed Bi-segmented Average Crossover with the rank-based selection function 
 
 

3.3.  Datasets 
In this study, a total of 597 records of student-respondents in the evaluation of the faculty instructional 

performance from the four State Universities and Colleges (SUC) in Caraga Region, Philippines were used as 
the datasets. There were thirty (30) variables that represent the faculty instructional performance having 
divided into six (6) parts viz., methodology, classroom management, student discipline, assessment of learning, 
student-teacher relationship, and peer relationship. Each category has five items as shown in Table 1. 

 
 

Table 1. Variables used in the study 
Category Reasons Variable Possible Value 

Methodology 

Utilizes varied designs/ techniques/ activities suited to the 
different types of learners.

M1 {1,2,3} 

Explains learning goals and instructional procedures to the 
students. 

M2 {1,2,3} 

Uses real-life examples in the class to sustain student’s 
interest in learning.

M3 {1,2,3} 

Creates a situation that encourages students to use critical 
thinking. 

M4 {1,2,3} 

Delivers accurate/relevant/updated content knowledge. M5 {1,2,3} 

Classroom 
Management 

Establishes routines to maximize instructional time. C1 {1,2,3} 
Organizes and assign the daily cleaners. C2 {1,2,3} 
Employs an effective system of classroom set-up. C3 {1,2,3} 
Employs strategies to maximize the use of resources in 
learning activities.

C4 {1,2,3} 

Implements rules/policies inside the classroom. C5 {1,2,3} 

Student 
Discipline 
 
 

Handles behavior problem concerning the student’s rights. SD1 {1,2,3} 
Imposes disciplinary sanction(s) to the misbehaving 
student(s). 

SD2 {1,2,3} 

Encourages students to submit requirements on time. SD3 {1,2,3} 
Motivates students to respect each other. SD4 {1,2,3} 
Allows students to exercise their creativity. SD5 {1,2,3} 

Assessment 
of Learning 

Constructs valid and reliable formative and summative tests. A1 {1,2,3} 
Uses appropriate non-traditional assessment techniques and 
tools (i.e. portfolio, journals, rubric, etc)

A2 {1,2,3} 

Interprets and use test results to improve teaching and 
learning. 

A3 {1,2,3} 

Uses tools for assessing authentic learning. A4 {1,2,3} 
Provides timely and accurate feedback to students. A5 {1,2,3} 

Student- 
teacher 
relationship 

Encourages students to participate in class/school activities 
actively. 

ST1 {1,2,3} 

Allows students to communicate directly to him/her. ST2 {1,2,3} 
Provides equal opportunities for all students. ST3 {1,2,3} 
Promotes teamwork among students. ST4 {1,2,3} 
Makes him/herself available to students. ST5 {1,2,3} 

Peer 
relationship 

Demonstrates appropriate behavior in dealing with 
students/peers/superiors.

P1 {1,2,3} 

Manifests flexibility when deemed necessary. P2 {1,2,3} 
Exhibits collegiality with colleagues. P3 {1,2,3} 
Observes professionalism at all times. P4 {1,2,3} 
Empathizes other needs and concern. P5 {1,2,3} 
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4. RESULTS AND DISCUSSION  
4.1.  Simulation result for GA with AX operator and RWS Function 

The simulation on the genetic algorithm was done for ten generations utilizing the existing traditional 
average crossover and roulette wheel selection function. The 597 records of random student-respondents in the 
evaluation of the faculty instructional performance (IP) from the four State Universities and Colleges (SUC) 
in Caraga Region, Philippines were instrumental in this study.  

First Generation: Variable C2 is removed from the chromosome since it obtained the lowest fitness 
value of 171396 as evident in Table 2. 

Second Generation: Variables M5 and A2 were removed from the chromosome since both obtained 
the lowest fitness value of 263169 as evident in Table 3. 

 

 

Table 2. G1 using an average crossover with RWS function 

IP X Fitness Rank 
Pool 

Off-spring Fitness Decision 
Y IP 

M1 546 298116 22 552 M5 549 301401  

M2 565 319225 30 565 M2 565 319225  

M3 558 311364 27 548 SD1 553 305809  

M4 559 312481 28 546 SD5 552.5 305256.3  

M5 552 304704 24 474 C3 513 263169  

C1 490 240100 3 546 A3 518 268324  

C2 354 125316 1 474 C3 414 171396 Remove
C3 474 224676 2 556 ST1 515 265225  

C4 542 293764 18 490 C1 516 266256  

C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  

SD2 512 262144 5 542 C4 527 277729  

SD3 565 319225 29 546 A3 555.5 308580.3  

SD4 556 309136 26 558 M3 557 310249  

SD5 546 298116 21 528 C5 537 288369  

A1 513 263169 6 534 ST2 523.5 274052.3  

A2 500 250000 4 526 P3 513 263169  

A3 546 298116 20 513 A1 529.5 280370.3  

A4 518 268324 8 565 M2 541.5 293222.3  

A5 516 266256 7 516 A5 516 266256  

ST1 556 309136 25 556 ST1 556 309136  

ST2 534 285156 16 559 M4 546.5 298662.3  

ST3 531 281961 14 546 M1 538.5 289982.3  

ST4 541 292681 17 556 SD4 548.5 300852.3  

ST5 527 277729 11 552 M5 539.5 291060.3  

P1 531 281961 13 565 SD3 548 300304  

P2 533 284089 15 541 ST4 537 288369  

P3 526 276676 10 518 A4 522 272484  

P4 526 276676 9 565 SD3 545.5 297570.3  

P5 544 295936 19 565 SD3 554.5 307470.3  

 
 

Table 3. G2 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
M5 552 304704 24 474 C3 513 263169 Remove 
C1 490 240100 3 546 A3 518 268324  
C3 474 224676 2 556 ST1 515 265225  
C4 542 293764 18 490 C1 516 266256  
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A1 513 263169 6 534 ST2 523.5 274052.3  
A2 500 250000 4 526 P3 513 263169 Remove 
A3 546 298116 20 513 A1 529.5 280370.3  
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IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

A4 518 268324 8 565 M2 541.5 293222.3  
A5 516 266256 7 516 A5 516 266256  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P3 526 276676 10 518 A4 522 272484  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 
Third Generation: Variable C3 is removed from the chromosome since it obtained the lowest fitness 

value of 265225 as evident in Table 4. 
Fourth Generation: Variables C4 and A5 were removed from the chromosome since it obtained the 

lowest fitness value of 266256 as evident in Table 5. 
 
 

Table 4. G3 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C1 490 240100 3 546 A3 518 268324  
C3 474 224676 2 556 ST1 515 265225 Remove 
C4 542 293764 18 490 C1 516 266256  
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A1 513 263169 6 534 ST2 523.5 274052.3  
A3 546 298116 20 513 A1 529.5 280370.3  
A4 518 268324 8 565 M2 541.5 293222.3  
A5 516 266256 7 516 A5 516 266256  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P3 526 276676 10 518 A4 522 272484  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 

Table 5. G4 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

1 546 98116 2 52 5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C1 490 240100 3 546 A3 518 268324  
C4 542 293764 18 490 C1 516 266256 Remove 
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A1 513 263169 6 534 ST2 523.5 274052.3  
A3 546 298116 20 513 A1 529.5 280370.3  
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IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

A4 518 268324 8 565 M2 541.5 293222.3  
A5 516 266256 7 516 A5 516 266256 Remove 
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P3 526 276676 10 518 A4 522 272484  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 
Fifth Generation: Variable C1 is removed from the chromosome since it obtained the lowest fitness 

value of 268324 as evident in Table 6. 
Sixth Generation: Variable P3 is removed from the chromosome since it obtained the lowest fitness 

value of 272484 as evident in Table 7. 
 

Table 6. G5 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C1 490 240100 3 546 A3 518 268324 Remove 
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A1 513 263169 6 534 ST2 523.5 274052.3  
A3 546 298116 20 513 A1 529.5 280370.3  
A4 518 268324 8 565 M2 541.5 293222.3  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P3 526 276676 10 518 A4 522 272484  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 

Table 7. G6 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A1 513 263169 6 534 ST2 523.5 274052.3  
A3 546 298116 20 513 A1 529.5 280370.3  
A4 518 268324 8 565 M2 541.5 293222.3  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
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IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P3 526 276676 10 518 A4 522 272484 Remove 
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 
Seventh Generation: Variable A1 is removed from the chromosome since it obtained the lowest fitness 

value of 274052.3 as evident in Table 8. 
 
 

Table 8. G7 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576  
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A1 513 263169 6 534 ST2 523.5 274052.3 Remove 
A3 546 298116 20 513 A1 529.5 280370.3  
A4 518 268324 8 565 M2 541.5 293222.3  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 
Eight Generation: Variable SD1 is removed from the chromosome since it obtained the lowest fitness 

value of 274576 as evident in Table 9. 
 
 

Table 9. G8 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C5 528 278784 12 531 ST3 529.5 280370.3  

SD1 548 300304 23 500 A2 524 274576 Remove 
SD2 512 262144 5 542 C4 527 277729  
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A3 546 298116 20 513 A1 529.5 280370.3  
A4 518 268324 8 565 M2 541.5 293222.3  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  
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Ninth Generation: Variable SD2 is removed from the chromosome since it obtained the lowest fitness 
value of 277729 as evident in Table 10. 

 
 

Table 10. G9 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C5 528 278784 12 531 ST3 529.5 280370.3  

SD2 512 262144 5 542 C4 527 277729 Remove 
SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A3 546 298116 20 513 A1 529.5 280370.3  
A4 518 268324 8 565 M2 541.5 293222.3  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 
Tenth Generation: Variables C5 and A3 were removed from the chromosome since it obtained the 

lowest fitness value of 280370.3 as evident in Table 11. 
 
 

Table 11. G10 using an average crossover with RWS function 

IP X Fitness Rank 
Pool

Off-spring Fitness Decision 
Y IP

M1 546 298116 22 552 M5 549 301401  
M2 565 319225 30 565 M2 565 319225  
M3 558 311364 27 548 SD1 553 305809  
M4 559 312481 28 546 SD5 552.5 305256.3  
C5 528 278784 12 531 ST3 529.5 280370.3 Remove 

SD3 565 319225 29 546 A3 555.5 308580.3  
SD4 556 309136 26 558 M3 557 310249  
SD5 546 298116 21 528 C5 537 288369  
A3 546 298116 20 513 A1 529.5 280370.3 Remove 
A4 518 268324 8 565 M2 541.5 293222.3  
ST1 556 309136 25 556 ST1 556 309136  
ST2 534 285156 16 559 M4 546.5 298662.3  
ST3 531 281961 14 546 M1 538.5 289982.3  
ST4 541 292681 17 556 SD4 548.5 300852.3  
ST5 527 277729 11 552 M5 539.5 291060.3  
P1 531 281961 13 565 SD3 548 300304  
P2 533 284089 15 541 ST4 537 288369  
P4 526 276676 9 565 SD3 545.5 297570.3  
P5 544 295936 19 565 SD3 554.5 307470.3  

 
 
4.2.  Simulation result for GA with IBAX operator and rank-based selection function 

The simulation on the genetic algorithm was done utilizing the novel Inversed Bi-segmented Average 
Crossover (IBAX) operator and rank-based selection function on the same datasets and number of generations. 

First Generation: Variable C2 was removed from the list of variables after applying the rank-based 
selection. The variable C2 obtained the lowest fitness value in the rank-based selection. Hence, it does not have 
any chance to be selected. Moreover, after applying the inversed bi-segmented average crossover (IBAX) 
operator and obtained the fitness value of the offspring, variable C3 was removed from the chromosomes since 
it obtained the lowest fitness value of 224676 that will not warrant for the next generation. Thus, in the first 
generation, there were two variables removed from the list as shown in Table 12. 
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Table 12. G1 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8 565 541 553 305809 
SD3 565 319225 29 3504670.8 565 542 553.5 306362.3 
M4 559 312481 28 3379354.8 559 544 551.5 304152.3 
M3 558 311364 27 3254038.8 558 546 552 304704 
SD4 556 309136 26 3128722.8 556 546 551 303601 
ST1 556 309136 25 3003406.8 556 546 551 303601 
M5 552 304704 24 2878090.8 552 548 550 302500 
SD1 548 300304 23 2752774.8 548 552 550 302500 
M1 546 298116 22 2627458.8 546 556 551 303601 
SD5 546 298116 21 2502142.8 546 556 551 303601 
A3 546 298116 20 2376826.8 546 558 552 304704 
P5 544 295936 19 2251510.8 544 559 551.5 304152.3 
C4 542 293764 18 2126194.8 542 565 553.5 306362.3 
ST4 541 292681 17 2000878.8 541 565 553 305809 
ST2 534 285156 16 1875562.8 534 490 512 262144 
P2 533 284089 15 1750246.8 533 500 516.5 266772.3 

ST3 531 281961 14 1624930.8 531 512 521.5 271962.3 
P1 531 281961 13 1499614.8 531 513 522 272484 
C5 528 278784 12 1374298.8 528 516 522 272484 
ST5 527 277729 11 1248982.8 527 518 522.5 273006.3 
P3 526 276676 10 1123666.8 526 526 526 276676 
P4 526 276676 9 998350.8 526 526 526 276676 
A4 518 268324 8 873034.8 518 527 522.5 273006.3 
A5 516 266256 7 747718.8 516 528 522 272484 
A1 513 263169 6 622402.8 513 531 522 272484 

SD2 512 262144 5 497086.8 512 531 521.5 271962.3 
A2 500 250000 4 371770.8 500 533 516.5 266772.3 
C1 490 240100 3 246454.8 490 534 512 262144 
C3 474 224676 2 121138.8 474 474 474 224676 
C2 354 125316 1 -4177.2  

 
 

Second Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 
variables ST2 and C1 were removed from the chromosomes since they obtained the lowest fitness value of 
262144. In the second generation, there were two variables removed from the list as shown in Table 13.  

 
 

Table 13. G2 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8  565 541 553 305809 
SD3 565 319225 29 3504670.8 565 542 553.5 306362.3 
M4 559 312481 28 3379354.8 559 544 551.5 304152.3 
M3 558 311364 27 3254038.8 558 546 552 304704 
SD4 556 309136 26 3128722.8 556 546 551 303601 
ST1 556 309136 25 3003406.8 556 546 551 303601 
M5 552 304704 24 2878090.8 552 548 550 302500 
SD1 548 300304 23 2752774.8 548 552 550 302500 
M1 546 298116 22 2627458.8 546 556 551 303601 
SD5 546 298116 21 2502142.8 546 556 551 303601 
A3 546 298116 20 2376826.8 546 558 552 304704 
P5 544 295936 19 2251510.8 544 559 551.5 304152.3 
C4 542 293764 18 2126194.8 542 565 553.5 306362.3 
ST4 541 292681 17 2000878.8 541 565 553 305809 
ST2 534 285156 16 1875562.8 534 490 512 262144 
P2 533 284089 15 1750246.8 533 500 516.5 266772.3 

ST3 531 281961 14 1624930.8 531 512 521.5 271962.3 
P1 531 281961 13 1499614.8 531 513 522 272484 
C5 528 278784 12 1374298.8 528 516 522 272484 
ST5 527 277729 11 1248982.8 527 518 522.5 273006.3 
P3 526 276676 10 1123666.8 526 526 526 276676 
P4 526 276676 9 998350.8 526 526 526 276676 
A4 518 268324 8 873034.8 518 527 522.5 273006.3 
A5 516 266256 7 747718.8 516 528 522 272484 
A1 513 263169 6 622402.8 513 531 522 272484 

SD2 512 262144 5 497086.8 512 531 521.5 271962.3 
A2 500 250000 4 371770.8 500 533 516.5 266772.3 
C1 490 240100 3 246454.8 490 534 512 262144 
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Third Generation: After applying the inversed bi-segmented average crossover (IBAX) operator and 
obtained the fitness value of the offspring, variables ST4 and A2 were removed from the chromosomes since 
both obtained the lowest fitness value of 270920.3. In the third generation, there were two variables removed 
from the list as shown in Table 14. 
 
 

Table 14. G3 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8  565 542 553.5 306362.3 
SD3 565 319225 29 3504670.8 565 544 554.5 307470.3 
M4 559 312481 28 3379354.8 559 546 552.5 305256.3 
M3 558 311364 27 3254038.8 558 546 552 304704 
SD4 556 309136 26 3128722.8 556 546 551 303601 
ST1 556 309136 25 3003406.8 556 548 552 304704 
M5 552 304704 24 2878090.8 552 552 552 304704 
SD1 548 300304 23 2752774.8 548 556 552 304704 
M1 546 298116 22 2627458.8 546 556 551 303601 
SD5 546 298116 21 2502142.8 546 558 552 304704 
A3 546 298116 20 2376826.8 546 559 552.5 305256.3 
P5 544 295936 19 2251510.8 544 565 554.5 307470.3 
C4 542 293764 18 2126194.8 542 565 553.5 306362.3 
ST4 541 292681 17 2000878.8 541 500 520.5 270920.3 
P2 533 284089 15 1750246.8 533 512 522.5 273006.3 

ST3 531 281961 14 1624930.8 531 513 522 272484 
P1 531 281961 13 1499614.8 531 516 523.5 274052.3 
C5 528 278784 12 1374298.8 528 518 523 273529 
ST5 527 277729 11 1248982.8 527 526 526.5 277202.3 
P3 526 276676 10 1123666.8 526 526 526 276676 
P4 526 276676 9 998350.8 526 527 526.5 277202.3 
A4 518 268324 8 873034.8 518 528 523 273529 
A5 516 266256 7 747718.8 516 531 523.5 274052.3 
A1 513 263169 6 622402.8 513 531 522 272484 

SD2 512 262144 5 497086.8 512 533 522.5 273006.3 
A2 500 250000 4 371770.8 500 541 520.5 270920.3 

 
 
Fourth Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 

variables P2 and A1 were removed from the chromosomes since both obtained the lowest fitness value of 
273529. In the fourth generation, there were two variables removed from the list as shown in Table 15.  

 
 

Table 15. G4 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8  565 544 554.5 307470.3 
SD3 565 319225 29 3504670.8 565 546 555.5 308580.3 
M4 559 312481 28 3379354.8 559 546 552.5 305256.3 
M3 558 311364 27 3254038.8 558 546 552 304704 
SD4 556 309136 26 3128722.8 556 548 552 304704 
ST1 556 309136 25 3003406.8 556 552 554 306916 
M5 552 304704 24 2878090.8 552 556 554 306916 
SD1 548 300304 23 2752774.8 548 556 552 304704 
M1 546 298116 22 2627458.8 546 558 552 304704 
SD5 546 298116 21 2502142.8 546 559 552.5 305256.3 
A3 546 298116 20 2376826.8 546 565 555.5 308580.3 
P5 544 295936 19 2251510.8 544 565 554.5 307470.3 
C4 542 293764 18 2126194.8 542 512 527 277729 
P2 533 284089 15 1750246.8 533 513 523 273529 

ST3 531 281961 14 1624930.8 531 516 523.5 274052.3 
P1 531 281961 13 1499614.8 531 518 524.5 275100.3 
C5 528 278784 12 1374298.8 528 526 527 277729 
ST5 527 277729 11 1248982.8 527 526 526.5 277202.3 
P3 526 276676 10 1123666.8 526 527 526.5 277202.3 
P4 526 276676 9 998350.8 526 528 527 277729 
A4 518 268324 8 873034.8 518 531 524.5 275100.3 
A5 516 266256 7 747718.8 516 531 523.5 274052.3 
A1 513 263169 6 622402.8 513 533 523 273529 

SD2 512 262144 5 497086.8 512 542 527 277729 
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Fifth Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 
variables ST3 and A4 were removed from the chromosomes since both obtained the lowest fitness value of 
275100.3. In the fifth generation, there were two variables removed from the list as shown in Table 16. 

 
 

Table 16. G5 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8  565 546 555.5 308580.3 
SD3 565 319225 29 3504670.8 565 546 555.5 308580.3 
M4 559 312481 28 3379354.8 559 546 552.5 305256.3 
M3 558 311364 27 3254038.8 558 548 553 305809 
SD4 556 309136 26 3128722.8 556 552 554 306916 
ST1 556 309136 25 3003406.8 556 556 556 309136 
M5 552 304704 24 2878090.8 552 556 554 306916 
SD1 548 300304 23 2752774.8 548 558 553 305809 
M1 546 298116 22 2627458.8 546 559 552.5 305256.3 
SD5 546 298116 21 2502142.8 546 565 555.5 308580.3 
A3 546 298116 20 2376826.8 546 565 555.5 308580.3 
P5 544 295936 19 2251510.8 544 512 528 278784 
C4 542 293764 18 2126194.8 542 516 529 279841 
ST3 531 281961 14 1624930.8 531 518 524.5 275100.3 
P1 531 281961 13 1499614.8 531 526 528.5 279312.3 
C5 528 278784 12 1374298.8 528 526 527 277729 
ST5 527 277729 11 1248982.8 527 527 527 277729 
P3 526 276676 10 1123666.8 526 528 527 277729 
P4 526 276676 9 998350.8 526 531 528.5 279312.3 
A4 518 268324 8 873034.8 518 531 524.5 275100.3 
A5 516 266256 7 747718.8 516 542 529 279841 

SD2 512 262144 5 497086.8 512 544 528 278784 

 
 
Sixth Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 

variables C5 and ST5 were removed from the chromosomes since both obtained the lowest fitness value of 
278256.3. In the sixth generation, there were two variables removed from the list as shown in Table 17. 

 
 

Table 17. G6 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8 565 546 555.5 308580.3 
SD3 565 319225 29 3504670.8 565 546 555.5 308580.3 
M4 559 312481 28 3379354.8 559 548 553.5 306362.3 
M3 558 311364 27 3254038.8 558 552 555 308025 
SD4 556 309136 26 3128722.8 556 556 556 309136 
ST1 556 309136 25 3003406.8 556 556 556 309136 
M5 552 304704 24 2878090.8 552 558 555 308025 
SD1 548 300304 23 2752774.8 548 559 553.5 306362.3 
M1 546 298116 22 2627458.8 546 565 555.5 308580.3 
SD5 546 298116 21 2502142.8 546 565 555.5 308580.3 
A3 546 298116 20 2376826.8 546 512 529 279841 
P5 544 295936 19 2251510.8 544 516 530 280900 
C4 542 293764 18 2126194.8 542 526 534 285156 
P1 531 281961 13 1499614.8 531 526 528.5 279312.3 
C5 528 278784 12 1374298.8 528 527 527.5 278256.3 
ST5 527 277729 11 1248982.8 527 528 527.5 278256.3 
P3 526 276676 10 1123666.8 526 531 528.5 279312.3 
P4 526 276676 9 998350.8 526 542 534 285156 
A5 516 266256 7 747718.8 516 544 530 280900 

SD2 512 262144 5 497086.8 512 546 529 279841 

 
 
Seventh Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 

variables SD5 and SD2 were removed from the chromosomes since both obtained the lowest fitness value of 
279841. In the seventh generation, there were two variables removed from the list as shown in Table 18. 
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Table 18. G7 using IBAX with the rank-based selection function 
Rank-based IBAX 

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8  565 546 555.5 308580.3 
SD3 565 319225 29 3504670.8 565 548 556.5 309692.3 
M4 559 312481 28 3379354.8 559 552 555.5 308580.3 
M3 558 311364 27 3254038.8 558 556 557 310249 
SD4 556 309136 26 3128722.8 556 556 556 309136 
ST1 556 309136 25 3003406.8 556 558 557 310249 
M5 552 304704 24 2878090.8 552 559 555.5 308580.3 
SD1 548 300304 23 2752774.8 548 565 556.5 309692.3 
M1 546 298116 22 2627458.8 546 565 555.5 308580.3 
SD5 546 298116 21 2502142.8 546 512 529 279841 
A3 546 298116 20 2376826.8 546 516 531 281961 
P5 544 295936 19 2251510.8 544 526 535 286225 
C4 542 293764 18 2126194.8 542 526 534 285156 
P1 531 281961 13 1499614.8 531 531 531 281961 
P3 526 276676 10 1123666.8 526 542 534 285156 
P4 526 276676 9 998350.8 526 544 535 286225 
A5 516 266256 7 747718.8 516 546 531 281961 

SD2 512 262144 5 497086.8 512 546 529 279841 

 
 
Eighth Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 

variables M1 and A5 were removed from the chromosomes since both obtained the lowest fitness value of 
281961. In the eight generations, there were two variables removed from the list as shown in Table 19. 

Ninth Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 
variables A3 and P3 were removed from the chromosomes since both obtained the lowest fitness value of 
287296. In the ninth generation, there were two variables removed from the list as shown in Table 20. 

 
 

Table 19. G8 using IBAX with rank-based selection function 
Rank-based IBAX

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8 565 548 556.5 309692.3 
SD3 565 319225 29 3504670.8 565 552 558.5 311922.3 
M4 559 312481 28 3379354.8 559 556 557.5 310806.3 
M3 558 311364 27 3254038.8 558 556 557 310249 
SD4 556 309136 26 3128722.8 556 558 557 310249 
ST1 556 309136 25 3003406.8 556 559 557.5 310806.3 
M5 552 304704 24 2878090.8 552 565 558.5 311922.3 
SD1 548 300304 23 2752774.8 548 565 556.5 309692.3 
M1 546 298116 22 2627458.8 546 516 531 281961 
A3 546 298116 20 2376826.8 546 526 536 287296 
P5 544 295936 19 2251510.8 544 526 535 286225 
C4 542 293764 18 2126194.8 542 531 536.5 287832.3 
P1 531 281961 13 1499614.8 531 542 536.5 287832.3 
P3 526 276676 10 1123666.8 526 544 535 286225 
P4 526 276676 9 998350.8 526 546 536 287296 
A5 516 266256 7 747718.8 516 546 531 281961 

 
 

Table 20. G9 using IBAX with the rank-based selection function 
Rank-based IBAX

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8 565 552 558.5 311922.3 
SD3 565 319225 29 3504670.8 565 556 560.5 314160.3 
M4 559 312481 28 3379354.8 559 556 557.5 310806.3 
M3 558 311364 27 3254038.8 558 558 558 311364 
SD4 556 309136 26 3128722.8 556 559 557.5 310806.3 
ST1 556 309136 25 3003406.8 556 565 560.5 314160.3 
M5 552 304704 24 2878090.8 552 565 558.5 311922.3 
SD1 548 300304 23 2752774.8 548 526 537 288369 
A3 546 298116 20 2376826.8 546 526 536 287296 
P5 544 295936 19 2251510.8 544 531 537.5 288906.3 
C4 542 293764 18 2126194.8 542 542 542 293764 
P1 531 281961 13 1499614.8 531 544 537.5 288906.3 
P3 526 276676 10 1123666.8 526 546 536 287296 
P4 526 276676 9 998350.8 526 548 537 288369 
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Tenth Generation: After applying the inversed bi-segmented average crossover (IBAX) operator, 
variables M5 and P4 were removed from the chromosomes since both obtained the lowest fitness value of 
290521. In the tenth generation, there were two variables removed from the list as shown in Table 21. 

 
 

Table 21. G10 using IBAX with the rank-based selection function 
Rank-based IBAX

IP X Fitness Rank New Fitness Parent 1 Parent 2 Offspring Fitness 
M2 565 319225 30 3629986.8 565 556 560.5 314160.3 
SD3 565 319225 29 3504670.8 565 556 560.5 314160.3 
M4 559 312481 28 3379354.8 559 558 558.5 311922.3 
M3 558 311364 27 3254038.8 558 559 558.5 311922.3 
SD4 556 309136 26 3128722.8 556 565 560.5 314160.3 
ST1 556 309136 25 3003406.8 556 565 560.5 314160.3 
M5 552 304704 24 2878090.8 552 526 539 290521 
SD1 548 300304 23 2752774.8 548 531 539.5 291060.3 
P5 544 295936 19 2251510.8 544 542 543 294849 
C4 542 293764 18 2126194.8 542 544 543 294849 
P1 531 281961 13 1499614.8 531 548 539.5 291060.3 
P4 526 276676 9 998350.8 526 552 539 290521 

 
 
4.3.  Evaluation of the efficacy and reduction rate using GA with AX and IBAX operators 

The variable minimization process using the genetic algorithm with average crossover operator and 
roulette wheel selection function has depicted a decrease after the ten generations. From the 30 variables, the 
numbers were minimized to 17 variables. 43% of variables were removed as depicted in Table 22. 

Meanwhile, the variable minimization process using the genetic algorithm with the proposed novel 
mating scheme called inversed bi-segmented average crossover operator, and rank-based selection function 
has depicted a noticeable decrease after the ten generations. From the 30 variables, the numbers were 
minimized to 10 variables after the generations. A total of 66.66% of variables were removed as depicted in 
Table 23. Since the amount of reduction varies according to the genetic algorithms used, removing 66.66% of 
the variables in the dataset is good enough as the notion of dropping one or more variables should help reduce 
dimensionality is certain. The ratio of feature reduction of more than 60% is acceptable just like in the  
work of [31]. 

 
 

Table 22. Simulation result for GA with AX operator and RWS function 
Number of 
Generations 

Number of 
Variables Left

Number of Variables 
Removed

Variables 
Removed

Percentage 

1 30 1 C2 3.33% 
2 29 2 M5, A2 6.66% 
3 27 1 C3 3.33% 
4 26 2 C4, A5 6.66% 
5 24 1 C1 3.33% 
6 23 1 P3 3.33% 
7 22 1 A1 3.33% 
8 21 1 SD1 3.33% 
9 20 1 SD2 3.33% 
10 19 2 C5, A3 6.66% 
10 17 - - - 

Total Percentage of Variables Removed 43.33% 
 
 
Table 23. Simulation result for GA with IBAX operator and rank-based selection function 

Number of 
Generations 

Number of 
Variables Left

Number of Variables 
Removed

Variables 
Removed

Percentage 

1 30 2 C3, C2 6.66% 
2 28 2 ST2, C1 6.66% 
3 26 2 ST4, A2 6.66% 
4 24 2 P2, A1 6.66% 
5 22 2 ST3, A4 6.66% 
6 20 2 C5, ST5 6.66% 
7 18 2 SD5, SD2 6.66% 
8 16 2 M1, A5 6.66% 
9 14 2 A3, P3 6.66% 
10 12 2 M5, P4 6.66% 
10 10 - - - 

Total Percentage of Variables Removed 66.66% 
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To have a further evaluation on the efficacy and reduction rate of the proposed novel crossover, the 
GA with the IBAX operator was compared along with the other real encoding-based crossover mechanism of 
the GA such as geometrical crossover [32] and cross average crossover (CAX) [22] aside from the AX  
operator. The simulation result showed that the genetic algorithm with a new crossover mating scheme 
outperformed the other existing real encoding-based crossover operators of genetic algorithm in reducing 
variables as depicted in Table 24.  

 
 

Table 24. Comparative result for variable minimization using genetic algorithms 

Genetic Algorithms 
Number of 
variables

Number of 
variables left

Number of 
variables removed

Percentage of 
variables removed 

GA with AX operator 
and RWS function 

30 17 13 43.33% 

GA with Geometrical 
crossover operator 
with RWS function 

30 20 10 33.33% 

GA with CAX 
operator with RWS 

function 
30 13 17 56.66% 

GA with IBAX operator 
and Rank-based 

Selection function 
30 10 20 66.66% 

 
 
5. CONCLUSION AND RECOMMENDATION 

Through the study, a novel approach for the optimization process using another crossover operator of 
genetic algorithm was introduced and added to the body of knowledge. The proposed modification on the 
genetic algorithm with inversed bi-segmented average crossover (IBAX) has paved the way to the enhancement 
of GA’s average crossover mating scheme that affects GA’s optimization performance in general. It is evident 
that the IBAX operator performed the minimization process way better than the average crossover since there 
were 10 and 17 variables left, respectively, after the tenth generations.  

For future works, it is suggested to use the novel IBAX operator in the different type of datasets and 
incorporate the modified genetic algorithm in various data mining techniques and approaches that need variable 
minimization or feature reduction process such as in prediction. 
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