
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 7, No. 4, Dec 2019, pp. 628~638

ISSN: 2089-3272, DOI: 10.11591/ijeei.v7i4.1146  628

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

Selecting Root Exploit Features Using Flying Animal-Inspired

Decision

Ahmad Firdaus1, Mohd Faizal Ab Razak2, Wan Isni Sofiah Wan Din3, Danakorn Nincarean4,

Shahreen Kasim5, Tole Sutikno6, Rahmat Budiarto7
1,2,3,4Faculty of Computer Systems & Software Engineering, University Malaysia Pahang, Kuantan, Pahang, Malaysia

5Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
6Department of Electrical and Computer Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

7Department of Computer Science, Albaha University, Albaha, Saudi Arabia

Article Info ABSTRACT

Article history:

Received Mar 26, 2019

Revised Sept 29, 2019
Accepted Nov 13,2019

Malware is an application that executes malicious activities to a computer

system, including mobile devices. Root exploit brings more damages among

all types of malware because it is able to run in stealthy mode. It compromises
the nucleus of the operating system known as kernel to bypass the Android

security mechanisms. Once it attacks and resides in the kernel, it is able to

install other possible types of malware to the Android devices. In order to

detect root exploit, it is important to investigate its features to assist machine
learning to predict it accurately. This study proposes flying animal-inspired (1)

bat, 2) firefly, and 3) bee) methods to search automatically the exclusive

features, then utilizes these flying animal-inspired decision features to improve

the machine learning prediction. Furthermore, a boosting method (Adaboost)
boosts the multilayer perceptron (MLP) potential to a stronger classification.

The evaluation jotted the best result is from bee search, which recorded 91.48

percent in accuracy, 82.2 percent in true positive rate, and 0.1 percent false

positive rate.

Keyword:

root exploit

Android

static analysis
machine learning

bee

bat

firefly

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mohd Faizal Ab Razak

Faculty of Computer Systems and Software Engineering,

Universiti Malaysia Pahang,

26300 Gambang,
Kuantan, Pahang, Malaysia

Email: faizalrazak@ump.edu.my

1. INTRODUCTION

People utilize mobile devices in their daily activities to connect, online and communicate. This situation

provides an opportunity for the attacker to develop root exploit to compromise victim’s Android device for

money or private purposes. Root exploit is an application software that takes over the kernel of the Android

operating system to gain root privileges. When the attackers gain this privilege, they are able to provide false

antivirus results, evade the Android security mechanisms, execute stealth activities without victim’s

acknowledgement, and install many types of malware to the devices [1]–[3]. In addition, the number of root

exploits increasing from time to time because of the homebrew communities. These communities are the people

that find multiple ways to break the Android kernel to obtain a customized version of Android. This leaves an

opportunity for root exploit writers to wait for the homebrew community to discover new ways to gain control

of the Android’s kernel [4]. Consequently, in order to detect root exploit, security practitioners conducted the

two types of malware analysis; 1) dynamic, and 2) static analysis.

Dynamic analysis investigates root exploit’s behavior by executing the application and inspecting its

movement [5][6]. The studies that practicing this type of analysis include the works in [7][8]. However,

dynamic analysis has multiple drawbacks and one of it is the limited monitoring coverage. Because it monitors

the application’s characteristics within a certain time only. Therefore, root exploit’s behaviors that running

IJEEI ISSN: 2089-3272 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al)

629

exceeds the monitoring time of the dynamic analysis are excluded. This consequently leaves missing many

root exploit’s behaviors. In dissimilarity, static analysis diagnoses the root exploit by reverse engineering the

application to retrieve its entire code. Security analysts practice this type of analysis without executing the

malware. In addition, static analysis only needs few resources, which is low specifications of hardware, such

as CPU, RAM, and storage. Moreover, static analysis process is fast which consume short amount of time than

dynamic analysis [9]. During static analysis, the root exploit is unable to hide or modify its malicious process

because it is unexecuted [10]. Nonetheless, in the interest to detect root exploit efficiently with machine

learning, static analysis needs distinct features in minimal amount.

In machine learning intelligence prediction model, determining the optimal and the best features in fewer

amounts increases the machine learning performance results. This performance increment is because fewer

features eliminate unnecessary data and decreases the dataset’s dimensionality. It also minimizes the nature of

the predictive model, hence, reducing the machine learning processing time [11][12]. In the interest to have

few relevant features, this paper adopts flying animal-inspired search approach, to intelligently investigates

overall features and select the best features that focuses on detecting root exploit that undiscovered previously.

This study utilizes categories of features that covers system command, directory path, and code-based. The

first features, which is system command, it is a UNIX-based command in the operating system (OS). This study

chooses this type of feature because it is permanent although the UNIX OS update its version regularly. The

system command comprises of Android debug bridge (ADB) commands, executing processes and terminal

commands. The following feature is the directory path, which consists of Linux kernel directories and system

paths. The third feature is code-based features, which people use it for executing the commands, for instance,

standard output (stdout), standard error (stderr), and standard input (stdin).

This study proposes three animal-inspired algorithms to search the relevant features in minimal amount.

Then, in the experiments, this study uses Adaboost to boost and convert the multilayer perceptron into a strong

learner for the machine learning classifiers to detect root exploit in Android mobile devices. In summary, this

study has the following unique characteristics.

a) The use of 600 normal @ benign and 550 root exploit samples from the Malgenome dataset [13].

b) The utilization of three types of flying animal-inspired (bat, firefly, and bee) to automatically select the

optimal @ best root exploit features that suits the multilayer perceptron machine learning classifier.

c) The utilization of multiple categories of features, which are system command, directory path and code-

based features.

d) The use of Adaboost, a type of boost that converts the multilayer perceptron into a strong learner for

efficient machine learning result.

The structure of this paper is as follows. Section 2 surveys the related works. Section 3 provides the

methodology in the experiment. Section 4 presents the result derived from the experiment. Finally, section 5

delivers the conclusion and future works.

2. RELATED WORK

This section starts by introducing the root exploit and types of analysis to counter the type of malwares,

and then followed by summary of previous researches related to static analysis and machine learning. The end

of this section explains the flying animal-inspired method in selecting the optimal features and Adaboost that

converts the MLP algorithm to efficiently predict the machine learning performance.

2.1 Root exploit

Unscrupulous authors or known as hackers construct malware to take over the Android operating system

to gain private victim’s information, stealing data, and eavesdropping communication. There are many types

of malware, for instance, root exploit, spyware, botnet, Trojan, and worm. However, the most hazardous is the

rootkit or known as root exploit [14], [15][16], [17]. It is because once the attackers take over the kernel with

help of root exploit, all the OS layers are controlled by the attackers. Therefore, the infected OS will allow the

attackers install multiple types of malware. In order to detect root exploit, researchers conduct malware analysis

[18]–[20][21].

2.2 Malware analysis

The types of malware analysis are dynamic and static analysis. Dynamic analysis executes the malware

and monitors it behaviors. The example of behaviors are user input and network traffic [22]–[30]. However,

the limitations of dynamic analysis are, it needs high hardware specifications and consumes a lot of time to

monitor the application one by one. Furthermore, it is also unable to detect the hidden activities during the

monitor phase. Conversely, another type of malware analysis is static analysis, which examines application

without monitor the behaviors [31][32].

  ISSN: 2089-3272

IJEEI, Vol. 7, No. 4, Dec 2019 : 628 – 638

630

Static analysis [33][6], [34] reverse engineers the application and inspecting its code. It covers unlimited

coverage time because it does not execute the application [35]–[37]. The advantages of static analysis are; 1)

covers the overall code, 2) inspect the overall structure of the application, 3) the analysis process is fast, and

4) able to detect unknown malware by combining with machine learning.

2.3 Static analysis and machine learning

Machine learning is a research that part of the artificial intelligence and provides the knowledge to the

computers from the dataset, such as data observations and the environment interactions. From the data, it will

allow the computers to predicts decisions and future judgements [38]. For example, [31] detected Android

malware with Bayesian machine learning classification, with permissions as features. They utilized

permissions as features that derived from Androidmanifest.xml as well as code-based.

In addition, a study by Shabtai et al. [39] used static analysis with features such as opcodes, string, methods

and predicted by machine learning. Drebin et al. [40] practiced static analysis method and support vector

machine (SVM). The authors utilized features such as permission, application programming interface (API)

calls, xml files, network addresses to detect malware. However, the research excluded strings or keywords as

features. Wei et al. introduced Droidexec [41] and Seo et al. introduced Droidanalyzer [42] also utilized static

analysis in their studies. Droidexec [41] had adopted the graph constructor which uses opcode components, as

features, while Droidanalyzer used API as well as keywords as features.

According to the authors’ current knowledge, at the time of writing this paper, there are still lack of precious

studies used flying animal-inspired (bat, firefly, and bee) to select the best features to detect malware whereas

focus specifically on a root exploit. Therefore, this study utilizes the flying animal-inspired algorithm to select

the best root exploit features.

2.4 Flying animal-inspired search

In machine learning prediction, it is important to selecting features to reduce model overfitting, to

improve the performance of the machine learning prediction, and to shorten the model training time [43][44],

[45]. The following sub-sections describe the flying animal inspired algorithms.

2.4.1 Bat search

Bat Search algorithm explores the best feature space based on the echolocation behavior of bats [46].

The bats use a type of sonar known as echolocation. It is fascinating as bats are able to search their prey and

distinguish to different types of insects even in a complete darkness with help of echolocation. Other than

searching their prey, they also used echolocation to avoid obstacles, and locate their roosting crevices in the

dark. These bats emit a very loud sound pulse and listen for the echo that bounces back from the surrounding

objects.

2.4.2 Firefly search

Firefly searches the best features based on the flashing pattern of tropical fireflies [47]. This algorithm

searches the best features based on the brightness of the flash. For instance, any two fireflies that flash, the less

bright firefly will fly towards the firefly that flashes much brighter. If the flash decreases, the instance between

these two fireflies will increase as well. If there is no brighter than a particular firefly, it will move randomly.

2.4.3 Bee search

The bee algorithm searches the best features by following the bee strategy in finding the honey [48].

Bees strategy in finding the food source (honey) is by constructing two groups, called as scouts and foragers.

Regularly, the quantity of the scouts is smaller than foragers. The bee in scout group will perform a signal

known as waggle dance whenever they discover the food source (honey). The foragers will then fly towards

to the food according to the signal from the scout. Some of the recruited foragers may also perform the waggle

dance upon their return to the hive, mobilizing further foragers to exploit the food source.

Once the flying animal-inspired selected optimized features, this study further utilized it to classify and predict

the root exploit malware with enhanced Multilayer perceptron with boosting method called Adaboost.

2.5 Adaboost

Boosting is a method to transform from powerless machine learning to a solid classifier. This study

utilizes Adaboost to boost the Multilayer perceptron to enhance its execution in machine learning prediction.

Adaboost is referring to Adaptive Boosting. It is introduced by researchers [50] and this boosting algorithm is

constructed according to the learning of the feeble calculation. It helps to deliver more exact and precise

outcomes. Adaboost allocates each perception, 𝑥𝑖 a fundamental weight respect, 𝑤𝑖 =
1

𝑛
, whereas n is the

IJEEI ISSN: 2089-3272 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al)

631

number of insights. For each incorrect insight, 𝑤𝑖 is prolonged while for each precise calculation, 𝑤𝑖 is reduced.

It practices the calculation repeatedly to train the weight of the fragile classifier till the point where the

annotations are predicted. Section 3 explains the detail methodology that combines the flying animal-inspired

with Adaboost MLP in detecting root exploit.

3. METHODOLOGY

Figure 1 depicts the proposed methodology that consists of four stages, which are data collection, reverse

engineering, feature extraction, and machine learning classification. The initial step is to collect the dataset and

followed by the reverse engineering. The steps followed by investigating and extracting the significant features

and lastly the machine learning classification to detect the root exploit from the flying animal-inspired decision.

Data

collection

Application

reverse

engineering

Feature

extraction

Machine

learning

classification

Figure 1. Methodology stages

3.1 Data Collection

Data collection phase needs two classes of applications comprises of normal @ benign and malware. As

this step needs malware applications and extracted 1,260 samples of Malgenome dataset. This malware dataset

consists of 49 families of malware [49] and many studies have utilized the dataset in their experiments [12, 14,

16]. Malgenome dataset consists of multiple of malware types (botnet, Trojan and root exploit). As this study

emphasis on a root exploit malware only, therefore, the experiment extracted the only root exploit in this

dataset, which comprises of 550 samples. Table 1 [13] lists the root exploit malware family and benign @

normal dataset.

Table 1. Information of root exploit and benign dataset
Root exploit

dataset

(Malgenome)

Frequency

Benign dataset

(Google Play

store)

Asroot 8

600

BaseBridge 120

DroidDream 16

DroidDeluxe 1

DroidCoupon 1

DroidKungfu 1 34

DroidKungfu 2 30

DroidKungfu 3 309

DroidKungfu 4 20

zHash 11

Total (1150) 550 600

Other than malware, this study also needs a benign application for machine learning to distinguish between

malware and benign. This study utilizes benign applications collected from the Google Play store [51]. The

study collected 600 benign samples. Hence, the total of both malware and benign is 1,150 samples.

3.2 Reverse Engineering

The general process in static analysis is reverse engineering, which reverses the Android application to

retrieve its native codes. The Android application uses .apk as their file extension. Figure 2 depicts the reverse

engineering step that reverses the .apk to gain the Java codes by using Jadx [52]. Once we retrieve all the code,

this step finds and grab the keywords by using “grep” command in Ubuntu terminal. Then, this step saved the

result in .csv file. Once the grab process finishes, the following phase is to extract the root exploit features.

Android

application

Reverse

engineering

Files with .java

extension

Find

strings

Cleaning

data

Figure 2. Reverse engineering process

3.3 Feature Extraction

The extracting features process includes investigating the suspicious strings in both malware and benign

samples. As time is limited, this research only managed to find 31 features. Table 2 tabulates the features

information which consists of three types of categories, the features in that categories and how many times the

  ISSN: 2089-3272

IJEEI, Vol. 7, No. 4, Dec 2019 : 628 – 638

632

features occur in both benign and malware. It lists the number of features in code-based is nine, directory path

is 10 and system command is 12.

Table 2. List of features
No of features Categories Features Benign Malware

1

code-based

stdout 49 36

2 stdin 8 34

3 stderr 50 36

4 sePtyWindowSize 0 83

5 Forked 0 76

6 exec(su) 6 373

7 exec(sh) 2 9

8 exec() 191 427

9 createSubprocess 0 83

10

directory path

/system/xbin/su 38 361

11 /system/bin/su 16 363

12 /system/bin/sh 2 79

13 /system/bin/secbin 0 325

14 /system/bin/rm 0 17

15 /system/bin/profile 0 15

16 /system/bin/mount 0 31

17 /system/bin/chmod 12 377

18 /proc 4 16

19 /data/local/tmp/rootshell 0 15

20

system command

startservice n 0 359

21 ps 9 22

22 pm uninstall 0 1

23 pm install 0 61

24 mount o remount 2 92

25 kill 1 21

26 echo 18 87

27 cp rp 0 60

28 chown 0 79

29 chmod 23 187

30 cat 1 21

31 adb_enabled 3 360

The code-based category is features that comprise of general codes. For instance, setPtyWindowSize

is a code to execute a process, stderr is a code to detect standard error and stdout is a code to output standard

process in the operating system. Table 2 shows that one of the features, such as Forked, occur none in the

benign application, instead occur 76 times in root exploit malware.

Meanwhile, the directory path category is referring to Android unique directory path whereas it based

on Linux. It is because Android’s kernel is based on Linux OS. As such, /system/xbin/su is the path that

provides authorization to enter and receive access to the Linux kernel directories. The table tabulates one of

the directory paths (/system/bin/chmod) that exist 12 times in benign, however, appeared 377 times in root

exploit.
The next category is system command, which comprises of process, terminal and Android debug bridge

(ADB). The ADB command is an application tool that enables the user to communicate with the Android

emulator to connect to the Android devices [53]. One of the features is adb_enabled, which appeared three

times in benign, but appeared 360 times in root exploit.

3.4 Feature Selection

In the interest to enhance the effectiveness of the machine learning in detecting root exploit, this study

needs to discover the relevant features as minimal as possible. These relevant features will help to remove

irrelevant and noisy data, hence, helps the performance of the multilayer perceptron’s results [34], [54]–[56].

The implementation of the three flying animal-inspired algorithms (bat, firefly and bee) to find the best root

exploit feature from the 31 features are shown in Table 3.

IJEEI ISSN: 2089-3272 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al)

633

Table 3 shows that three flying animal-inspired algorithms (bat, firefly, and bee) choose different features.

Among 31 features, Bat algorithm chooses 17, Firefly algorithm chooses 11 and Bee algorithm is the fewest

than others, which is 7 features. After the feature selection was done, the next step is classification phase using

MLP machine learning classifier to convert it to a strong learner with Adaboost.

  ISSN: 2089-3272

IJEEI, Vol. 7, No. 4, Dec 2019 : 628 – 638

634

Table 3. Flying animal-inspired features.
 Flying animal-inspired algorithm:

Features# Bat Firefly Bee

1 adb_enabled adb_enabled chmod

2 chmod chmod exec(su)

3 chown chown setPtyWindowSize

4 createSubprocess createSubprocess startservice n

5 exec exec(su) /system/bin/chmod

6 exec(sh) mount o remount /system/bin/secbin

7 exec(su) setPtyWindowSize /system/bin/mount

8 mount o remount startservice n

9 pm install /system/bin/chmod

10 setPtyWindowSize /system/bin/secbin

11 startservice n /system/bin/mount

12 /system/bin/mount

13 /system/bin/rm

14 /system/bin/secbin

15 /system/bin/su

16 /system/xbin/su

17 /system/bin/chmod

3.5 The MLP Model

This step is to construct the machine learning predictive model. This is done by assembling the machine

learning predictive model in the Weka (Waikato Environment for Knowledge Analysis) [57]. This phase

performs this experiment in a machine that was furnished with Intel Core i7 as processor, Microsoft Windows

7 Professional and 16 GB of RAM.

4. RESULTS

This study uses cross validation as evaluation benchmark. In this process, 10-fold cross-validation takes

place. The cross-validation method selects ten different parts of data randomly to two sets; (1) training; and (2)

testing and these steps are repeated ten times. In each time, nine subsets were used for training set and one

subset is for testing set. In particular, the testing set was omitted from the training set. In the attention to

evaluate the flying animal-inspired features in detecting root exploit, Table 4 tabulates the evaluation in four

types, 1) accuracy, 2) True Positive Rate (TPR), 3) False Positive Rate (FPR), and 4) ROC.

Table 4. List of evaluation measures.
 Evaluation measure Descriptions Equation

Greater value

shows better

classification

Accuracy Correctly classify classes between

malware or benign
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

 True positive rate

(TPR)

Correctly classify classes as malware 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

 ROC The value closer to 1 indicates good

classifier performance.

Tradeoff between two values, TPR and

FPR

Lesser value

shows better

classification

False positive rate

(FPR)

Incorrectly classify classes the class as

malware, however it is actually benign
𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)

4.1 Cross-validation

Table 5 tabulates the cross-validation results, while Figure 3 depicts these results in a graphical presentation

for a clearer view. It covers the number of features, true positive rate (TPR), accuracy and receiver operating

characteristic (ROC). The figure shows that the results are slightly similar even though the number of features

is increasing. Nevertheless, this fact proves that the flying animal-inspired features (bat, firefly, and bat) are

able to reach good prediction values, which exceed 91 percent in accuracy and 82 percent in TPR. In another

point of view, this study observes another result, which is from the false positive rate (FPR) value.

IJEEI ISSN: 2089-3272 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al)

635

Table 5. Classifier results in cross validation.

Evaluation

measures

Adaboost with MLP

Bee Firefly Bat Flying animal-inspired

 7 11 17 Number of features

Accuracy 91.48 91.39 91.04 Higher value indicates better

 performance

TPR 82.2 82 82.2

ROC 91 91 91

FPR 0.1 0.1 0.8 Lower value indicates better

 performance

Figure 3. Accuracy, true positive and ROC results.

4.2 False positive rate

False positive rate (FPR indicates the value that incorrectly classify the class of the application as malware,

however, it is actually normal @ benign. Therefore, the smaller the value, it is the best value. As it indicates

the enhanced boost MLP did minor incorrect prediction. Figure 4 shows that, between bee, firefly and bat

algorithms, bee algorithm did smaller mistakes than others, which jotted the best value (0.1 percent) with only

seven features. While the bat algorithm marked the worst value which is 0.8 percent with 17 features.

Figure 4 shows the overall results of the FPR experiment. The figure proves that the fewer features utilization,

the machine learning performance in prediction increases. As shown in the figure, the bat algorithm has chosen

17 features more than bee and firefly, hence did more mistakes and marked 0.8 percent. Meanwhile, the bee

and bat algorithms decide to use only seven and eleven features, respectively and did lower mistakes than bat

algorithm (0.1 percent).

  ISSN: 2089-3272

IJEEI, Vol. 7, No. 4, Dec 2019 : 628 – 638

636

Figure 4. False positive results.

Figure 5 shows the plot between a number of features and false positive rate (FPR). The figure shows

that the more features will lead to more incorrect prediction, whereas the trend line is rapidly increasing from

0.1 to 0.8 percent. This finding indicates that the additional features would lead to the higher incorrect

percentage in FPR value. Accordingly, in the interest to achieve a good accuracy machine learning prediction,

it is important to reduce the number of features and relevant as well.

Figure 5. Combination plot between the number of features and false positive value.

IJEEI ISSN: 2089-3272 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al)

637

5. CONCLUSION AND FUTURE WORKS

Root exploit is a malicious application that compromise the OS kernel to violate the root privileges of the OS.

After it successfully attacks, it is capable to execute malicious activities without being notice, bypassing the

authentication and install other types of malware. Accordingly, there is a need to predict the root exploit that

undiscovered before. This study presented three flying animal-inspired to decide the best root exploit features

consists of three categories, which are system command, directory path, and code-based. This study adopted

the enhanced MLP with boost method called Adaboost to transform MLP into a strong machine learning

classifier. From the evaluation, all the flying-animal inspired (bee, bat and firefly) algorithms have selected the

optimal features and marked more than 91% accuracies in predicting unknown root exploit. However, in false

positive rate results, with only seven features, bee jotted the lowest mistake among all algorithms, which is 0.1

% only. For future work, it is possible to add more types of features to increase the machine learning

performance such as, extending the ADB features and other future studies by referring to works by

[58][59][60].

ACKNOWLEDGEMENTS

This work was supported by Universiti Malaysia Pahang, under the Grant IBM Centre of Excellence

(IBM2000) RDU180337.

REFERENCES

[1] Y. Ma and M. S. Sharbaf, “Investigation of Static and Dynamic Android Anti-virus Strategies,” in 10th

International Conference on Information Technology: New Generations (ITNG), Las Vegas, Nevada, 2013, pp.

398–403.
[2] A. Schmidt et al., “Smartphone Malware Evolution Revisited: Android Next Target?,” in IEEE Conference

Publications, Montreal, Quebec, Canada, 2009, pp. 1–7.

[3] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and Iftode Liviu, “Rootkits on smart phones: attacks,

implications and opportunities,” in HotMobile ’10 Proceedings of the Eleventh Workshop on Mobile Computing
Systems & Applications, Annapolis, Maryland, 2010, pp. 49–54.

[4] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the wild,” in

Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices (SPSM),

Illinois, USA, 2011, pp. 3–14.
[5] S. Khan, A. Gani, A. W. A. Wahab, and P. K. Singh, “Feature Selection of Denial-of-Service Attacks Using

Entropy and Granular Computing,” Arabian Journal for Science and Engineering, 2017.

[6] H. Tahaei, R. Salleh, M. F. A. Razak, K. Ko, and N. B. Anuar, “Cost Effective Network Flow Measurement for

Software Defined Networks: A Distributed Controller Scenario,” IEEE Access, pp. 1–17, 2018.
[7] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of machine learning classifiers for mobile

malware detection,” Soft Computing, vol. 20, no. 1, pp. 343–357, Nov. 2014.

[8] F. Afifi, N. B. Anuar, S. Shamshirband, and K.-K. R. Choo, “DyHAP: Dynamic Hybrid ANFIS-PSO Approach

for Predicting Mobile Malware,” Plos One, vol. 11, no. 9, pp. 1–21, 2016.
[9] J. Lee, S. Lee, and L. Heejo, “Screening Smartphone Applications Using Malware Family Signatures,” Computers

& Security, vol. 52, pp. 234–249, 2015.

[10] A. Apvrille and T. Strazzere, “Reducing the window of opportunity for Android malware Gotta catch ’em all,”

Journal in Computer Virology, vol. 8, no. 1, pp. 61–71, Apr. 2012.
[11] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in mobile malware

detection,” Digital Investigation, vol. 13, pp. 22–37, 2015.

[12] K. M. Alhendawi, “Predicting The Effectiveness Of Web Information Systems Using Neural Networks Modeling:

Framework & Empirical Testing,” International Journal of Software Engineering and Computer Systems
(IJSECS), vol. 4, no. 1, pp. 61–74, 2018.

[13] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and Evolution,” in IEEE Symposium on

Security and Privacy, San Francisco, CA, 2012, no. 4, pp. 95–109.

[14] F. Ullah, M. Edwards, R. Ramdhany, R. Chitchyan, M. A. Babar, and A. Rashid, “Data Exfiltration: A Review of
External Attack Vectors and Countermeasures,” Journal of Network and Computer Applications, vol. 101, no.

October 2017, pp. 18–54, 2018.

[15] Z. Tian, B. Wang, Z. Zhou, and H. Zhang, “The research on rootkit for information system classified protection,”

2011 International Conference on Computer Science and Service System (CSSS), pp. 890–893, Jun. 2011.
[16] A. Firdaus and N. B. Anuar, “Root-exploit Malware Detection using Static Analysis and Machine Learning,” in

Proceedings of the Fourth International Conference on Computer Science & Computational Mathematics

(ICCSCM 2015), Langkawi, Malaysia, 2015, pp. 177–183.

[17] A. Firdaus, N. B. Anuar, M. F. A. Razak, I. A. T. Hashem, S. Bachok, and A. K. Sangaiah, “Root Exploit Detection
and Features Optimization: Mobile Device and Blockchain Based Medical Data Management,” Journal of Medical

Systems, vol. 42, no. 6, 2018.

[18] N. B. Anuar, M. Papadaki, S. Furnell, and N. Clarke, “An investigation and survey of response options for

Intrusion Response Systems (IRSs),” in Proceedings of the 9th Annual Information Security South Africa

http://www.ump.edu.my/

  ISSN: 2089-3272

IJEEI, Vol. 7, No. 4, Dec 2019 : 628 – 638

638

Conference, 2010, pp. 1–8.
[19] M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, “The rise of ‘“malware”’: Bibliometric analysis of

malware study,” Journal of Network and Computer Applications, vol. 75, pp. 58–76, 2016.

[20] S. M. Zin, N. B. Anuar, M. L. M. Kiah, and A.-S. K. Pathan, “Routing protocol design for secure WSN: Review

and open research issues,” Journal of Network and Computer Applications, vol. 41, pp. 517–530, May 2014.
[21] H. A. S. Ahmed and M. F. Zolkipli, “Data security issues in cloud computing: review,” International Journal of

Software Engineering and Computer Systems (IJSECS), vol. 2, no. February, pp. 58–65, 2016.

[22] A. Feizollah, N. B. Anuar, R. Salleh, F. Amalina, R. R. Ma’arof, and S. Shamshirband, “A Study Of Machine

Learning Classifiers For Anomaly-Based Mobile Botnet Detection,” Malaysian Journal of Computer Science, vol.
26, no. 4, pp. 251–265, 2013.

[23] N. Yaakob, I. Khalil, H. Kumarage, M. Atiquzzaman, and Z. Tari, “By-passing infected areas in wireless sensor

networks using BPR,” IEEE Transactions on Computers, vol. 64, no. 6, pp. 1594–1606, 2015.

[24] A. Shabtai, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici, “Mobile malware detection through analysis of
deviations in application network behavior,” Computers & Security, vol. 43, pp. 1–18, 2014.

[25] Y. Lin, Y. Lai, C. Chen, and H. Tsai, “Identifying android malicious repackaged applications by thread-grained

system call sequences,” Computers & Security, vol. 39, pp. 340–350, 2013.

[26] A. Feizollah, S. Shamshirband, N. B. Anuar, R. Salleh, and M. L. M. Kiah, “Anomaly Detection Using
Cooperative Fuzzy Logic Controller,” in 16th FIRA RoboWorld Congress (FIRA), Kuala Lumpur, Malaysia, 2013,

pp. 220–231.

[27] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu, “pBMDS : A Behavior-based Malware Detection System for Cellphone

Devices,” in 3rd ACM Conference on Wireless Network Security Location: Stevens Institute Technology,
Hoboken, NJ, 2010, pp. 37–48.

[28] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-Based Malware Detection System for

Android,” in Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices,

Chicago, Illinois, USA, 2011, pp. 15–26.
[29] A. Feizollah, N. B. Anuar, R. Salleh, and F. Amalina, “Comparative Study of K-means and Mini Batch K-means

Clustering Algorithms in Android Malware Detection Using Network Traffic Analysis,” in International

Symposium on Biometrics and Security Technologies (ISBAST), 2014, no. February.

[30] A. A. Allahham and M. A. Rahman, “A Smart Monitoring System For Campus Using Zigbee Wireless Sensor

Networks,” International Journal of Software Engineering and Computer Systems (IJSECS), vol. 4, no. 1, pp. 1–

14, 2018.

[31] S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of Bayesian classification-based approaches for Android

malware detection,” IET Information Security, vol. 8, no. 1, pp. 25–36, 2014.
[32] A. Firdaus, N. B. Anuar, M. F. A. Razak, and A. K. Sangaiah, “Bio-inspired computational paradigm for feature

investigation and malware detection: interactive analytics,” Multimedia Tools and Applications, 2017.

[33] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy Magazine, vol. 2, no. 6, pp. 76–

79, 2004.
[34] M. F. A. Razak, N. B. Anuar, F. Othman, A. Firdaus, F. Afifi, and R. Salleh, “Bio-inspired for Features

Optimization and Malware Detection,” Arabian Journal for Science and Engineering, 2017.

[35] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A framework for enabling static malware

analysis,” in Lecture Notes in Computer Science, vol. 5283, 2008, pp. 481–500.
[36] T.-K. Chang and G.-H. Hwang, “The design and implementation of an application program interface for securing

XML documents,” Journal of Systems and Software, vol. 80, no. 8, pp. 1362–1374, 2007.

[37] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in

Android,” in Security and Privacy in Communication Networks, 2013, pp. 86–103.
[38] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Informatica, vol. 31,

pp. 249–268, 2007.

[39] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated Static Code Analysis for Classifying Android Applications

Using Machine Learning,” in Ninth International Conference on Computational Intelligence and Security,
Nanning, Guangxi Zhuang Autonomous Region China, 2010, pp. 329–333.

[40] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, “DREBIN: Effective and Explainable Detection

of Android Malware in Your Pocket,” in 21th Annual Network and Distributed System Security Symposium

(NDSS), San Diego, CA, 2014, pp. 1–15.
[41] T. Wei, H. Lee, H.-R. Tyan, H. M. Liao, A. B. Jeng, and J. Wang, “DroidExec: Root Exploit Malware Recognition

Against Wide Variability via Folding Redundant,” in 17th International Conference Advanced Communication

Technology (ICACT), PyeongChang, Korea, 2015, pp. 161–169.
[42] S.-H. Seo, A. Gupta, A. Mohamed Sallam, E. Bertino, and K. Yim, “Detecting mobile malware threats to homeland

security through static analysis,” Journal of Network and Computer Applications, vol. 38, pp. 43–53, 2014.

[43] S. Fong, R. P. Biuk-Aghai, and R. C. Millham, “Swarm search methods in weka for data mining,” in Proceedings

of 10th International Conference on Machine Learning and Computing (ICMLC), 2018, pp. 122–127.
[44] Z. Mustaffa and Y. Yusof, “A Hybridization of Enhanced Artificial Bee Colony-Least Squares Support Vector

Machines for Price Forecasting,” Journal of Computer Science, vol. 8, no. 10, pp. 1680–1690, 2012.

[45] Z. Mustaffa, M. H. Sulaiman, and M. N. M. Kahar, “LS-SVM hyper-parameters optimization based on GWO

algorithm for time series forecasting,” in 4th International Conference on Software Engineering and Computer
Systems, ICSECS 2015: Virtuous Software Solutions for Big Data, Kuantan, Pahang, 2015, pp. 183–188.

IJEEI ISSN: 2089-3272 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al)

639

[46] X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” in Nature Inspired Cooperative Strategies for
Optimization (NICSO), vol. 284, 2010, pp. 65–74.

[47] X. S. Yang and X. He, “Firefly algorithm: recent advances and applications,” International Journal of Swarm

Intelligence, vol. 1, no. 1, p. 36, 2013.

[48] D. T. Pham, M. Castellani, and H. A. Le-Thi, “The Bees Algorithm: Modelling Nature To Solve Complex
Optimisation Problems,” in Proceedings of the 11th International Conference on Manufacturing Research

(ICMR2013), 2013, pp. 481–488.

[49] Y. Zhou and X. Jiang, “Android Malware Genome Project,” 2012. .

[50] Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “DroidAlarm: An All-sided Static Analysis Tool for Android Privilege-
escalation Malware,” in Proceedings of Computer and Communications Security (CCS), Hangzhou, China, 2013,

pp. 353–358.

[51] Google, “Google Play Store,” 2014. .

[52] Skylot, “Jadx,” 2015. .
[53] Android Developer, “Android Debug Bridge (ADB),” 2017. .

[54] R. Jensen and Q. Shen, Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches. Wiley-

IEEE Press, 2008.

[55] K. S. Adewole, N. B. Anuar, A. Kamsin, K. D. Varathan, and S. A. Razak, “Malicious accounts: Dark of the social
networks,” Journal of Network and Computer Applications, vol. 79, pp. 41–67, 2017.

[56] A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak, “Discovering optimal features using static analysis and

genetic search based method for android malware detection,” Frontiers of Information Technology & Electronic

Engineering, pp. 1–27, 2017.
[57] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA Data Mining Software:

An Update,” ACM SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[58] M. K. Khaleel, M. A. Ismail, U. Yunan, and S. Kasim, “Review on Intrusion Detection System Based on The Goal

of The Detection System,” International Journal of Integrated Engineering, vol. 10, no. 6, 2018.
[59] M. A. Ismail, V. Mezhuyev, K. Moorthy, S. Kasim, and A. O. Ibrahim, “Optimisation of biochemical systems

production using hybrid of newton method, differential evolution algorithm and cooperative coevolution

algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 8, no. 1, 2017.

[60] M. A. Ismail, V. Mezhuyev, S. Deris, M. S. Mohamad, S. Kasim, and R. R. Saedudin, “Multi-objective

optimization of biochemical system production using an improve Newton Competitive differential evolution

method,” International Journal on Advanced Science, Engineering and Information Technology, vol. 7, no. 4–2

Special Issue, 2017.

