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Malware is an application that executes malicious activities to a computer 

system, including mobile devices. Root exploit brings more damages among 

all types of malware because it is able to run in stealthy mode. It compromises 
the nucleus of the operating system known as kernel to bypass the Android 

security mechanisms. Once it attacks and resides in the kernel, it is able to 

install other possible types of malware to the Android devices. In order to 

detect root exploit, it is important to investigate its features to assist machine 
learning to predict it accurately. This study proposes flying animal-inspired (1) 

bat, 2) firefly, and 3) bee) methods to search automatically the exclusive 

features, then utilizes these flying animal-inspired decision features to improve 

the machine learning prediction. Furthermore, a boosting method (Adaboost) 
boosts the multilayer perceptron (MLP) potential to a stronger classification. 

The evaluation jotted the best result is from bee search, which recorded 91.48 

percent in accuracy, 82.2 percent in true positive rate, and 0.1 percent false 

positive rate. 
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1. INTRODUCTION

People utilize mobile devices in their daily activities to connect, online and communicate. This situation 

provides an opportunity for the attacker to develop root exploit to compromise victim’s Android device for 

money or private purposes. Root exploit is an application software that takes over the kernel of the Android 

operating system to gain root privileges. When the attackers gain this privilege, they are able to provide false 

antivirus results, evade the Android security mechanisms, execute stealth activities without victim’s 

acknowledgement, and install many types of malware to the devices [1]–[3]. In addition, the number of root 

exploits increasing from time to time because of the homebrew communities. These communities are the people 

that find multiple ways to break the Android kernel to obtain a customized version of Android. This leaves an 

opportunity for root exploit writers to wait for the homebrew community to discover new ways to gain control 

of the Android’s kernel [4]. Consequently, in order to detect root exploit, security practitioners conducted the 

two types of malware analysis; 1) dynamic, and 2) static analysis. 

Dynamic analysis investigates root exploit’s behavior by executing the application and inspecting its 

movement [5][6]. The studies that practicing this type of analysis include the works in [7][8]. However, 

dynamic analysis has multiple drawbacks and one of it is the limited monitoring coverage. Because it monitors 

the application’s characteristics within a certain time only. Therefore, root exploit’s behaviors that running 



IJEEI ISSN: 2089-3272  

 

Selecting Root Exploit Features Using Flying Animal-Inspired Decision (A. Firdaus et al) 

629 

exceeds the monitoring time of the dynamic analysis are excluded. This consequently leaves missing many 

root exploit’s behaviors. In dissimilarity, static analysis diagnoses the root exploit by reverse engineering the 

application to retrieve its entire code. Security analysts practice this type of analysis without executing the 

malware. In addition, static analysis only needs few resources, which is low specifications of hardware, such 

as CPU, RAM, and storage. Moreover, static analysis process is fast which consume short amount of time than 

dynamic analysis [9]. During static analysis, the root exploit is unable to hide or modify its malicious process 

because it is unexecuted [10]. Nonetheless, in the interest to detect root exploit efficiently with machine 

learning, static analysis needs distinct features in minimal amount. 

In machine learning intelligence prediction model, determining the optimal and the best features in fewer 

amounts increases the machine learning performance results. This performance increment is because fewer 

features eliminate unnecessary data and decreases the dataset’s dimensionality. It also minimizes the nature of 

the predictive model, hence, reducing the machine learning processing time [11][12]. In the interest to have 

few relevant features, this paper adopts flying animal-inspired search approach, to intelligently investigates 

overall features and select the best features that focuses on detecting root exploit that undiscovered previously. 

This study utilizes categories of features that covers system command, directory path, and code-based. The 

first features, which is system command, it is a UNIX-based command in the operating system (OS). This study 

chooses this type of feature because it is permanent although the UNIX OS update its version regularly. The 

system command comprises of Android debug bridge (ADB) commands, executing processes and terminal 

commands. The following feature is the directory path, which consists of Linux kernel directories and system 

paths. The third feature is code-based features, which people use it for executing the commands, for instance, 

standard output (stdout), standard error (stderr), and standard input (stdin). 

This study proposes three animal-inspired algorithms to search the relevant features in minimal amount. 

Then, in the experiments, this study uses Adaboost to boost and convert the multilayer perceptron into a strong 

learner for the machine learning classifiers to detect root exploit in Android mobile devices. In summary, this 

study has the following unique characteristics. 

a) The use of 600 normal @ benign and 550 root exploit samples from the Malgenome dataset [13]. 

b) The utilization of three types of flying animal-inspired (bat, firefly, and bee) to automatically select the 

optimal @ best root exploit features that suits the multilayer perceptron machine learning classifier.  

c) The utilization of multiple categories of features, which are system command, directory path and code-

based features.  

d) The use of Adaboost, a type of boost that converts the multilayer perceptron into a strong learner for 

efficient machine learning result. 

 

The structure of this paper is as follows. Section 2 surveys the related works. Section 3 provides the 

methodology in the experiment. Section 4 presents the result derived from the experiment. Finally, section 5 

delivers the conclusion and future works. 

 

2.  RELATED WORK 

This section starts by introducing the root exploit and types of analysis to counter the type of malwares, 

and then followed by summary of previous researches related to static analysis and machine learning. The end 

of this section  explains the flying animal-inspired method in selecting the optimal features and Adaboost that 

converts the MLP algorithm to efficiently predict the machine learning performance. 

 

2.1 Root exploit  

Unscrupulous authors or known as hackers construct malware to take over the Android operating system 

to gain private victim’s information, stealing data, and eavesdropping communication. There are many types 

of malware, for instance, root exploit, spyware, botnet, Trojan, and worm. However, the most hazardous is the 

rootkit or known as root exploit [14], [15][16], [17]. It is because once the attackers take over the kernel with 

help of root exploit, all the OS layers are controlled by the attackers. Therefore, the infected OS will allow the 

attackers install multiple types of malware. In order to detect root exploit, researchers conduct malware analysis 

[18]–[20][21]. 

 

2.2 Malware analysis 

The types of malware analysis are dynamic and static analysis. Dynamic analysis executes the malware 

and monitors it behaviors. The example of behaviors are user input and network traffic  [22]–[30]. However, 

the limitations of dynamic analysis are, it needs high hardware specifications and consumes a lot of time to 

monitor the application one by one. Furthermore, it is also unable to detect the hidden activities during the 

monitor phase. Conversely, another type of malware analysis is static analysis, which examines application 

without monitor the behaviors [31][32]. 
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Static analysis [33][6], [34] reverse engineers the application and inspecting its code. It covers unlimited 

coverage time because it does not execute the application [35]–[37]. The advantages of static analysis are; 1) 

covers the overall code, 2) inspect the overall structure of the application, 3) the analysis process is fast, and 

4) able to detect unknown malware by combining with machine learning. 

   
2.3 Static analysis and machine learning 

Machine learning is a research that part of the artificial intelligence and provides the knowledge to the 

computers from the dataset, such as data observations and the environment interactions. From the data, it will 

allow the computers to predicts decisions and future judgements [38]. For example, [31] detected Android 

malware with Bayesian machine learning classification, with permissions as features. They utilized 

permissions as features that derived from Androidmanifest.xml as well as code-based.  

In addition, a study by Shabtai et al. [39] used static analysis with features such as opcodes, string, methods 

and predicted by machine learning. Drebin et al. [40] practiced static analysis method and support vector 

machine (SVM). The authors utilized features such as permission, application programming interface (API) 

calls, xml files, network addresses to detect malware. However, the research excluded strings or keywords as 

features. Wei et al. introduced Droidexec [41] and Seo et al. introduced Droidanalyzer [42] also utilized static 

analysis in their studies. Droidexec [41] had adopted the graph constructor which uses opcode components, as 

features, while Droidanalyzer used API as well as keywords as features.  

According to the authors’ current knowledge, at the time of writing this paper, there are still lack of precious 

studies used flying animal-inspired (bat, firefly, and bee) to select the best features to detect malware whereas 

focus specifically on a root exploit. Therefore, this study utilizes the flying animal-inspired algorithm to select 

the best root exploit features.  

 

2.4 Flying animal-inspired search 

In machine learning prediction, it is important to selecting features to reduce model overfitting, to 

improve the performance of the machine learning prediction, and to shorten the model training time [43][44], 

[45]. The following sub-sections describe the flying animal inspired algorithms. 

 

2.4.1 Bat search 

Bat Search algorithm explores the best feature space based on the echolocation behavior of bats [46]. 

The bats use a type of sonar known as echolocation. It is fascinating as bats are able to search their prey and 

distinguish to different types of insects even in a complete darkness with help of echolocation. Other than 

searching their prey, they also used echolocation to avoid obstacles, and locate their roosting crevices in the 

dark. These bats emit a very loud sound pulse and listen for the echo that bounces back from the surrounding 

objects.  

 

2.4.2 Firefly search 

Firefly searches the best features based on the flashing pattern of tropical fireflies [47]. This algorithm 

searches the best features based on the brightness of the flash. For instance, any two fireflies that flash, the less 

bright firefly will fly towards the firefly that flashes much brighter. If the flash decreases, the instance between 

these two fireflies will increase as well. If there is no brighter than a particular firefly, it will move randomly. 

 

2.4.3 Bee search 

The bee algorithm searches the best features by following the bee strategy in finding the honey [48]. 

Bees strategy in finding the food source (honey) is by constructing two groups, called as scouts and foragers. 

Regularly, the quantity of the scouts is smaller than foragers. The bee in scout group will perform a signal 

known as waggle dance whenever they discover the food source (honey).  The foragers will then fly towards 

to the food according to the signal from the scout. Some of the recruited foragers may also perform the waggle 

dance upon their return to the hive, mobilizing further foragers to exploit the food source.   

Once the flying animal-inspired selected optimized features, this study further utilized it to classify and predict 

the root exploit malware with enhanced Multilayer perceptron with boosting method called Adaboost. 

 

2.5 Adaboost 

Boosting is a method to transform from powerless machine learning to a solid classifier. This study 

utilizes Adaboost to boost the Multilayer perceptron to enhance its execution in machine learning prediction.  

Adaboost is referring to Adaptive Boosting. It is introduced by researchers [50]  and this boosting algorithm is 

constructed according to the learning of the feeble calculation. It helps to deliver more exact and precise 

outcomes. Adaboost allocates each perception, 𝑥𝑖 a fundamental weight respect, 𝑤𝑖 =
1

𝑛
, whereas n is the 
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number of insights. For each incorrect insight, 𝑤𝑖  is prolonged while for each precise calculation, 𝑤𝑖 is reduced. 

It practices the calculation repeatedly to train the weight of the fragile classifier till the point where the 

annotations are predicted. Section 3 explains the detail methodology that combines the flying animal-inspired 

with Adaboost MLP in detecting root exploit. 

 

3. METHODOLOGY 

Figure 1 depicts the proposed methodology that consists of four stages, which are data collection, reverse 

engineering, feature extraction, and machine learning classification. The initial step is to collect the dataset and 

followed by the reverse engineering. The steps followed by investigating and extracting the significant features 

and lastly the machine learning classification to detect the root exploit from the flying animal-inspired decision.  

 

Data 

collection 

Application 

reverse 

engineering

Feature 

extraction

Machine 

learning 

classification
 

Figure 1. Methodology stages 

3.1 Data Collection 

Data collection phase needs two classes of applications comprises of normal @ benign and malware. As 

this step needs malware applications and extracted 1,260 samples of Malgenome dataset. This malware dataset 

consists of 49 families of malware [49] and many studies have utilized the dataset in their experiments [12, 14, 

16]. Malgenome dataset consists of multiple of malware types (botnet, Trojan and root exploit). As this study 

emphasis on a root exploit malware only, therefore, the experiment extracted the only root exploit in this 

dataset, which comprises of 550 samples. Table 1 [13] lists the root exploit malware family and benign @ 

normal dataset. 

Table 1. Information of root exploit and benign dataset 
Root exploit 

dataset 

(Malgenome) 

Frequency 

Benign dataset 

(Google Play 

store) 

   

Asroot 8 

600 

BaseBridge 120 

DroidDream 16 

DroidDeluxe 1 

DroidCoupon 1 

DroidKungfu 1 34 

DroidKungfu 2 30 

DroidKungfu 3 309 

DroidKungfu 4 20 

zHash 11 

   

Total (1150) 550 600 

 

Other than malware, this study also needs a benign application for machine learning to distinguish between 

malware and benign. This study utilizes benign applications collected from the Google Play store [51].  The 

study collected 600 benign samples. Hence, the total of both malware and benign is 1,150 samples.  

 

3.2 Reverse Engineering 

The general process in static analysis is reverse engineering, which reverses the Android application to 

retrieve its native codes. The Android application uses .apk as their file extension. Figure 2 depicts the reverse 

engineering step that reverses the .apk to gain the Java codes by using Jadx [52]. Once we retrieve all the code, 

this step finds and grab the keywords by using “grep” command in Ubuntu terminal. Then, this step saved the 

result in .csv file. Once the grab process finishes, the following phase is to extract the root exploit features. 

 

Android 

application

Reverse 

engineering

Files with .java 

extension 

Find 

strings

Cleaning 

data
 

Figure 2. Reverse engineering process 

3.3 Feature Extraction 

The extracting features process includes investigating the suspicious strings in both malware and benign 

samples. As time is limited, this research only managed to find 31 features. Table 2 tabulates the features 

information which consists of three types of categories, the features in that categories and how many times the 
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features occur in both benign and malware. It lists the number of features in code-based is nine, directory path 

is 10 and system command is 12.   

Table 2. List of features 
No of features Categories Features Benign Malware 

     

1 

code-based 

stdout 49 36 

2 stdin 8 34 

3 stderr 50 36 

4 sePtyWindowSize 0 83 

5 Forked 0 76 

6 exec(su) 6 373 

7 exec(sh) 2 9 

8 exec() 191 427 

9 createSubprocess 0 83 

     

10 

directory path 

/system/xbin/su 38 361 

11 /system/bin/su 16 363 

12 /system/bin/sh 2 79 

13 /system/bin/secbin 0 325 

14 /system/bin/rm 0 17 

15 /system/bin/profile 0 15 

16 /system/bin/mount 0 31 

17 /system/bin/chmod 12 377 

18 /proc 4 16 

19 /data/local/tmp/rootshell 0 15 

     

20 

system command 

startservice n 0 359 

21 ps 9 22 

22 pm uninstall 0 1 

23 pm install 0 61 

24 mount o remount 2 92 

25 kill 1 21 

26 echo 18 87 

27 cp rp 0 60 

28 chown 0 79 

29 chmod 23 187 

30 cat 1 21 

31 adb_enabled 3 360 

     

 

The code-based category is features that comprise of general codes. For instance, setPtyWindowSize 

is a code to execute a process, stderr is a code to detect standard error and stdout is a code to output standard 

process in the operating system. Table 2 shows that one of the features, such as Forked, occur none in the 

benign application, instead occur 76 times in root exploit malware. 

Meanwhile, the directory path category is referring to Android unique directory path whereas it based 

on Linux. It is because Android’s kernel is based on Linux OS. As such, /system/xbin/su is the path that 

provides authorization to enter and receive access to the Linux kernel directories. The table tabulates one of 

the directory paths (/system/bin/chmod) that exist 12 times in benign, however, appeared 377 times in root 

exploit.  
The next category is system command, which comprises of process, terminal and Android debug bridge 

(ADB). The ADB command is an application tool that enables the user to communicate with the Android 

emulator to connect to the Android devices [53]. One of the features is adb_enabled, which appeared three 

times in benign, but appeared 360 times in root exploit. 

3.4 Feature Selection 

In the interest to enhance the effectiveness of the machine learning in detecting root exploit, this study 

needs to discover the relevant features as minimal as possible. These relevant features will help to remove 

irrelevant and noisy data, hence, helps the performance of the multilayer perceptron’s results [34], [54]–[56]. 

The implementation of the three flying animal-inspired algorithms (bat, firefly and bee) to find the best root 

exploit feature from the 31 features are shown in Table 3.  
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Table 3 shows that three flying animal-inspired algorithms (bat, firefly, and bee) choose different features. 

Among 31 features, Bat algorithm chooses 17, Firefly algorithm chooses 11 and Bee algorithm is the fewest 

than others, which is 7 features. After the feature selection was done, the next step is classification phase using 

MLP machine learning classifier to convert it to a strong learner with Adaboost. 
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Table 3. Flying animal-inspired features. 
 Flying animal-inspired algorithm: 

Features# Bat Firefly Bee 

    

1 adb_enabled adb_enabled chmod 

2 chmod chmod exec(su) 

3 chown chown setPtyWindowSize 

4 createSubprocess createSubprocess startservice n 

5 exec exec(su) /system/bin/chmod 

6 exec(sh) mount o remount /system/bin/secbin 

7 exec(su) setPtyWindowSize /system/bin/mount 

8 mount o remount startservice n  

9 pm install /system/bin/chmod  

10 setPtyWindowSize /system/bin/secbin  

11 startservice n /system/bin/mount  

12 /system/bin/mount   

13 /system/bin/rm   

14 /system/bin/secbin   

15 /system/bin/su   

16 /system/xbin/su   

17 /system/bin/chmod   

    

 
3.5 The MLP Model 

This step is to construct the machine learning predictive model. This is done by assembling the machine 

learning predictive model in the Weka (Waikato Environment for Knowledge Analysis) [57]. This phase 

performs this experiment in a machine that was furnished with Intel Core i7 as processor, Microsoft Windows 

7 Professional and 16 GB of RAM.  

  

4. RESULTS 

This study uses cross validation as evaluation benchmark. In this process, 10-fold cross-validation takes 

place. The cross-validation method selects ten different parts of data randomly to two sets; (1) training; and (2) 

testing and these steps are repeated ten times. In each time, nine subsets were used for training set and one 

subset is for testing set. In particular, the testing set was omitted from the training set. In the attention to 

evaluate the flying animal-inspired features in detecting root exploit, Table 4 tabulates the evaluation in four 

types, 1) accuracy, 2) True Positive Rate (TPR), 3) False Positive Rate (FPR), and 4) ROC.  

Table 4. List of evaluation measures. 
 Evaluation measure Descriptions Equation 

    

Greater value 

shows better 

classification 

Accuracy Correctly classify classes between 

malware or benign  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

    

 True positive rate 

(TPR) 

Correctly classify classes as malware  𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

    

 ROC The value closer to 1 indicates good 

classifier performance. 

Tradeoff between two values, TPR and 

FPR 

    

Lesser value 

shows better 

classification 

False positive rate 

(FPR) 

Incorrectly classify classes the class as 

malware, however it is actually benign 
𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 

    

4.1 Cross-validation 

 

 

 

Table 5 tabulates the cross-validation results, while Figure 3 depicts these results in a graphical presentation 

for a clearer view. It covers the number of features, true positive rate (TPR), accuracy and receiver operating 

characteristic (ROC). The figure shows that the results are slightly similar even though the number of features 

is increasing. Nevertheless, this fact proves that the flying animal-inspired features (bat, firefly, and bat) are 

able to reach good prediction values, which exceed 91 percent in accuracy and 82 percent in TPR. In another 

point of view, this study observes another result, which is from the false positive rate (FPR) value.  
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Table 5. Classifier results in cross validation. 

Evaluation 

measures 

Adaboost with MLP  

Bee Firefly Bat Flying animal-inspired 

     

 7 11 17 Number of features 

Accuracy 91.48 91.39 91.04 Higher value indicates better  

    performance 

TPR 82.2 82 82.2  

     

ROC 91 91 91  

     

FPR 0.1 0.1 0.8 Lower value indicates better  

    performance 

 

 
Figure 3. Accuracy, true positive and ROC results. 

4.2 False positive rate 

False positive rate (FPR indicates the value that incorrectly classify the class of the application as malware, 

however, it is actually normal @ benign. Therefore, the smaller the value, it is the best value. As it indicates 

the enhanced boost MLP did minor incorrect prediction. Figure 4 shows that, between bee, firefly and bat 

algorithms, bee algorithm did smaller mistakes than others, which jotted the best value (0.1 percent) with only 

seven features. While the bat algorithm marked the worst value which is 0.8 percent with 17 features.   

Figure 4 shows the overall results of the FPR experiment. The figure proves that the fewer features utilization, 

the machine learning performance in prediction increases. As shown in the figure, the bat algorithm has chosen 

17 features more than bee and firefly, hence did more mistakes and marked 0.8 percent. Meanwhile, the bee 

and bat algorithms decide to use only seven and eleven features, respectively and did lower mistakes than bat 

algorithm (0.1 percent).  
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Figure 4. False positive results. 

Figure 5 shows the plot between a number of features and false positive rate (FPR). The figure shows 

that the more features will lead to more incorrect prediction, whereas the trend line is rapidly increasing from 

0.1 to 0.8 percent. This finding indicates that the additional features would lead to the higher incorrect 

percentage in FPR value. Accordingly, in the interest to achieve a good accuracy machine learning prediction, 

it is important to reduce the number of features and relevant as well. 

 

 
Figure 5. Combination plot between the number of features and false positive value. 
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5. CONCLUSION AND FUTURE WORKS 

Root exploit is a malicious application that compromise the OS kernel to violate the root privileges of the OS. 

After it successfully attacks, it is capable to execute malicious activities without being notice, bypassing the 

authentication and install other types of malware. Accordingly, there is a need to predict the root exploit that 

undiscovered before. This study presented three flying animal-inspired to decide the best root exploit features 

consists of three categories, which are system command, directory path, and code-based. This study adopted 

the enhanced MLP with boost method called Adaboost to transform MLP into a strong machine learning 

classifier. From the evaluation, all the flying-animal inspired (bee, bat and firefly) algorithms have selected the 

optimal features and marked more than 91% accuracies in predicting unknown root exploit. However, in false 

positive rate results, with only seven features, bee jotted the lowest mistake among all algorithms, which is 0.1 

% only. For future work, it is possible to add more types of features to increase the machine learning 

performance such as, extending the ADB features and other future studies by referring to works by 

[58][59][60].  
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