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Nowadays, there is a significant increase in the medical data that we should 

take advantage of it. The application of the machine learning via the data 

mining processes, such as data classification, depends on using a single 

classification algorithm or those combined such as ensemble models. The 

objective of this work is to improve the classification accuracy of previous 

results for Alzheimer disease diagnosing. The Decision Tree algorithm was 

combined with three types of ensemble methods, which are Boosting, Bagging 

and Stacking. The clinical dataset from the Open Access Series of Imaging 

Studies (OASIS) was used in the experiments. The experimental results of the 

proposed approach were better than the previous work results. Where the 

Random Forest (Bagging) achieved the highest accuracy among all algorithms 

with 96.66%, while the lowest result was Decision Tree with 73.33%, all these 

results generated in this paper are higher in accuracy than that done before. 
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1. INTRODUCTION 

The importance of this paper comes from the accuracy of the results achieved in a very important subject 

related to human health, which is associated with the methods of diagnosing of one of the most serious diseases, 

Alzheimer's disease. From the beginning of the last two decades to present, Electroencephalography is using 

as a promising technique for early screening and to help to diagnose Alzheimer’s disease. For this reason, 

several EEG-based classification algorithms have been developed by [1], [2], [3], [4]. Alzheimer is a disease 

discovered by specific symptoms, such as the decline in memory, weak focusing, and the patients cannot do 

daily activities [5]. This disease is known as the most common causes of dementia in elderly people[6]. About 

75% of Dementia cases are Alzheimer’s Disease patients [7]. Alzheimer’s disease is a disorder that affects 

memory functions first, then slowly affect cognitive functions with behavioural deteriorations and cause death. 

It can be diagnosed by an accurate clinical examination, meeting the patient and relatives and doing a 

comprehensive interview with them, and neuropsychological assessment [8].  

The research problem comes from the weakness found in the accuracy of current diagnosis methods, 

which are used for Alzheimer’s disease classification and diagnosis. Where, the development of tools or 

techniques is very necessary because the medical field is data-rich but knowledge weak, because the analysis 

tools in this area, that used to recognize trends and relationships, are not powerful enough. Although there is a 

wealth of data possible inside the medical systems [9]. 
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The objective of this paper is to improve and increase the accuracy of Alzheimer disease diagnosis using 

the proposed method to overcome the weakness of that proposed by [10]. Where instead of using a decision 

tree, logistic regression and discriminant analysis algorithms. We used a combination of algorithms as a 

multilevel of processing, which includes the Decision Tree algorithm with three types of ensemble methods, 

include; boosting, bagging and Stacking [11]. Although, there are various research works [1], [2], [3], [4] are 

focusing on Alzheimer disease diagnosis field, but they are using different datasets. 

Currently, a number of methods have been developed for pattern extraction from small and big datasets, 

to benefit from these data. A major area of development is called knowledge discovery in databases. It includes 

a variety of statistical analysis, machine learning techniques and pattern recognition. In principle, knowledge 

discovery is a process by which the steps of understanding the domain, data cleaning, integration, extraction 

of knowledge from patterns, and knowledge post-processing are utilizing to exploit the knowledge in decision-

making. The step of using pattern extraction by various methods from data is commonly referred to as data 

mining or knowledge discovery in many areas, such as the medical field, including diagnosis, predictions and 

treatment [12], [13]. Data mining involves many methods used for extracting hidden patterns and relationships 

from huge datasets. These methods include machine learning, statistical analysis and database technology. Data 

mining works on two types, which are supervised and unsupervised learning algorithms. In supervised learning, 

a known data set is used to train a model, but unsupervised learning does not use a training set. There are two 

common modelling purposes of supervised data mining techniques. The first includes classification models, 

which predict discrete labels, the second is covering prediction models, that predict continuous-valued 

functions [14]. Advantages of data mining appear in processing big data, finding information and discovering 

association rules [15]. In this paper, we concentrated on the improvement of the diagnostic accuracy of 

Alzheimer disease using ensemble methods, which combined various classifiers to satisfy a higher accuracy of 

results than what was achieved previously.  

The rest of the paper divided into four sections: Section 2 discusses related work. Section 3 describes 

the methodology and section 4 demonstrates the experimental results. Section 5 explains results comparisons 

and discussion, and Section 6 contains the conclusion, finally, section 7 provides the future work. 

 

2. RELATED WORK 

Data mining has been used in many areas of medicine, such as diagnosis, prognosis, and treatment. 

There are many research works concentrating on this part, where one of the important researches contributions 

in the field of Alzheimer’s disease diagnosis was carried out to obtain a high-quality of results in Morocco, 

Benyoussef et al. [10], used clinical data instead of Magnetic Resonance Imaging (MRI) since it is rare in 

Morocco because of the high price. They offered a new approach for classifying Alzheimer’s disease using 

three models, but all these three models gave low accuracy results. In addition, Moreira and Namen [16] 

presented an approach that diagnoses people who are clinically suspected of having dementia. They used a set 

of 19 attributes but also created a new one by using text mining on the patient’s history information. Then by 

applying different classification algorithms, they got a model of Alzheimer’s disease also a model of mild 

cognitive impairment predictive. Finally, they applied ensemble methods on two datasets; first on the original 

dataset, the other is the dataset with the new attribute (hybrid model). The results showed that the hybrid model 

got a high accuracy as compared to the other models. On the other hand, Ramírez et al.[8], proposed an 

automatic Computer-aided Diagnosis System (CADS) to improve early diagnosis of the Alzheimer Disease. 

Their suggested approach was built on the SVM classification and image parameter selection. They found the 

sagittal correlation parameters and coronal standard deviation are the most effective ways of improving the 

accuracy of diagnosis and reduction of the dimensionality of the input size. In addition, they found the CADS 

give the accuracy of 90.38% for the early diagnosis of the Alzheimer Disease.  

Furthermore, Chen et al. [5], used logistic regression to clarify the relationship between dementia and 

other diseases through medications that have been consistently prescribed to treat patients with dementia. Their 

findings included many diseases associated with dementia, such as indigestion in females and other stomach 

disorders. The association between dementia and pneumonia was mainly attributable to patients 65 years or 

older. Ateeq et al. [17] offered an efficient method for detected of Cerebral Microbleeds (CMB) in 

Susceptibility Weighted Imaging (SWI) scans. Their suggested technique included using ensemble methods, 

SVM and Quadratic Discriminant Analysis (QDA). Their results showed that QDA obtained better results of 

the sensitivity of 93.7% with 5.3 false positives (FP) per CMB and 56 FP per patient. 

Daghistani and Alshammari [18] used three algorithms; Self-Organizing Map, Decision tree (C4.5), 

and Random Forest on real health care datasets to predict diabetic patients. They used a dataset of the adult 

population from the Ministry of National Guard Health Affairs (MNGHA), Saudi Arabia with 18 attributes to 

predict diabetic patients. Compared to other algorithms, the Random Forest gave the best results. On the other 

hand, Perveen et al. [19] worked on classify diabetic patients by constructed good models with higher 
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performance, across three groups of ages in the Canadian population. They used the AdaBoost, Decision tree 

(J48) algorithm and bagging. Their results showed AdaBoost ensemble method outperforms bagging and J48. 

Aljumah et al. [20] presented an approach to predicate diabetic treatment. They used a regression-based data 

mining algorithm which is the SVM algorithm and divided data into two groups: young and old. The young 

age group is predicted to have a treatment in this order: controlling diet, controlling weight, drug, exercise, 

stop smoking, and finally, insulin. The objective of Dangare and Apte’s study [21] is to increase the accuracy 

of heart disease prediction; therefore, they added two additional attributes, i.e. obesity and smoking, to get 

more accurate results. Neural Networks, Naive Bayes, and Decision Trees are applied to heart disease data set, 

and they compared the accuracy performance of these algorithms. Their results showed that Neural Networks 

got more accurate results than others did. 

Nadia et, al. [1], proposed a machine deep learning approach as a data-driven for differentiating 

subjects with Alzheimer’s Disease and  Mild Cognitive Impairment and Healthy Control, by analyzing 

noninvasive scalp EEG recordings. Similarly, but for another disease where Gomathy and Banu [22], proposed 

an approach to predict heart diseases. They apply three algorithms: K-mean Maximal Frequent Itemset 

Algorithm (MAFIA) alone, K-mean based MAFIA with ID3 and K-mean based MAFIA with ID3 and C4.5. 

The last one was the best algorithm with 94% accuracy. Palaniappan and Awang [23] presented an approach 

called Intelligent Heart Disease Prediction System (IHDPS) and used Naïve Bayes, Neural Network and 

Decision Trees. Answer complex “what if” queries cannot be done in traditional Decision support systems, but 

IHDPS can. It can predict the likelihood of patients who have heart disease by using previous information from 

medical profiles. It also enables establishing significant knowledge, e.g., patterns, relationships between 

medical factors related to heart disease. It is Web-based, scalable, user-friendly, expandable and reliable. Kim 

et al. [24], proposed a model to predict cardiovascular disease diagnosis, they process images and measure the 

thickness of carotid intima-media to extract a vector feature then invent the multiple feature vectors. They 

applied several machine learning algorithms, and the best results were 89.51% and 89.46% by SVM and 

classification based on Multiple Association Rules (CMAR) respectively.  

Chauraisa and Pal [25], used three algorithms; Iterative Dichotomized (ID3), Classification and 

Regression Tree (CART)  and Decision Table (DT) to develop heart disease, prediction models. Furthermore, 

they also used 10-fold cross-validation methods. When comparing the results of all the algorithms, it showed 

that CART had the best performance. In addition, Abdullah et al. [26] identified the best variants among 

Decision tree algorithm, e.g. (C4.5, C5.0) and Weighted Decision Tree (WDT). Their results showed that the 

C4.5 algorithm had the best accuracy compared to C5.0 and WDT. 

Delen et al. [12] used two data mining algorithms to predict breast cancer; artificial neural networks 

and Decision trees. They used logistic regression with a database contain 200,000 cases, for performance 

comparison purposes. They used 10-fold cross-validation methods. Their results pointed out that the Decision 

tree (C5.0) is the best predictor, then the artificial neural networks are the second, and the worst of the three 

was logistic regression. Additionally, Yang and Chen [27] proposed a data mining method to diagnose lung 

cancer pathologic staging. They used the Decision tree method to obtain and classify clinical data attributes. 

To select the suitable rules for evaluation, they used two approaches, support-then-confidence-then-lift (SCL) 

and confidence-then-lift then-support (CLS). Both approaches provide satisfying results. Likewise, Li et 

al.[28], proposed a model for pancreas cancer diagnosis using Positron Emission Tomography/Computed 

Tomography (PET/CT) images. The model includes three parts; pancreas segmentation, extracting & selecting 

features and designing a classifier. They designed a model contains hybrid feedback, SVM and Random Forest. 

The model applied to a data set of 80 instances and got an accuracy of 96.47%. As well, Xiao et al.[3], presented 

a cancer prediction approach by using deep learning method with an ensemble of different machine learning 

algorithms, they applied it to three data sets of different types of cancer. The results show an increase of 

accuracy as compared to one algorithm or algorithm based on majority voting. Besides, Kiranmayee et al. [29], 

applied Hybrid data mining methods, to predict Brain Tumours, which contains clustering, classification and 

association techniques and they analyzed the results using some statistical techniques. The results showed that 

the performance of classifiers Nearest Neighbor with Generalization (NNge) and Random Forest performed 

better in classification and followed by the Logical Analysis of Data Tree when compared to other classifiers. 

In addition, the results of J48 classifier were weak when compared to the other classifiers. They improved these 

results on the Hybridization through clustering and associations. They concluded from the results that the rate 

of Males Mortality is more when compared to females’ mortality rate. 

In addition, Chen et al. [30], proposed a data mining-based method called MyPHI for personal health 

index (PHI) prediction. The MyPHI performed better than other classifiers, such as logistic regression, linear 

Support Vector Machine (SVM) and their class-weighted versions. The result showed that the MyPHI achieved 

89.95%, while Zhang et al.[15], were used the Apriori algorithm. By improving this algorithm, they found it 

to be a great benefit to research and drill large databases associated with the diagnosis in the medical area. 

Based on this improvement, they found that the results could help others who are using the data mining 

https://www.sciencedirect.com/science/article/pii/S0925231218311524#!
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techniques in extracting, analyzing and processing data to prevent disease and choose best medical treatment 

in the area of medicine. 

  In addition, there are three studies implemented ensemble methods on other fields, for instance, predicting 

chronic kidney disease, using the ensemble [31], Graczyk et al.[32], compared three ensemble methods with 

six machine learning algorithms. The results showed that ensemble methods increase the quality of 

performance, but no particular algorithm that makes ensemble methods perform the best. On the other hand, 

Dietterich [33], compared the effect of three ensemble methods: bagging, boosting and Randomization on 

improving the C4.5 algorithm performance. Boosting had the best results when there is no noise or little noise 

in data while randomization was quite better than bagging. When added some noise, bagging was definitely 

the best. However, this paper is focusing on the accuracy improvement of Alzheimer disease diagnoses results 

discussed above in [10], based on ensemble models as a combination of various algorithms. 

 
3. METHOD 

The methodology developed to improve the previous results [10], where they applied the decision tree, 

logistic regression and discriminant analysis algorithms. In this approach, the Decision Tree algorithm with 

three types of ensemble methods was combined. These algorithms include; boosting, bagging and Stacking to 

improve results for Alzheimer’s disease diagnosis results [10], and using the same dataset. Figure 1 shows the 

method chart. The proposed methodology includes the following steps: 

1. Dataset: the dataset was collected from OASIS. 

2. Pre-processing: it includes clean missing or inconsistent data, removes attributes that irrelevant to our 

study.  

3. Classification: various algorithms were used to diagnose Alzheimer’s disease, includes; Decision tree, 

Boosting, Stacking and Bagging. These algorithms will be explained with more details in section 3.3.  

 

Figure 1. Proposed Methodology 

 

3.1 Data Source 

The clinical data sets of the OASIS used in this study, it contains cross-sectional data from 416 people 

at age 18 to 96 years, it has 100 people between very mild to moderate Alzheimer’s disease who were diagnosed 

clinically and characterized by the Clinical Dementia Rating (CDR) scale [34]. Attributes and their measures 

are shown in Table 1.  

Table 1. Measures of Attributes [35] 
Attribute name Measure 

Age Age at time of image acquisition (years) 

Sex Sex (male or female)  

Education Years of education 

Socioeconomic 

status 

Assessed by the Hollingshead Index of Social Position and classified into categories from 1 (highest status) 

to 5 (lowest status)  

MMSE  score Ranges from 0 (worst) to 30 (best)  

CDR  scale 0 = no dementia, 0.5 = very mild 

AD 1 = mild AD, 2 = moderate AD  

Atlas Scaling Factor 

(ASF) 

A computed scaling factor that transforms the native-space brain and skull to the atlas target (i.e., the 

determinant of the transform matrix)    

eTIV  Estimated total intracranial volume    

nWBV  

 

Expressed as the percentage of all voxels in the atlas-masked image that is labelled as grey or white matter 

by the automated tissue segmentation process 
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3.2 Data pre-processing 

The data set includes 416 records, after eliminating the Null values it becomes 216, then two outliers 

removed, and the rest of the data set becomes 214 records. While selecting the interesting attributes, the value 

of ASF [10] eliminated and represented as in equation (1). Table 2 shows a sample of the dataset. 

ASF = 
1755 

𝑒𝑇𝐼𝑉
   (1)  

Table 2. Sample of the Dataset from OASIS [35] 

ID AGE EDUC SES MMSE CDR ETIV NWBV 

OAS1_0001_MR1 74 2 3 29 0 1344 0.743 

OAS1_0002_MR1 55 4 1 29 0 1147 0.81 

OAS1_0003_MR1 73 4 3 27 0.5 1454 0.708 

OAS1_0018_MR1 39 3 4 28 0 1636 0.813 

OAS1_0019_MR1 89 5 1 30 0 1536 0.715 

OAS1_0023_MR1 82 2 3 27 0.5 1420 0.71 

 

3.3 Ensemble Models 

Ensemble methods have multiple algorithms trained together for solving the same problem and to 

improve the results [36]. The objective of ensemble methods is to combine a group of classifiers that are varied 

and yet accurate, to achieve high accuracy of classification [37]. In this paper, we used three methods applied 

in  [11], then we combined it with the Random Forest algorithm as a new approach.   

1.  Decision Tree (Random forest): which is a Decision Tree collection, is a popular machine-learning 

algorithm. It is one of the bagging techniques. It can trace nodes values and therefore, we can understand 

what is happening inside the algorithm [38]. 

2. Boosting: is an ensemble method. In the beginning, a classifier applied to a training set. Then the second 

classifier applied to focus on the wrong instances that the first algorithm got. Then it adds more classifiers 

until it reaches the maximum number of models or accuracy. For this study, we used AdaBoostM1 as the 

first classifier; then the second classifier was the Decision Tree. 

3. Bagging: is an ensemble method that split the training set into groups and creates a classifier for each 

group, each group of the training dataset is different. It takes the average or majority voting to combine 

the multiple classifier results. For this study, two bagging methods were used, which are the Decision 

Tree and Random Forest algorithm. 

4. Stacking: is an ensemble of different algorithms are applied on the training set and one the Meta classifier 

going to take the results of all classifiers and make accurate results on invisible data. For this study, the 

Decision Tree, Random Forest and K-Nearest Neighbor applied on the training set with Logistic 

Regression as the Meta classifier. 

 
4. EXPERIMENTAL RESULTS   

The previously mentioned algorithms applied to the data set using Python Programming Langue. The 

data set was divided into 86% training set, and 14% testing set same as [10]. Then the parameters were 

investigated to get the best values, and the experiments’ results presented then compared with previous work 

results.  

The best result we got was boosting algorithm with 90% at maximum depth 5 and random state 4. Then 

Stacking becomes second with 83.33% with random state 200. After that, bagging with Decision Tree result 

was 80% at maximum depth 3 and random state 200 while the lowest result was Decision Tree with 73.33% 

accuracy. 

After getting the previous results, we tried to improve the accuracy more. Random Forest had chosen 

because it is a popular ensemble method.  

The experiment result of the Random Forest was excellent, and it got 96. 66% accuracy, with maximum 

depth 6, random state 63 and number of estimators 63 makes it the best among all the experiments. The results 

are shown in Table 3.  

Table 3. Results of Ensemble Methods 
Method Name Description Of Algorithms  Accuracy 

Decision Tree Single 73.33% 

Boosting AdaBoostM1 with Decision Tree 90% 

Stacking Decision Tree and K-Nearest Neighbour 

with Logistic Regression. 

83.33% 

Bagging  Decision Trees 80% 

Bagging  Random Forest 96. 66% 
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5.  RESULTS COMPARISONS AND DISCUSSION 
Ensemble methods proved to be effective in improving the accuracy, and this improvement is shown in 

two algorithms, which are Boosting and Random Forest, they showed an increase in the accuracy as compared 

to Decision Tree alone.  

Benyoussef et al. [10] used a decision tree, logistic regression and discriminant analysis algorithms and 

the accuracy of the test set were 60%, 59%, and 66% respectively.  

 

Table 4 Results Comparison with the Previous Work 
Results Algorithm Accuracy  

 

Our results 

Decision tree 73.33% 

Boosting 90% 

Bagging (Decision Trees) 80% 

Bagging (Random Forest) 96. 66% 

Stacking 83.33% 

Previous results 

[10] 

Decision tree 60% 

Logistic regression 59% 

Discriminant analysis 66% 

 
However, they did not mention about the parameters they used in their work. The experiments of our 

methods showed an improvement in the accuracy of the diagnosis, using the same dataset and the same splitting 

percentage for better comparison. The results are shown in Table 4. As well, Figure 2 demonstrates the previous 

results and Figure 3 shows our results.  

 

Figure 2. Previous Results Achieved by [10] 

Figure 3. Results of Our Approach. 
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6. CONCLUSION  

This paper used data mining techniques to diagnose Alzheimer disease. We used clinical datasets from 

the OASIS that include cross-sectional data. We combined the Decision Tree algorithm with three types of 

ensemble methods: boosting, bagging and Stacking. The algorithms implemented using Python, where 

parameters were investigated to get the best values, and the results were compared with previous work. The 

results of our experiments are better than the results in [10].  Boosting and bagging (Random Forest) had the 

best accuracy, with 90% and 96.66% respectively. These results proved the efficiency of ensemble methods. 

The finding reflects the importance of this paper in regards to improving the classification accuracy of 

Alzheimer’s disease diagnosis, this, in turn, will help doctors and patients to get highly accurate results, 

depends on the analysis of the accumulated data of patients according to the proposed approach. 

 
7. FUTURE WORK 

In future, a larger dataset size of this disease can be used.  Furthermore, MRI dataset can be utilized to 

predict Alzheimer Disease since we used cross-sectional data in this study. The MRI is a powerful tool to 

diagnose Alzheimer Disease. In addition, other machine learning tools can be applied. The approach can be 

applied for the diagnosis of other diseases such as diabetes or heart disease or others. Based on the idea of this 

paper, researchers can create ensemble models for different purposes such as prediction or clustering processes. 

Moreover, this approach can be applied for classification to different types of datasets, such as the text data 

written in various languages, tweets contents, Emails messages, news, etc. 
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