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Abstract 
This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search 

Algorithm (WSA) for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is 
a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for 
food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the 
reactive power dispatches. And the speciality of wolf is possessing both individual local searching ability 
and autonomous flocking movement and this special property has been utilized to formulate the search 
algorithm. The proposed (WSA) algorithm has been tested on standard IEEE 30 bus test system and 
simulation results shows clearly about the good performance of the proposed algorithm. 
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1. Introduction 

Optimal reactive power dispatch problem is subject to number of uncertainties and at 
least in the best case to uncertainty parameters given in the demand and about the availability 
equivalent amount of shunt reactive power compensators. Optimal reactive power dispatch 
plays a major role for the operation of power systems, and it should be carried out in a proper 
manner, such that system reliability is not got affected. The main objective of the optimal 
reactive power dispatch is to maintain the level of voltage and reactive power flow within the 
specified limits under various operating conditions and network configurations. By utilizing a 
number of control tools such as switching of shunt reactive power sources, changing generator 
voltages or by adjusting transformer tap-settings the reactive power dispatch can be done. By 
doing optimal adjustment of these controls in different levels, the redistribution of the reactive 
power would minimize transmission losses. This procedure forms an optimal reactive power 
dispatch problem and it has a major influence on secure and economic operation of power 
systems. Various mathematical techniques like the gradient method [1, 2] Newton method 
[3]and linear programming [4-7] have been adopted to solve the optimal reactive power dispatch 
problem. Both the gradient and Newton methods has the difficulty in handling inequality 
constraints. If linear programming is applied then the input- output function has to be expressed 
as a set of linear functions which mostly lead to loss of accuracy. The problem of voltage 
stability and collapse play a major role in power system planning and operation [8]. Enhancing 
the voltage stability, voltage magnitudes within the limits alone will not be a reliable indicator to 
indicate that, how far an operating point is from the collapse point. The reactive power support 
and voltage problems are internally related to each other. This paper formulates by combining 
both the real power loss minimization and maximization of static voltage stability margin (SVSM) 
as the objectives. Global optimization has received extensive research attention, and a great 
number of methods have been applied to solve this problem. Evolutionary algorithms such as 
genetic algorithm have been already proposed to solve the reactive power flow problem [9, 10]. 
Evolutionary algorithm is a heuristic approach used for minimization problems by utilizing 
nonlinear and non-differentiable continuous space functions. In [11], by using Genetic algorithm   
optimal reactive power flow has been solved, and the main aspect considered is network 
security maximization. In [12] is proposed to improve the voltage stability index by using Hybrid 
differential evolution algorithm. In [13] Biogeography Based algorithm proposed to solve the 
reactive power dispatch problem. In [14] a fuzzy based method is used to solve the optimal 
reactive power scheduling method and it minimizes real power loss and maximizes Voltage 
Stability Margin. In [15] an improved evolutionary programming is used to solve the optimal 
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reactive power dispatch problem. In [16] the optimal reactive power flow problem is solved by 
integrating a genetic algorithm with a nonlinear interior point method. In [17] a standard 
algorithm is used to solve ac-dc optimal reactive power flow model with the generator capability 
limits. In [18] proposed a two-step approach to evaluate Reactive power reserves with respect 
to operating constraints and voltage stability. In [19] a programming based proposed approach 
used to solve the optimal reactive power dispatch problem. In [20] is presented a probabilistic 
algorithm for optimal reactive power provision in hybrid electricity markets with uncertain loads. 
This research paper proposes a new bio-inspired heuristic search optimization algorithm, the 
Wolf Search Algorithm (WSA), for solving the optimal reactive power dispatch problem and this 
algorithm is based on wolf preying behaviour activity. Algorithm possesses both individual local 
searching ability and autonomous flocking movement. Wolf hunts independently by 
remembering its own trait and it will merge with its peer when the peer is in better position. The 
swarming behaviour of WSA has more advantage than that of algorithms like PSO [21], Fish 
[22] and Firefly [23]. WSA functions as multiple leaders swarming from multiple directions to 
reach the best solution, rather than searching as a single flock. How the wolf jumps far out of its 
hunter’s visual range to avoid being trapped like that algorithm design will jump away from the 
local optimal solution. The wolves in the nature have best memory capability for they can hide 
food in caches; also they sense and track down a prey from distances of miles away. They 
themselves do set markers in their territory in various methods like by urinating at the borders. 
Researcher Sebastian Vetter and his team, from the University of Vienna have been studying 
the high level of observational spatial memory in the wolf.  Main assumption is   that the wolves 
are functioning as searching agents in the WSA optimization algorithm are empowered by 
memory caches that can able to store the previously visited various positions. The proposed 
algorithm WSA been evaluated in standard IEEE 30 bus test system &  the  simulation results  
shows   that our proposed approach outperforms  all reported algorithms in minimization of  real 
power loss and voltage stability index . 
 
 
2. Voltage Stability Evaluation 
2.1. Modal Analysis for Voltage Stability Evaluation 

Modal analysis is one among best   methods for voltage stability enhancement in power 
systems. The steady state system power flow equations are given by. 

 


∆P
∆Q൨ ൌ 

J୮θ						J୮୴	
J୯θ					J୕					

൨             (1) 

Where 
∆P = Incremental change in bus real power. 
∆Q = Incremental change in   bus   reactive 
Power injection 
∆θ = incremental change in bus voltage angle. 
∆V = Incremental change in bus voltage Magnitude 

 
Jpθ , JPV , JQθ , JQV jacobian matrix are   the   sub-matrixes    of   the System  voltage  

stability  is affected  by both P and Q.  
To reduce (1), let ∆P = 0 , then: 
 
∆Q ൌ ൣJ୕ െ J୕θJθషభJ൧∆V ൌ Jୖ∆V           (2) 
 
∆V ൌ Jିଵ െ ∆Q                                              (3) 
 
Where, 
 
Jୖ ൌ ൫J୕ െ J୕θJθషభJPV൯                             (4) 
 
Jୖ	is called the reduced Jacobian matrix of the system. 
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2.2. Modes of Voltage Instability 
Voltage Stability characteristics of the system have been identified by computing the 

Eigen values and Eigen vectors. 
Let, 
 
Jୖ ൌ ξ˄η             (5) 
Where, 
ξ = right eigenvector matrix of JR 
η = left eigenvector matrix of JR 
∧ = diagonal eigenvalue matrix of JR and 
 
Jୖషభ ൌ ξ˄ିଵη            (6) 
                                  
From (5) and (8), we have: 
 
∆V ൌ ξ˄ିଵη∆Q            (7) 
                                  
Or, 
 

∆V ൌ ∑
ξη
λ

୍ ∆Q            (8) 

 
Where ξi is the ith column right eigenvector, and η is the ith row left eigenvector of JR.  λi is the 
ith Eigen value of JR. 

The ith modal reactive power variation is: 
 
∆Q୫୧ ൌ K୧ξ୧             (9) 
 

Where, 
 
K୧ ൌ ∑ ξ୧୨మ୨ െ 1           (10) 

Where 
ξji is the jth element of ξi 

 
The corresponding ith modal voltage variation is: 
 
∆V୫୧ ൌ ሾ1 λ୧⁄ ሿ∆Q୫୧             (11) 
 

If  |    λi    |  =0  then the ith modal voltage will collapse. 
In (10), let ∆Q = ek   where ek has all its elements zero except the kth one being 1. 

Then: 
  

 ∆V ൌ 	∑
ƞభౡ		ξభ			

λభ
୧                                                (12) 

ƞଵ୩					k th element of ƞଵ					 
V –Q sensitivity at bus k  
 
பే
ப୕ే

ൌ ∑
ƞభౡ		ξభ			

λభ
୧ 	ൌ ∑ ౡ

λభ
୧                      (13) 

 
3. Problem Formulation 

The objectives of the reactive power dispatch problem is to minimize the system real 
power loss and maximize the static voltage stability margins (SVSM). 

  
3.1. Minimization of Real Power Loss 

Minimization of the real power loss (Ploss) in transmission lines is mathematically 
stated as follows. 
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P୪୭ୱୱୀ ∑ g୩ሺమାౠమିଶ	ౠ	 ౙ౩θౠሻ
୬
୩ୀଵ
୩ୀሺ୧,୨ሻ

                  (14) 

            
Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are 
voltage magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and 
bus j. 
 
3.2. Minimization of Voltage Deviation 

Minimization  of the voltage  deviation magnitudes (VD) at load buses  is mathematically 
stated as follows. 

 
Minimize VD = ∑ |V୩ െ 1.0|୬୪

୩ୀଵ                          (15) 
 

Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 
 
3.3. System Constraints 

Objective functions are subjected to these constraints shown below. 
Load flow equality constraints: 
 

Pୋ୧	–	Pୈ୧ െ V୧∑ ౠ
ౘ
ౠసభ

ቈ
G୧୨ cosθ୧୨
B୧୨ sinθ୧୨

 ൌ 0, i ൌ 1,2… . , nb                (16) 

                                                                        

Qୋ୧	 െ Qୈ୧ െ	V୧∑ ౠ
ౘ
ౠసభ

ቈ
G୧୨ cosθ୧୨
B୧୨ sinθ୧୨

 ൌ 0, i ൌ 1,2… . , nb                     (17)                                 

                   
Where, nb is the number of buses, PG and QG are the real and reactive power of the generator, 
PD and QD are the real and reactive load of the generator, and Gij and Bij are the mutual 
conductance and susceptance between bus i and bus j. 

Generator bus voltage (VGi) inequality constraint: 
 
Vୋ୧	
୫୧୬  	Vୋ୧  Vୋ୧

୫ୟ୶, i ∈ ng	       (18) 
 
Load bus voltage (VLi) inequality constraint: 
 
V୧	
୫୧୬  	V୧  V୧

୫ୟ୶, i ∈ nl                         (19) 
 
Switchable reactive power compensations (QCi) inequality constraint: 
 
Qେ୧	
୫୧୬  	Qେ୧  Qେ୧

୫ୟ୶, i ∈ nc                                   (20) 
 
Reactive power generation (QGi) inequality constraint: 
 
Qୋ୧	
୫୧୬  	Qୋ୧  Qୋ୧

୫ୟ୶, i ∈ ng                                  (21) 
 
Transformers tap setting (Ti) inequality constraint: 
 
T୧	
୫୧୬  	T୧  T୧

୫ୟ୶, i ∈ nt        (22) 
 
Transmission line flow (SLi) inequality constraint: 
 
S୧	
୫୧୬  S୧

୫ୟ୶, i ∈ nl                  (23) 
 

Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and 
transformers. 
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4. Wolf Search Algorithm 
Wolves are social predators that hunt in packs and uses stealth when hunting prey 

together. In behaviour of ants it utilizes pheromones to communicate with their peers to know 
about food source. WSA [24] also do this kind of communication, which decreases the run time 
of the search. Wolves are unique, partially cooperative characteristics and usually move in a 
group in coupled formation, but have tendency to take down the prey individually. WSA naturally 
balances scouting the problem space in random groups and individual. During hunting, wolves 
will group themselves as they approach their prey. This peculiar characteristic prompts the 
searching agents in WSA to move for a better position, like the same way wolves continuously 
change their positions for better ones. When hunting, wolves search for prey and also keenly 
watch the threats from hunters or other animals like tigers etc. Each wolf in the pack chooses its 
own way & position continuously moving to a better state for the prey and also for threats in all 
directions. When wolves’ bumping into their enemies it is well equipped with a threat probability 
and it dashes a great distance away from its present position. The same way in WSA avoids the 
deadlock of getting trapped in local optimal solution. The direction and distance the wolf  moving 
away from a threat are random, and  is similar to mutation and crossover in Genetic algorithm 
.Wolves have very high sense of smell and it can easily  locate prey by scent. Similarly, in the 
WSA each wolf has a sensing distance that creates visual distance. This visual distance is 
applied to search the global optimum and in moving to a better position and for jumping out of 
visual range. In search mode, the wolves are move in Brownian motion (BM), which imitates the 
random drifting of particles suspended in fluid. 

Basic logics of wolf search  
There are three rules that act as basic logics of the Wolf Search Algorithm (WSA)  
Rule 1: Each wolf has visual area as a fixed one and with a radius defined by v for X as 

a set of continuous possible solutions. Each wolf can sense companions who are all appear 
within its visual circle. The footstep expanse by which the wolf moves at a time is normally 
smaller than its visual distance. 

Rule 2: The   fitness of the objective function represents the wolf’s current position.  If 
there is more options the wolf will chose the best terrain inhabited by another wolf from the 
given options. If not, the wolf will continue to move randomly in BM. 

Rule 3: if the wolf will sense an enemy then the wolf will immediately escape to a 
random position far from the threat and beyond its visual range. 

WSA implementation in based on the fitness of the objective function and it reflects the 
quality of a terrain position which will eventually lead to food. 

Wolf often changes in position in search of food and also to safeguard form the 
enemies. Wolf trust with other wolves in movement because they never prey each other. The 
movement done by one wolf will be watched by other wolves simultaneously and they position 
themselves in chance of finding food also with care of them by continuously moving. If the 
current wolf’s location is greater the distance of the companion location, then that new location 
will be less attractive one even though the new position may be good one. Wolf’s willingness to 
move is decreased means, and then that movement will obey the inverse square law. The 

formula is 	ሺrሻ ൌ
୍
୰మ

 ,  where Io is the origin of food and r is the distance between the food or we 

can denote that distance between  the new terrain and the wolf. 
This is the similar formula in the firefly algorithm, for the calculation of attractiveness. 

The incentive formula for the wolf search by using absorption coffeicient and gaussian equation, 
can be written as: 
 

βሺrሻ ൌ β୭e
ି୰మ                                         (24) 

 
Normally all the wolves want to move better position based on colonized by their peers 

position and it depends on many factors like visual distance and how the initial wolf covers the 
area.  Wolf will visualize the other wolves location each other i.e. it will compare the range of 
distance and set by itself in best position for preying and also from enemies. The movement can 
be written as:   
 

xሺiሻ ൌ xሺiሻ  β୭e
ି୰మ൫xሺjሻ െ xሺiሻ൯  escapeሺ	ሻ          (25) 
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Where, escape ( ) is a function that calculates a random position to jump to with a constraint of 
minimum length; v, x is the wolf, which represents a candidate solution; and x(j) is the peer with 
a better position as represented by the value of the fitness function. The second term of the 
above equation represents the change in value or gain achieved by progressing to the new 
position. r is the distance between the wolf and its peer with the better location.  

There are three types of preying that takes place in sequence, 
1) Preying initiatively 
Wolf feed on prey it represents the optimization function as objective. By using the 

visual boundary wolf will have step by step movement on constantly seeing the prey and it will 
have random movement from the current step to forward or backward depending on the prey 
position. If it thinks particular position as best one then it will omit other wolves movements. 
Then it will move in own direction. 

2) Prey passively 
In passive mode the wolf will compare the position with its peers and will improve the 

current position. Wolf will move to passive mode when its own movement does not find food or 
insecurity for its movement. 

3) Escape 
Wolves normally have enemies in nature and threat will be there always. If any threat is 

found, it will relocate very quickly form the current position to new position which will be normally 
greater distance than that of the normal visual range. This can be written in equation as: 

                 

if	moving ൌ ൜
xሺiሻ ൌ xሺiሻ  α ∙ r ∙ randሺ	ሻprey								
xሺiሻ ൌ xሺiሻ  α ∙ s ∙ escape	ሺ	ሻescape

       (26) 

 
Where x(i) is the wolf’s location; a is the velocity; v is the visual distance; rand() is a random 
function whose mean value distributed in [-1,1], s is the step size, which must be smaller than v; 
and escape() is a custom function that randomly generates a position greater than v and less 
than half of the solution boundary. 

Wolf algorithm for solving optimal reactive power dispatch problem:  
Step 1: Objective function f(x), x =(x1,x2,..xd)T 
Step 2: Initialize the population, xi(i=1,2,..,W) 
Step 3: initialize parameters 
r = radius of the visual range 
s = step size by which a wolf moves at a time 
α = velocity factor of wolf 
pa = a user-defined threshold [0-1], determines how often foe appears 
Step 4: WHILE (t<generations and also for stopping criteria is not met) 
step5: FOR i=1: W // each wolf 
step6: Prey new food initiatively (); 
step7: Generation of new location (); 
step8: To check whether the next location suggested by the random number generator 
is new one . 
step8: If not, repeat generating random location. 
Step9:IF(dist(xi,xj) < r and  xj is better as f(xi)<f(xj)) xi moves towards xj  // xj is a better 
than xi 
Step 10: ELSE IF 
xi = Prey new food passively (); 
Step 11: END IF 
Generation of new location (); 
IF (rand ()>pa) 
xi = xi + rand() + v;   wolf  escape to a new position. 
END IF 
END FOR 
END WHILE 
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5. Simulation Results  
The accurateness of the proposed WSA method is demonstrated by testing it on 

standard IEEE-30 bus system. The IEEE-30 bus system has 6 generator buses, 24 load buses 
and 41 transmission lines of which four branches are (6-9), (6-10), (4-12) and (28-27) - are with 
the tap setting transformers. The lower voltage magnitude limits at all buses are 0.95 p.u. and 
the upper limits are 1.1 for all the PV buses and 1.05 p.u. for all the PQ buses and the reference 
bus. The simulation results have been presented in Tables 1, 2, 3 &4. And in the Table 5 shows 
the proposed algorithm powerfully reduces the real power losses when compared to other given 
algorithms. The optimal values of the control variables along with the minimum loss obtained 
are given in Table 1. Corresponding to this control variable setting, it was found that there are 
no limit violations in any of the state variables.  

 
 

Table 1. Results of WSA – ORPD optimal control variables 
Control variables Variable setting 

V1 
V2 
V5 
V8 

V11 
V13 
T11 
T12 
T15 
T36 

Qc10 
Qc12 
Qc15 
Qc17 
Qc20 
Qc23 
Qc24 
Qc29 

Real power loss 
SVSM 

1.041 
1.042 
1.041 
1.031 
1.002 
1.040 
1.00 
1.00 
1.02 
1.01 

3 
3 
4 
0 
3 
4 
4 
3 

4.3209 
0.2462 

 
Table 2. Results of   WSA -Voltage Stability Control Reactive Power Dispatch Optimal Control 

Variables 
Control Variables Variable Setting 

V1 
V2 
V5 
V8 

V11 
V13 
T11 
T12 
T15 
T36 

Qc10 
Qc12 
Qc15 
Qc17 
Qc20 
Qc23 
Qc24 
Qc29 

Real power loss 
SVSM 

1.043 
1.043 
1.042 
1.031 
1.006 
1.034 
0.090 
0.090 
0.090 
0.090 

4 
4 
3 
3 
0 
3 
2 
3 

4.9870 
0.2471 

 
 

ORPD together with voltage stability constraint problem was handled in this case as a 
multi-objective optimization problem where both power loss and maximum voltage stability 
margin of the system were optimized simultaneously. Table 2 indicates the optimal values of 
these control variables. Also it is found that there are no limit violations of the state variables. It 
indicates the voltage stability index has increased from 0.2462 to 0.2471, an advance in the 
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system voltage stability. To determine the voltage security of the system, contingency analysis 
was conducted using the control variable setting obtained in case 1 and case 2. The Eigen 
values equivalents to the four critical contingencies are given in Table 3. From this result it is 
observed that the Eigen value has been improved considerably for all contingencies in the 
second case.  
 
 

Table 3. Voltage Stability under Contingency State 
Sl.No Contingency ORPD 

Setting 
VSCRPD 
Setting 

1 28-27 0.1410 0.1427 
2 4-12 0.1658 0.1668 
3 1-3 0.1774 0.1784 
4 2-4 0.2032 0.2047 

 
Table 4. Limit Violation Checking Of State Variables 

State 
variables 

limits 
ORPD VSCRPD 

Lower  upper 
Q1 -20 152 1.3422 -1.3269 
Q2 -20 61 8.9900 9.8232 
Q5 -15 49.92 25.920 26.001 
Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 
Q13 -15 48 8.1025 6.033 
V3 0.95 1.05 1.0372 1.0392 
V4 0.95 1.05 1.0307 1.0328 
V6 0.95 1.05 1.0282 1.0298 
V7 0.95 1.05 1.0101 1.0152 
V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 
V12 0.95 1.05 1.0400 1.0466 
V14 0.95 1.05 1.0474 1.0443 
V15 0.95 1.05 1.0457 1.0413 
V16 0.95 1.05 1.0426 1.0405 
V17 0.95 1.05 1.0382 1.0396 
V18 0.95 1.05 1.0392 1.0400 
V19 0.95 1.05 1.0381 1.0394 
V20 0.95 1.05 1.0112 1.0194 
V21 0.95 1.05 1.0435 1.0243 
V22 0.95 1.05 1.0448 1.0396 
V23 0.95 1.05 1.0472 1.0372 
V24 0.95 1.05 1.0484 1.0372 
V25 0.95 1.05 1.0142 1.0192 
V26 0.95 1.05 1.0494 1.0422 
V27 0.95 1.05 1.0472 1.0452 
V28 0.95 1.05 1.0243 1.0283 
V29 0.95 1.05 1.0439 1.0419 
V30 0.95 1.05 1.0418 1.0397 

 
Table 5. Comparison of Real Power Loss 

Method Minimum loss 
Evolutionary programming [25] 5.0159 
Genetic algorithm [26] 4.665 
Real coded GA with Lindex as SVSM  [27] 4.568 
Real coded genetic algorithm [28] 4.5015 
Proposed WSA  method  4.3209 

 
 
6. Conclusion  

In this paper, the WSA has been successfully implemented to solve optimal reactive 
power dispatch (ORPD) problem. The main advantages of WSA when applied to the ORPD 
problem is optimization of different type of objective function, i.e real coded of both continuous 
and discrete control variables, and without difficulty in handling nonlinear constraints. The 
proposed WSA algorithm has been tested on the IEEE 30-bus system. Simulation Results 
clearly show the good performance of the proposed algorithm in reducing the real power loss 
and enhancing the voltage profiles within the limits. 
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