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Pruning is the popular framework for preventing the dilemma of overfitting 

noisy data. This paper presents a new hybrid Ant-Miner classification 

algorithm and ant colony system (ACS), called ACS-AntMiner. A key aspect 

of this algorithm is the selection of an appropriate number of terms to be 

included in the classification rule. ACS-AntMiner introduces a new parameter 

called importance rate (IR) which is a pre-pruning criterion based on the 

probability (heuristic and pheromone) amount. This criterion is responsible for 

adding only the important terms to each rule, thus discarding noisy data. The 

ACS algorithm is designed to optimize the IR parameter during the learning 

process of the Ant-Miner algorithm. The performance of the proposed 

classifier is compared with related ant-mining classifiers, namely, Ant-Miner, 

CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across 

several datasets. Experimental results show that the proposed classifier 

significantly outperforms the other ant-mining classifiers. 
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1. INTRODUCTION

Machine learning (ML) is a data analysis technique and is intensively used for automating analytical 

model construction. ML performs a particular task by utilizing discovered patterns and inference without using 

explicit instructions. This technique is considered a branch of artificial intelligence. ML uses algorithms and 

statistical models to create a mathematical model on the basis of a given dataset. This model is known as a 

training model and will be used to make decisions or predictions for real-world problems [1]. In the ML term, 

a learning process is classified into two main instances, namely, unsupervised and supervised learning [2]. 

Unsupervised learning, also known as a clustering task, aims to analyze the given data into groups according 

to the behavior and similarities of data [3]–[5]. In contrast, supervised learning, also known as classification, 

is a powerful learning algorithm, where the target is the class of a specific data  [6]. Classification is one of the 

studies in the field of ML with a wide variety of industrial and commercial applications. These applications 

include medical diagnosis, detection of spam emails, determination of bankruptcy, detection of intrusion, 

determination of handwritten digits, and face detection [7]–[10]. 

The algorithm that performs ML classification is known as a classifier algorithm. Numerous 

classifiers, such as decision trees, rule-based models, linear models, lazy evaluation methods, probabilistic, and 

nonlinear models, have been developed in the literature [11]. In the concepts of understandability, certain 

classifier algorithms produce classification models with high accuracy; however, the structures of the models 

are highly complex and difficult to understand. Other classification algorithms, including rule-based 

classification, produce an understandable model for users. A number of methods and techniques have been 

proposed; among which, the most successful is ant colony optimization (ACO), also known as the ant-mining 
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algorithm [12]–[14]. Ant-Miner uses ACO power to discover classification rules presented as IF <conditions> 

THEN <class>, where each single condition, also known as term, is represented as an attribute = value (e.g., 

blood pressure = high). Thus, the discovered rules have a natural language representation and are easy to 

interpret. 

However, ant-mining algorithms face problems of over-fitting and under-fitting. Over-fitting occurs 

when the ant-mining algorithm effectively fits the data. However, generalizing the model to new data is 

difficult. Meanwhile, under-fitting occurs when the classification model cannot capture the underlying data 

trend [15]. Rule pruning is the framework used in ant-mining algorithms to avoid under-fitting and over-fitting 

problems [16]. The implementation of rule pruning is developed on the basis of different strategies, namely, 

post-pruning, pre-pruning, and hybrid pruning). The majority of ant-mining algorithms use post-pruning 

techniques, where the rule is discovered and undergoes a pruning procedure. This method is used to remove a 

term from the rule while improving its classification accuracy. This method scans the dataset to check the 

improvement in quality of the rule in each particular pruning. This procedure is repeated until a term is lifted 

in the rule, or no more improvement appears [17]. This procedure is time-consuming and complex when the 

dataset includes a large number of instances and attributes. Another important limitation of post-pruning is the 

use of greedy search biases to remove one term at a time rather than finding and pruning interrelated terms. 

Other studies have proposed a pre-pruning method in which irrelevant terms are removed in the construction 

process by using a threshold [18], [19]. The threshold value is part of the criteria, which is responsible for 

selecting the right terms during the construction. The threshold value used in the existing literature is based on 

information gain, which is data-dependent according to information theory. Selecting the right threshold is 

considered a formidable task while remaining constant at different search stages and for all datasets used in the 

experiments. Another research study proposed a hybrid pruner technique that integrated pre- and post-pruning 

methods [20]. The pre-pruning method integrates a user-defined parameter, which is responsible for 

determining the number of terms allowed in the construction rule. Then, the discovered rule undergoes the 

original post-pruning technique used in the majority of ant-mining classifiers. Given the limitations and 

drawbacks in post-pruning, the number of term parameters would seriously affect the discovered rule, which 

is critical. Any mistake would lead to an inappropriate model where a worse result would be reported. 

This paper presents a novel hybrid Ant-Miner classification algorithm and ant colony system (ACS), 

called ACS-AntMiner. The important aspect of this algorithm is the selection of the appropriate number of 

terms to be included in the classification rule. ACS-AntMiner presents a new strategy to enhance the Ant-

Miner algorithm by using an adaptive parameter control strategy. This study proposes a new  parameter called 

IR (ζ), which is responsible for preventing unfit terms from inclusion. This parameter is based on the strength 

and importance of the particular term that needs to be included. Then, we propose a different search space to 

improve the selection of an appropriate IR (ζ) parameter value  as a pre-pruning criterion. This mechanism 

considers the feedback from the rule construction process to select the parameter value and decide whether the 

value prevails in the search space. Post-pruning in the original Ant-Miner will be applied if further pruning is 

required. Therefore, the drawbacks of the post-pruning technique will be overcome, and the irrelevant terms 

are discarded by using our proposed technique. 

The remaining sections of this paper are structured as follows. Section 2 introduces related works 

which includes the ACO algorithm and its applications to different domains. This also presents the main Ant-

Miner components to generate the classification rule. The proposed modification is described in Section 3. The 

details about the materials and methods used in our experiments are provided in research method section. 

Analysis of the experimental results is presented in Section 5. Finally, section 6 discusses the conclusion and 

future research direction. 

 

2. RELATED WORKS 

ACO is a swarm-intelligence metaheuristic algorithm used to solve combinatorial optimization 

problems. This algorithm was first applied to the traveling salesman problem and has since been widely applied 

to a variety of NP-hard optimization problems, such as quadratic assignment problems, vehicle routing with 

time windows, grid computing, and data mining [21], [22]. The first ACO algorithm is the ant system, proposed 

by Dorigo et al. in the 1990s [23]. Real ants use the stigmergy method to find good paths when searching for 

a food source and deposit pheromones to indicate these paths. The amount of laid pheromones depends on the 

food quality and distance. As each ant randomly moves, other ants can detect previously visited paths and 

decide whether to visit them. The pheromones are then deposited along these paths. The process is 

characterized by positive feedback loop and stochastic behavior. Therefore, indirect communication among 

ants searching for food provides them with the ability to find the optimal path between the food source and the 

ants nest [24]. 

Artificial ants also behave as real ants and simulate their natural counterparts to seek for an optimal 

solution to the problem at hand. Each ant employs a stochastic constructive behavior and adopts two factors, 
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namely, the pheromone amount and heuristic information, to formulate its solution. Artificial ants also exhibit 

other features that cannot be found in real ants. Each ant has an internal memory to trace their previous action, 

and the local search procedure may be used to improve the quality of the solution produced by each ant [25]. 

The algorithmic outline of the ACO metaheuristic algorithm consists of three main procedures. The first 

procedure is to construct the solution, where each ant builds a full solution to the problem at hand by using the 

probabilistic state transition rule. The second procedure is the daemon action (found in many ACO variants), 

which is essential to obtain competitive results. An example of the daemon action is the local search procedure. 

The local search starts with an individual solution and iteratively applies changes to improve it. The third 

procedure updates the pheromone amount in two phases. The first phase deals with the pheromone amount that 

evaporates from every path, whereas the second increases the pheromone amount on the path that leads to high-

quality solutions [26]. 

The concept of ACO classification has been used to express useful information from data. The 

information is presented as a rule-based model in the form of IF <conditions> THEN < class>. The rule 

antecedent (IF) consists of a set of conditions, which is connected by a logical conjunction operator (AND), 

that is, IF term1 AND term2 AND… Each term is a triple <attribute, operator, value> (i.e., <Gender = Male>). 

The first developed classifier algorithm, called the Ant-Miner, was introduced by Parpinelli, Lopes, and Freitas 

(2002) to discover classification rules by using the concept and principles of the ACO algorithm, divide and 

conquer strategy and ML [27]–[29]. Ant-Miner uses certain ACO procedures to generate a number of rules and 

determine the best option for a given set of training instances. The process consists of creating one rule for 

each ant and selecting the best option to include in the discovered rule list. The instances covered by the best 

rule are separated from the set of training instances. The process is repeated until all training instances are 

covered by the discovered rule list. The algorithmic outline of the Ant-Miner algorithm contains three 

importance components, known as construction rule, pruning procedure, and pheromone update procedure. 

Rule construction refers to the routines that ants use to incrementally construct a classification rule. 

After the starting term is selected, one term is added to the ant path. Term selection depends on the available 

pheromone amount and heuristic information. The ants’ solutions are chosen based on the values of pheromone 

and heuristics information. The higher the values of those factors, the more chance the solution to be selected 

to be included in the classification rules. The construction graph in this algorithm is fully connected where each 

term is presented as a node, and the possible paths connect the nodes. Therefore, each ant creates its own path, 

which represents a classification rule. Figure 1 shows an example of two solutions constructed by ants, which 

represents the following classification rules: 

1. IF attribute 1 = v1, 1 AND attribute 2 = v2, 1 AND attributeN = vn, 1 THEN class = Class1; 

2. IF attribute 1 = v1, 2 AND attribute2 = v2, 2 AND attributeN = vn, n THEN class = Class3. 

 

 
 

Figure 1. Generation of the classification rule in Ant-Miner 

 

Rule pruning, a popular procedure in the rule-discovery process, aims to reduce the complexity of the 

discovered rules by avoiding irrelevant terms, thereby boosting the algorithm’s performance. The pruning 

method removes irrelevant terms after the rules are developed to their maximum sizes. An example of a rule 

from the ML repository of the University of California Irvine (UCI) dataset called United States Congressional 

Voting is shown in Figure 2. The rule is produced using the Ant-Miner classifier without the use of rule pruning. 

The dataset includes 16 attributes, all of which occur in the discovered rule. The pruning procedure deletes one 

term at a time from the rule to improve its quality. This procedure will be iterated as long as more than one 

term is left in the rule, or additional improvement occurs. An example of a pruned rule is shown in Figure 3, 

which presents the same rule in Figure 2. The rule is simple and exhibits few terms but covers additional 

instances and is accurate. 
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Figure 2.Classification rule using Ant-Miner algorithm without pruning step 

 

 

 

Figure 3. Example of a pruned classification rule 

 

Pheromone updating is the indirect mechanism used to achieve communication among ants in the 

colony. This procedure is responsible for awarding the pheromone amount to good-quality rules in two steps. 

First, the pheromone values are decreased to avoid an unlimited pheromone amount from accumulating which 

allow the ant colony to forget previously constructed low-quality rules. The pheromone is then deposited to 

good rules constructed by the ant. During the learning process, the ants converge to high-quality rules. 

A number of modifications have been proposed in constructing ACO rule-based classification. Liu et 

al. (2002) introduced a less accurate heuristic function to reduce the algorithm’s computational time [30]. An 

extension was proposed to increase the exploration of the search space by adapting the state transition strategy 

[31]. Jiang et al. (2005) proposed three major modifications on the pheromone update strategy, heuristic 

function, and transition rule [32]. Another study proposed two strategies, namely, punishing and mutation 

operators [33]. Chan and Freitas (2006) proposed a modification in the rule-pruning procedure for use with big 

data [20]. Another modification was performed by Chan and Freitas (2006b) for  multilabel data classification 

[34]. Smaldon and Frietas (2006) proposed a strategy to determine the class consequent in advance and then 

generate classification rules for each particular class [35]. Another work introduced the contribution of multiple 

ant colonies rather than a single one using the original Ant-Miner [36]. Antminer+ has been developed with 

different aspects in which the pheromone is initialized with the upper trail limit, and upper and lower 

boundaries are introduced to the amount of deposited pheromones. The pheromones are updated using a strong 

elitist strategy, which can be an iteration of the best ant or the global-best ant. Antminer+ also exhibits a 

different heuristic function, new pheromone updating strategy, and new self-adaptive mechanism to weigh the 

α and β parameters. Lastly, Antminer+ defines the environment as a directed acyclic graph, where all other 

algorithms use a fully connected graph [37], [38]. The threshold criterion was proposed to determine the 

importance of each term for including or rejecting them from inclusion [18], [19]. Another study was proposed 

to handle the continuous attributes on the run of the algorithm rather than discretization in the pre-processing 

step [39], [40]. A study was proposed to modify the rule construction process by considering the correlation 

between terms [41]. Another research was conducted in medical diagnosis in which the Ant-Miner was 

combined with the fuzzy system [42].  Agravat et al. (2010) proposed Ant-Miner for intrusion detection, with 

three modifications, namely, pheromone update procedure, transition rule, and fitness function [43]. Salama 

and Abdelbar (2010) produced a multi-pheromone concept [44]. Liang et al. (2011) introduced a multistage 

rule-choosing method to select the rule set [45]. Another research study proposed a hybrid between the Ant-

Miner and simulated annealing algorithm by incorporating the latter in the rule construction process [46]. A 

study proposed the implementation of ant population rather than a single ant to discover the classification rule 

in each iteration [47]. Baig and Shahzad (2012) introduced a different heuristic function according to the 

correlation between the terms. The study proposed a random selection method to determine the values of the α 

and β parameters [48]. Other studies have determined the class consequent in advance and then constructed the 

rule for this class, allocating different types of pheromone for each class [49]. Different quality functions, and 

each ant in the colony must select the quality functions before the rule construction process, as proposed by 

Rajpiplawala & Singh (2014) [50]. The Laplace correction heuristic function was proposed to replace the 

original heuristic function in the Ant-Miner algorithm [51]. Another study proposed a heuristic function that 

considers the correlation between attributes and instance coverage [52]. A related study also proposed different 

pheromone update procedures that used an evaporation factor which dynamically updates during the search 

process [17]. 

This study aims to provide an adaptive strategy to control the important terms online to be included 

in the construction rule on the basis of the existing literature in the area of ACO algorithms for rule-based 

classification. This study also aims to improve the stability of the algorithm and classification performance and 

simplify the discovered rules through the proposed strategy. 

  

IF PhysicianFeeFreeze = ' y '  THEN   Republican  

 

IF HandicappedInfants = 'n'  AND  WaterProjectCostSharing = 'y'  AND AdoptionBudgetResolution 

= 'n' AND PhysicianFeeFreeze = 'y' AND ELsalvadorAid = 'y' AND   Religious-groupsInSchools = 

'y') AND AntiSatelliteTestBan = 'n'  AND  Aid-to-NicaraguanContras = 'n'  AND   mx-Missile =' n '  

AND   Immigration =' y '  AND  Synfuels-Corporation-Cutback =' n '  AND   Education-Spending =' y 

'  AND  SuperfundRightToSue = 'y'  AND   crime =' y' AND  Duty-Free-Exports =' n '   AND  

ExportAdministrationActSouthAfrica = 'y' THEN  Republican 
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3. THE PROPOSED ACS-ANTMINER CLASSIFICATION ALGORITHM 

Our proposed technique introduces a new parameter called the importance rate (IR), responsible for 

adding only the important terms to each rule. The IR is a pre-pruning criterion based on the probability 

(heuristic and pheromone) amount. If the probability amount of the selected term is below the IR criterion, 

then the term is rejected from inclusion; otherwise, it is added. This technique handles irrelevant terms during 

learning instead of finding a complete rule and then pruning it. Each ant is assigned its own IR value during 

the model learning process. The IR value is modified over time to ensure diversity and consider the different 

search stages. The other terms that can be added to the rules are then explored, and the learning process is 

prevented from being stuck in local optima. 

The ant colony system (ACS) algorithm is designed to optimize the IR parameter. An ant solution 

represents the IR parameter of the Ant-Miner classifier. The classification performance of the Ant-Miner 

classifier on the training dataset is used to design the feedback collection strategy of the ACS. Figure  4 shows 

the main stages in the implementation of the proposed ACS-based parameter selection for the Ant-Miner 

classifier.  

1. Pheromone is initialized on a feedback collection table of the ACS-based parameter selection algorithm. 

2. Parameters of the IR value are selected for each ant in the Ant-Miner classifier. 

3. Ant-Miner constructs a classification rule on the basis of the selected parameter. 

4. Feedback collection starts to collect local and global feedback on the basis of the quality of the discovered 

rule. 

5. ACS algorithm uses the feedback to reward the parameter value according to its performance in the Ant-

Miner classifier. The stages in Figure 4  are discussed in detail in the following paragraphs. 

  

 
Figure 4. System architectures of the proposed ACS-AntMiner classification algorithm 

 

The adaptive parameter selection strategy describes the application of ACO concept which collects 

the feedback from the classification process to adjust the threshold of pre-pruning in the Ant-Miner classifier. 

This dynamic adjusted threshold is called importance rate (ζ). This parameter controls the irrelative terms 

during the rules construction phase of the classifier according to its probability (i.e., the heuristic and the 

pheromone information). To understand the strategy of ζ selection, three vectors have been developed, a vector 

of threshold values is denoted as ParametersValue(vn) = { υ1, υ2, υ3,..., υn} which represents various ζ values, 

and another vector of probabilities for each parameter value υn, denoted as ParametersProbabilities(vn) = 

{p(υ1), p(υ2), p(υ3) ,..., p(υn)},  which determines the selection probability of each parameter value, and a 

vector to collect the local and global quality of the threshold values, denoted as feedbackCollection (vn) = 

{q(υ1), q(υ2), ..., q(υn )}. When each threshold value is used υn, then its current quality q(υn) is updated. 
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Initialization: The pheromone initialization are required to design the transition probabilities of the 

ACS-Ant-Miner in establishing the classification model. First, the feedback collection vector is initiated with 

a small value using equation.  

𝜏n(𝑡 = 0) =
1

n
                (1) 

where n is the size of feedback vector.  

Parameter selection: The new ACS selection transition rule is introduced as shown in (2). This is in 

accordance with the pheromone value that is considered for parameter value selection in our proposed ACS-

based parameter selection algorithm. 

 

P(vn)= {
  𝑎𝑟𝑐𝑚𝑎𝑥𝑣𝑛  ∈ 𝑃    𝑖𝑓 𝑞 < 𝑞0 (exploitation)

 
𝑅,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ( exploration)

                         (2) 

 

where 𝑞0 is a parameter of the controlling state transition rule which will gradually increase between 

[0.1,...,0.9]. The maximum (max) and minimum (min) values of the range identified experimentally in this 

work by using the following equations.   

 

 𝑞0 = (𝑚𝑎𝑥 ) 𝑒−t 
ln (𝑎)

𝑎                (3) 

 

where a is the number of ants and t is the index of the current ant in the ACS. This equation is set as 

q0 with min value to increase the exploration of the ACS algorithm at the beginning of the construction process. 

During the construction process, each ant is assigned its own q0 value. Over time, the value of q0 will gradually 

increase and be stopped at the value of max. q which is a random value uniformly distributed in between 

[0,...,1]. R is a randomly chosen threshold value which is a pure exploration instead of the biased exploration 

calculated by the original formula of the state transition rule [53]. Figure 5, below, shows the process of 

controlling the state transition rule by the 𝑞0 parameter. 

𝑃𝑛 is the probability of selecting a specific value from available values and is simplified in Figure 6, 

which is calculated by using Equation 4.  

 𝑃𝑛 =
[ τ𝑛(t)]

 
 

 ∑ [τ𝑛(t)]
 
 

𝑙

n=1

                         (4) 

where [ 𝜏𝑛(𝑡)]
 
is the amount of the quality associated to each threshold value to probabilistically select 

one of them.  

 
Figure 5. Process of controlling the state transition rule 
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Figure 6. Construction graph with probabilities employed by the adaptive pre-pruning selection technique 

 

An example of the probabilities result is shown in Table 1. The first column represents the available 

threshold values while the second column represents the quality of the threshold values based on the feedback 

collected locally and globally. The last column represents the probability of obtaining a specific threshold 

value. Thus, the use of the probabilities was able to help in deriving conclusions about the causes of the 

successful or unsuccessful performance in different threshold values. For example, the success rate of the 

threshold value is υ7, which is higher than the other. This means that threshold value υ7 has a higher probability 

of being selected. 

Table 1. Conditional probabilities of threshold values 
Threshold Quality Probabilities 

v1 0.01 0.34 

v2 0.5 16.95 
v3 0.22 7.46 

v4 0.3 10.17 

v5 0.4 13.56 
v6 0.2 6.78 

v7 0.9 30.51 

v8 0.21 7.12 

v9 0.1 3.39 

v10 0.11 3.73 

 

Ant-Miner classifier: The Ant-Miner starts to construct one classification rule from the training dataset 

and adds it to a list of discovered rules. The instances covered by the construction rule are then removed from 

the training set. This process is iterated until the number of uncovered instances is larger than the maximum 

uncovered cases. The discovered classification rule process includes three main stages, called, rule 

construction, pruning procedure, and the pheromone update procedure. 

Rule construction: Each ant will create one rule by adding one term at a time in the rule. The term 

selection uses (5) which is based on the heuristic information and pheromone amount associated with each 

term. Addition of terms will stop when all the attributes have been visited, or any additional term inserted into 

the construction rule would cover less than the allowed number of minimum cases per rule. A term is selected 

using the Ant-Miner probability [50]. 

 

Probability =
[ τij(t)]

 
 [ƞij ]

 

 ∑ xia
i=1  .∑ [τij(t)]

 
 [ƞij]

 bi

j=1

                                                     (5) 

 

where [ 𝜏𝑖𝑗(𝑡)] is the pheromone amount associated with termij at iteration (t); [ƞ𝑖𝑗  ]
 
 is the heuristic 

information for each term; a is the attribute number in the dataset; bi is the number of different values for 

each attribute; and xi is set to 1 if attribute ai is not yet visited by ant, or 0 otherwise. 

The heuristic function and the pheromone amount are used to select terms in the rule construction 

process. The heuristic function in the Ant-Miner classifier is inspired from information theory. This function 

computes the amount of information contained in each term (entropy). The heuristic function is defined by (6) 

 

ƞij  =
𝑙𝑜𝑔2 𝑘−𝐻(𝑊|𝐴𝑖= 𝑉𝑖𝑗)

  ∑ ∑ (𝑙𝑜𝑔2 𝑘−𝐻(𝑊|𝐴𝑖= 𝑉𝑖𝑗)
bi

j=1
) 

a

i=1

  

                                (6) 

 

where a and bi have the same meaning as illustrated above; k is the number of classes; and W is the 

class attribute, that is, the attribute whose domain consists of the classes to be predicted. 
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Rule pruning: The rule constructed by each ant is pruned to delete irrelevant terms. This procedure 

utilizes one term elimination method to delete irrelevant terms from the current rule. The predictive class of 

the pruning rule can be changed if the number of instances covered by the pruning rule is different from the 

instances covered by the original rule. Thus, the classifier determines the predictive class by assigning the 

majority class among the instances covered by the rule. The quality of the new rule is then calculated. This 

process will be repeated while improving the rule quality, or only one term is left in the rule. 

The ACS-based parameter selection collects feedback using the Ant-Miner construction rule by 

applying our proposed local feedback collection as in (7). 

 

τx(t+1) = (1 − ). τx(t) +  . 𝑄(𝑡)                                                         (7) 

 

where the  value indicates the pheromone evaporation rate for avoiding unlimited accumulation on 

specific parameter value, and Q(t) is the quality of the discovered rule.  

Ant-Miner pheromone updating: The pheromone amount for each term is updated, thereby depositing 

pheromone in the term, followed by each ant according to rule quality. The effect of pheromone evaporation 

for unused terms is carried out by dividing the value of each τij by the summation of all values of τij. The 

pheromone update is defined as followinf formulas: 

 

τij(t+1) =  τij(t) +  τij(t). 𝑄                                                                     (8) 

 

Q =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗  

𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                                                (9) 

 

τij(t+1) =
τij(t)

∑ ∑  τij(t)

bi

j=1
 

a

i=1

                                                                     (10) 

 

where a and bi have the same meaning as illustrated above; Q is the quality of the discovered rule; TP 

is the case that is covered and correctly predicted by the rule. In contrast, FP is the case that is covered and 

predicted incorrectly by the rule, FN is the case that is uncovered but predicted correctly by the rule and TN is 

the case that is uncovered and predicted incorrectly by the rule. 

Once the first ant finishes this process, the second ant starts with a different IR (ζ) value. This process 

will be iterated until all ants in the colony have discovered all rules, or the current ant builds a rule that is 

exactly similar to the rule constructed by the previous ant, thereby increasing the number and exceeding the 

pre-defined number of converged rules. 

The best rule among all discovered rules of all ants in the current iteration will be added into the list 

of discovered rules. The ACS-based parameter selection collects global feedback according to the best rule 

discovered in the current iteration using the proposed (11). 

 

τx(t 𝑏𝑒𝑠𝑡) = (1 − ).  τx(t 𝑏𝑒𝑠𝑡) +  . Q(𝑡𝑏𝑒𝑠𝑡)                                         (11) 

 

where  is the pheromone decay parameter, and 𝑄(𝑡𝑏𝑒𝑠𝑡) is the quality of the best discovered rule. 

A new iteration will start with the same activities. 

 

4. RESEARCH METHOD 

A ten-fold cross-validation method is used in our experiments. In this method, the dataset is split into 

ten (10) subsets. Each subset is equally sized, where nine (9) are used for the training process. The remaining 

subset is used in the testing stage. This process is repeated ten times with a different subset for training and 

testing to ensure that all subsets will be used in training and testing. Subsequently, the performance of all folds 

is averaged, and the standard deviations are computed. The ten-fold cross-validation method has been also 

adopted and adapted and used in other ant-mining classifier studies [14], [54]. 

The evaluation in this study is performed on the basis of three criteria. First, the classification accuracy 

in discovering the rule list is called the correct classification rate. This criterion is based on the correctly 

classified instances in the test data. Each time, the training subsets consist of n number of instances, the 

classifier constructs the training and test subsets that will be used to test the performance. The correct 

classification instances will determine the performance of the proposed classifier. Second, the size in 

discovering the rule list, which is measured by the amount of terms per rule. The number of terms (conditions) 

refers to the number of antecedents carried by each rule. Third, the observation of the performance of the 

algorithms in the classification accuracy and model size. The average classification accuracy rank versus the 
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average model size rank of all classifiers is used in our experiments. A lower average rank implies better 

algorithm performance. 

We perform several experiments using 16 UCI benchmark datasets to test the performance of our 

hybrid classification algorithm. The benchmark datasets are selected in accordance with Ant-mining literature. 

These benchmarks are secondary datasets that have been chosen from UCI [55]. These datasets demonstrate 

different attribute numbers, which lie between 4 and 60. The attributes exhibit continuous and categorical types. 

The datasets differ in size of instance number within the range of 148–8124 and class label numbers. The main 

descriptions of the experimental datasets are listed in Table 2. 

 

Table 2. Characteristics of datasets used in the experiment 

Datasets Name 

Description 

Instances 
Number 

Attributes 
Number  

Classes 
Number 

Balance Scale 625 4 3 

Breast Cancer (Ljubljana) 286 9 2 

Breast Cancer (Wisconsin) 699 9 2 

Credit-a 690 15 2 

Credit-g 1000 20 2 

Diabetes 768 8 2 

Heart (Cleveland) 303 13 5 

Heart (Statlog) 270 13 2 

Hepatitis 155 19 2 

Ionosphere 351 34 2 

Iris 150 4 3 

Lymphography 148 18 4 

Mushroom 8124 22 2 

Segment 2310 19 7 

Sonar 208 60 2 

Tic-tac-toe 958 9 2 

 

Furthermore, we use different ant-mining classifiers to determine the effect of the proposed strategy 

on the classification accuracy and the classification model size against related and state-of-the-art classifiers in 

literature. The applied classifiers are Ant-Miner and other related ant-mining algorithms, namely, CAnt-Miner, 

TACO-Miner, and Ant-Miner with a hybrid pruner. The CAnt-Miner classification algorithm is an extended 

version of the Ant-Miner classifier that integrates an entropy discretization method in handling continuous 

features during construction [39]. The TACO-Miner provides a threshold value on the basis of the information 

gain of each term. If the information associated with the selected term is below the threshold value, then the 

term will be rejected. The threshold value is considered a pre-pruning criterion that determines the acceptance 

or rejection of terms [18], [19]. The Ant-Miner with a hybrid pruner presents a new hybrid rule pruner that 

hybrids the original Ant-Miner’s rule pruner with a rule pruner based on two aspects, namely, information gain 

and number of terms allowed in the rule called r value. The new method is applied to each rule that exceeds 

the number of terms allowed in a rule. The number of terms in the selected rule is then reduced until it is equal 

to the r value. This method is implemented on the basis of information gain and roulette wheel for selection. 

Thereafter, the procedure of the Ant-Miner’s original rule pruner is applied [20]. 

Finally, the parameter values for the Ant-Miner classifiers are adopted from Raul et al. (2016) and 

López-Ibáñez et al. (2016) to ensure that each classifier will work with the same parameter values and provide 

a fair evaluation of the results [56], [57]. The parameters used for the Ant-Miner classifiers are listed in Table 

3. 

Table 3. Experimental parameters 
Parameter Description Value 

NA Number of ants in the colony 10 
MCR Minimum number of cases that each rule must cover 5 

MUC Maximum of uncovered cases by the discovered rules 10 

RC Number of rules for convergence 10 

NI Number of iterations 10 

 Evaporation rate 0.32 

𝛼 Alpha 1 

q0 The parameter of exploration/exploitation 0.53 
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5. RESULTS AND DISCUSSION  

The results of classification accuracy are depicted in Figure 7 which shows that the proposed ACS-

AntMiner obtained the best result in 12 out of 16 datasets. The proposed algorithm achieves second-best in two 

datasets, namely, lymphography and segment. Our classifier is competitive in two datasets, namely, Credit-g 

and Mushroom where the second best results have been obtained. CAnt-Miner classifier was able to obtain the 

best result in three (3) datasets. Figure 8 depicts the summary of the best classification accuracies for all 

algorithms.  

With regard to the size of the classification model, rule-based classification complexity refers to the 

number of terms included in a given classification model. As shown in Figure 9 & Figure 10, the TACO-Miner, 

which discovers the classification model, obtains the lowest size in ten (10) out of 16 datasets. Our proposed 

algorithm achieves the lowest size in six (6) over 16 datasets. In addition, our proposed algorithm obtains the 

second-best lowest size in five (5) datasets, namely, Balance Scale, Heart (Cleveland), Heart (Statlog), Sonar, 

and Tic-tac-toe. However, the no-free-lunch theorem states that no algorithm performs best on all datasets [12], 

[58]. 

In summary, the results achieved by the ACS-AntMiner are good because the classification accuracy 

achieves the best and outperforms the other classifiers in the majority of the datasets. The classification model 

size indicates that the ACS-AntMiner only performs slightly lower than the TACO-Miner and significantly 

better than the remaining compared classifier. 

 

 

 
 

Figure 7. Comparison of the classification accuracy 

 

 

 
 

Figure 8. Performance summary of classification accuracy 
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Figure 9.  Comparison of the number of terms 

 

 

 
 

Figure 10. Performance summary of the number of terms in a rule 

 

Table 4 shows the results averaged over all the datasets, with the best performances shown in bold. 

This table includes the average classification accuracy and rule term numbers. The proposed classifier exhibits 

the best classification accuracy than the other classifiers. The TACO-Miner obtains the best result for a number 

of terms. The ACS-AntMiner achieves the second-best in the average number of terms in the overall datasets. 

 

Table 4. Overall results based on average performance 

Performance Ant-Miner CAnt-Miner TACO 
Hybrid 

Pruner 

ACS-

AntMiner 

Accuracy 79.65 80.50 78.67 79.46 81.90 

Terms # 10.13 9.92 8.14 10.2 8.81 

 

We assign the average accuracy ranking against the average model size rank over the different datasets 

Figure 11. A lower average rank indicates a better performance of the algorithms. Figure 11 proves that the 

results obtained by the ACS-AntMiner dominate other classifiers when considering the classification accuracy 

and model size ranks. The ACS-AntMiner only performs slightly worse than TACO in terms of model size, 

but it is significantly better than TACO and the other classifiers in terms of classification accuracy. Therefore, 

the ACS-AntMiner is the best classifier that balances between the classification accuracy and model size. This 

balance aims to overcome the problems of overfitting and under-fitting, considering that a less accurate rule in 

the training process that covers numerous training instances is better than an accurate rule that covers only one 

instance. This case helps to avoid the overfitting problem and increases the generalisation of the classification 

model. Our classifier aims to find the appropriate pruning criteria for each dataset by considering the feedback 
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(local and global) in the learning process on the basis of the classification accuracy and avoiding the learning 

process from constructing a classification model that is too simple to describe a given set of data. Understanding 

these two phenomena allows the development of a classification algorithm that balances two extremes. 

Therefore, the ACS-AntMiner outperforms other classifiers when the classification accuracy and model are 

balanced. 

 

 
 

Figure 11. Average rank test 

 

6. CONCLUSION  

In this study, a novel ACO-based rule classification algorithm, called ACS-AntMiner, is presented 

which balances between high classification accuracy and low model size. A new parameter, called IR (ζ), is 

introduced to control the relative importance to the terms included in the construction rule. The ACS 

optimization algorithm is then designed to control this parameter online using three main features. The first 

feature is the parameter selection probability, which considers the balance between exploration and 

exploitation. This method can effectively guide our classifier in selecting a better parameter value to select the 

terms included in the construction rule. The second feature is the local feedback collection procedure, which 

monitors the effectiveness of the selected parameter value. This feature evidently reinforces the performance 

of the classification algorithm. The last one is the global feedback collection, which keeps track of the best 

parameter value used in the current iteration. These new features are implemented in our algorithm, and 16 

datasets are used to evaluate the performance of ACS-AntMiner classifier. The evaluation result with four most 

related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with hybrid 

pruner, shows that our proposed classifier performs best in the classification accuracy and achieves preferable 

simplicity. This due to the usage of the ACS algorithm to optimise the IR (ζ)  value. Certain potential directions 

in future research in our classifier are discovered. Such a notion could draw inspiration from other swarm-

intelligent optimization algorithms, namely, PSO, ABC, BA, and FA, to optimize the IR (ζ)  parameter online, 

which may guide ants to find enhanced solutions. Another research direction is to adapt techniques that 

automatically adjust the parameters of the search methods on-the-fly in the field of the stochastic local search 

algorithm. 
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