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In this paper, we present the active and reactive power control of a 

Dual Stator Induction Generator (DSIG).  Contrary to the Doubly Fed 

Induction Generator (DFIG), which is controlled by its rotor and which 

delivers power from its stator, in the DSIG, one of the two stator 

windings plays the role of control winding and the other plays that of 

the power winding. The aim of this article is to establish, using some 

simplifying assumptions, the relationships between the active and the 

reactive powers delivered from the power winding and the voltages 

applied at its control winding terminals. Based on these relationships, 

a functional diagram is built and the active and reactive power 

regulators are synthesized. A model of the controlled DSIG is 

implemented under MATLAB-Simulink environment and the 

simulation results showed the feasibility and the performances of the 

developed control laws.  
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NOMENCLATURE 

1s
R ,

2s
R ,

r
R  stator 1, stator 2 and rotor resistances. 

1s
L ,

2s
L ,

r
L  stator 1, stator 2 and rotor inductances. 

m
L     magnetizing inductance. 

p    number of pole pairs. 

em
C     electromagnetic torque 

s
  angular speed 

(
1ds

v ,
1qs

v ), (
2ds

v ,
2qs

v )            d and q components of stator 1 and stator 2 voltages 

dr
v ,

qr
v  d and q components of rotor voltage. 

(
1ds

i ,
1qs

i ), (
2ds

i ,
2qs

i )               d and q components of stator 1 and stator 2 currents 

dr
i ,

qr
i  d and q components of rotor current 

(
1ds

 ,
1qs

 ), (
2ds

 ,
2qs

 )        d and q components of stator 1 and stator 2 flux. 

dr
 ,

qr
    d and q components of rotor flux. 

1s
P , 

1s
Q                                 active and reactive power of stator 1 

2s
P , 

2s
Q                                 active and reactive power of stator 2 
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1. INTRODUCTION  

In recent years and with the progress of science and technology, the global energy consumption 

continues to grow, the conventional sources of energy are limited and a number of problems are associated 

with their use such as environmental pollution. It is of great importance to develop clean and renewable energy 

to replace these traditional energy sources [1]. Among renewable energy resources, wind energy is considered 

as one of the most promising and important sources of renewable energy in the world, mainly because it is 

clean, cost-effective, renewable, and harmless to the environment and also for its contribution to the reduction 

of CO2 emissions [2]. 

The permanent magnet synchronous generator (PMSG) plays a significant role in the wind energy 

conversion [3]. However, the high cost of the permanent magnets present in the rotor as well as its risk of 

demagnetization at high temperatures, limit the use of these machines [4]. 

Due to its many advantages, the DFIM became a good candidate for variable speed wind energy 

conversion systems [5] and for high power drive systems [6]. Nevertheless, the presence of the slip rings and 

the brush system in the DFIM reduces its reliability, its robustness and requires periodical maintenance [7].  

Since the beginning of the 20th century, many studies have been carried out in order to develop a 

machine that could overcome these disadvantages.  The Dual Stator Induction Machine (DSIM) has become 

an attractive option particularly for renewable energy systems. This type of multiphase machines has several 

advantages over the other types of induction machines, such as power segmentation, torque ripples 

minimization and rotor current harmonics reduction[8-10]. The DSIM is an alternative solution for 

conventional Doubly Fed Induction Machines (DFIM) replacement. In fact, its configuration retains all the 

benefits of the wound rotor induction machine in a brushless structure. It provides robustness, reliability and 

low maintenance cost. 

Brushless Doubly Fed Induction Generator (BDFIG) has been the subject of several studies. A vector 

control scheme is developed, including an experimental implementation in [11].   Comparison of control 

strategies for a novel Dual-Stator Brushless Doubly-Fed Induction Generator in wind energy applications is 

given in [12]. In [13] a Predictive Power Control Model (PPCM) of a Brushless Doubly Fed Twin Stator 

Induction Generator is presented. In [14] we find the fuzzy logic control strategy of wind generator based on 

the Dual-Stator Induction Generator. 

Many research works have reported power control techniques for controlling the active and reactive 

power flow independently [15]. Stator flux-oriented vector control scheme has been proposed for active and 

reactive powers in a DFIG-based wind energy conversion system in [16]. Active and Reactive Power Control 

of a DFIG for Variable Speed Wind Energy Conversion is presented in [17], [18], [19]. In [20] direct and 

indirect control of a Doubly Fed Induction Generator wind turbine including a storage unit is developed. [21] 

treats a power control study of a wind energy conversion system based on a Doubly Fed Induction Generator 

(DFIG) connected to the electric power grid. Real-time active and reactive power control of a Doubly-Fed 

Induction Generator based wind energy conversion system is studied in [22]. The performance of a PI controller 

for active and reactive power control of a DFIG operating in a grid-connected variable speed wind energy 

conversion system is given in [23]. A comparative study between the use of PI and PID controllers for the 

control of the active and reactive power of a DFIG based wind energy conversion system is given in [24]. 

Most of the work that dealt with power control of induction generators is based on the exploitation of 

functional diagrams. These diagrams were already well established for the DFIM and for the cascade of DFIM.  

However, for the DSIM, they did not take into account the coupling which exists between the power winding 

and the control winding. 

In this work, we propose to take this coupling into account and to develop, under certain simplifying 

assumptions, the relationships between the active and reactive powers delivered by the DSIM from its power 

winding and the voltages of its control winding, in order to synthesize PI controllers. 

This paper is organized into six sections. The description of the studied system is given in Section 2. 

The modeling of the Dual Stator Induction Machine is presented in Section 3. Section 4 is dedicated to the 

active and reactive power control of the DSIM. In Section 5 the simulation results are presented and discussed. 

Section 6 contains the conclusion. 

2. SYSTEM DESCRIPTION  

Figure 1 shows the structure of the proposed system. The Dual Stator Induction Generator has two 

windings in the stator; stator 1 represents the power winding (PW) connected directly to the grid and stator 2 

is the control winding (CW), it is connected to the grid through a bidirectional converter. The rotor is a squirrel 

cage type.  

The two stator windings of the DSIG have the same number of poles.  Assuming that the reference 

frame is aligned with stator 1 flux, the active and the reactive powers exchanged between stator 1 (power 

winding) of the DSIG and the grid are controlled independently by using classical Proportional Integral (PI) 
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controllers. Bidirectional converters allowing bidirectional power flow are used. This capability is used to 

operate the DSIG in both hyper-synchronous and hypo-synchronous modes. 

  

3. MODELING OF THE DUAL STATOR INDUCTION MACHINE 

The dual stator induction machine is composed of two fixed three-phase stator windings denoted as stator 

1 and stator 2 shifted by an electrical angle α, and a common squirrel cage mobile rotor [8] as shown in Figure 

2. 

The voltage and flux equations describing the dual stator induction machine model in an arbitrary 

reference frame are as follows: 

Figure 2. Electrical diagram of the windings of a Dual Stator Induction Machine 
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Figure 1. Synoptic scheme of the studied system 
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The torque equation is represented as follows: 

 

1 2 1 2
( ) ( )m

em qs qs ds ds

r m

qrdr

L
C p i i i i

L L
  = + − + +

                                                                                 (7) 

 

We consider in this work that DSIM works only in generator mode; in this case stator 1 and stator 2, 

which have the same number of pole pairs, they have necessarily the same frequency. Indeed, stator 2 whose 

pulsation is equal to 
2s

 induces in the rotor a field of pulsation equal to
2

*
s

g  .  This rotor field is driven at 

the rotor speed. This induces in stator 1 a field with pulsation equal to the sum of the rotor field pulsation and 

the rotor speed r . 

2 2
* *

s s r
g p = −  , where g  is the slip. 

 

 

1 2 ss s
  = = . 

4. ACTIVE AND REACTIVE POWER CONTROL OF THE DUAL STATOR INDUCTION 

MACHINE 

   

4.1. Field oriented control of the Dual Stator Induction Generator    

 Assuming that the (d,q) reference frame is linked to the rotating field and synchronized with the stator 

1 flux, such as the d axis is aligned with stator 1 flux, the d axis stator 1 flux component is then always kept 

constant and the q axis component is constantly equal to zero. 

1 2 2 2
* * * *r r rs s s s

g p p p   = + = − + =  
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Stator 1 voltage equations become: 

              
1 1 1

1 1 1 1

.

. .

ds s ds

qs s qs dss

v R i

v R i w 

=

=




+

                                                                                                                    (9) 

 

Assuming a stable electrical network with a constant voltage Vs, leads to a constant stator 1 flux. In addition, 

if we neglect the resistance of stator 1 (this is the case in wind energy conversion systems); stator 1 voltage 

equations are reduced to: 
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                                                                                                                              (10) 

 

Consequently, the equations of the rotor currents and those of stator 1 and stator 2 voltages and those of stator 

1 powers are presented respectively in the set of the following equations (11-14). 
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  The dual stator induction machine diagram (Figure 3) derives from stator 2 voltages (
2ds

v ,
2qs

v ) and 

those of stator 1 active and reactive powers (
1s

P ,
1s

Q ) given respectively by equations (13) and (14).   

 

 

 

 

 

 

 

 

 

 



IJEEI  ISSN: 2089-3272  

 

Active and Reactive Power Control of a Dual Stator Induction Machine (DSIM) … (F. Lounas et al) 

669 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this diagram, we can notice that stator 1 active and reactive powers are linked to stator 2 voltages 

by first order transfer functions. 

 
4.2. Active and reactive power control 

As shown in Figure 4, each power (
1s

P  and
1s

Q ) is controlled with an independent regulator. This is 

due to the fact that the coupling terms present in Figure 3 are compensated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. PI regulators synthesis  

Figure 5 shows the structure of the PI controller used to regulate both the active and the reactive 

powers. The transfer function of the proportional integral controller is: 

( ) i
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Figure 4. Block diagram of the power control 
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Figure 3. Simplified diagram of the Dual Stator Induction Machine 
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The terms
P

K and
i

K are respectively the proportional and integral gains. These parameters are calculated using 

the well know a pole compensation method. 

 

  

 

 

 

 

 

 

The open loop transfer function of the regulator is: 
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Using the pole compensation method in order to eliminate the zero of the transfer function, we obtain the 

following relationship between the two controller gains: 
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The closed loop transfer function is expressed by: 
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We can now express each controller gain as a function of the machine parameters and the desired time response
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5. SIMULATION RESULTS AND DISCUSSION  

 In order to study the performances of the proposed control method, a set of simulation tests are 

performed for a 1,1kW DSIM. This DSIM is manufactured by "Electro-Industries" company, located at 

Azazga, Tizi Ouzou- Algeria. All the parameters of this machine are given in Table 1. The reactive power 

reference 
1s

Q is set to zero in order to obtain a unit power factor. 

 

Table 1. The DSIM Parameters 
DSIM nominal power Pn= 1,1 kW 

Frequency f = 50 Hz 

Number of pole pairs p = 2 

Stator resistances Rs1 = Rs2 = 7.73 Ω 

Stator inductances Ls1 = Ls2 = 0.0150 H 

Magnetizing inductance Lm = 0.44 H 

 Ps1_ref,  

 Qs1_ref 

 Ps1, 

 Qs1 

Figure 5. Structure of active and reactive power control loop 
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Figure 6. Active power of stator 1 and its reference 
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Figure 7. q-Component of stator 2 current 
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These tests are performed by applying three steps of the active power at different times (P1= -200W 

at t1=0s ; P2= -1000W at t2= 0.5s; P3= -600W at t3 = 1s,), the simulation results are presented for two operating 

modes of the DSIG, one below the synchronous speed (sub-synchronous mode) and one above (super-

synchronous mode). 

 

5.1. Sub-synchronous mode   

 In this case, it is assumed that the DSIG rotates below the synchronous speed (1450 rpm), the 

simulation results characterizing this operating mode are represented in the figures below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. d-Component of stator 2 current 
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Figure 8. Reactive power of stator 1 and its reference 
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Figure 11. Current and voltage of stator 1 
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Figure 13. Rotor current  
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5.2.  Hyper-synchronous mode  

 In this operating mode, it is assumed that the DSIG rotates above synchronous speed (1648 rpm). The 

results obtained for this operating mode are as follows: 

Figure 12. Current and voltage of stator 2 
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Figure 17. d-Component of stator 2 current 
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Figure 16. Reactive power of stator 1 and its reference 

Figure 18. Active power of stator 2 
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Figure 14. Active power of stator 1 and its reference 
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Figure 19. Current and voltage of stator 1 
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Figure 20. Current and voltage of stator 2 
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Figure 21. Rotor current  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 6, 8, 14 and 16 show that the active and reactive powers of stator 1 (power winding) follow 

perfectly their references in both hypo and hyper synchronous modes. A perfect decoupling between the active 

and the reactive powers exchanged between stator 1 and the grid is observed, where the quadrature component 

of stator 2 (control winding) current (Figures 7) controls the active power of stator 1 (Figure 6) and the reactive 

power (Figure 8) is controlled by the direct component of stator 2 current (Figure 9). This is du to the fact that 

the reference frame is aligned with stator 1 flux.The same remarks can also be drawn about the hyper-

synchronous mode considering Figures 14, 15 and 16, 17 respectively. 

The positive sign of the active power of stator 2 shown in Figure 10 indicates that the DSIM operates 

at the hypo-synchronous mode and absorbs active power from the grid through stator 2. Figure 12 shows the 

voltage and the current of stator 2 and their zooms, particularly the phase shift between them is also a proof 

that the DSIM operates at the hypo-synchronous mode. 

The negative sign of the active power of stator 2 shown in Figure 18 indicates that the DSIM operates 

at the hyper-synchronous mode and provides active power to the grid through stator 2. This can also be seen 

in Figure 20 considering the phase shift between the voltage and the current of stator 2. 

In Figures 13 and 21, showing the rotor currents corresponding to the hypo and hyper synchronous 

modes respectively, we can see that the steady state rotor current magnitude and frequency are constants. This 

result is expected in accordance with the starting assumption stating that the speed and then the slip are 

constant. As can be noted in these figures, the frequency of the rotor current varies in accordance with the 

following relation-ship: * *
rr s sp g  = −  = , where g is the slip.  It can also be noted that the rotor 

current magnitude increases with the slip.  

We can see in Figures 11 and 19 representing the current and the voltage of stator 1 corresponding to 

the hypo and hyper synchronous modes respectively, that the DSIM always provides power from stator 1. It 

can also be noted, by examining the zooms of the voltage and the current that the DSIM operates at a unity 

power factor. Examining Figures 11, 12 and 19, 20 simultaneously, we can note that stator 1 and stator 2 

currents and voltages have the same frequency, this is due to the fact that stator 1 and stator 2 windings have 

the same number of poles. 
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6. CONCLUSION  

In this paper, the active and reactive power control of a 1.1 kW DSIM is studied. PI controllers are 

synthesized and a model of a controlled DSIM is developed in a Matlab-Simulink environment. Good 

performances are shown in the simulation results; they prove the feasibility and the validity of the proposed 

control method. The results obtained also prove that the controlled DSIM offers similar performances than 

those of the DFIM without any extra difficulties. The performances of the DSIM are particularly interesting in 

hyper synchronous mode. Indeed, in this region, the efficiency is better and the DSIM can participate in 

network system services. 

Future work will focus on the robustness of the developed regulators and the integration of DSIM into 

a wind energy conversion system. 
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