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 The power transmission system is essential for the power scheme to transfer 

the energy from generators to consumers. The short circuit problem repeatedly 

occurs in the transmission system, and the main problem is to separate the 

sources from users. This research has applied two hybrid techniques to predict 

fault location. The first hybrid technique has involved the Discrete Wavelet 

Transformation (DWT) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS), while the second hybrid technique is for DWT grouping and Support 

Vector Machine (SVM). These hybrid techniques are intended to estimate the 

fault location of each fault category in a transmission system. The DWT was 

applied to both D8 and D9 level at the 50 kHz sample frequency. The root 

mean square (RMS) values of the D8 and D9 coefficients were used for 

training using ANFIS and SVM techniques. After that, ANFIS and SVM were 

utilised to detect faults in the phase and ground lines. Several types of fault 

have been simulated, i.e. fault location, fault resistance, and original point of 

view. The RMS results from the two hybrid techniques were compared to find 

the best results. The tests of error estimation were performed for the three bus 

systems. The comparison of error estimation of the two methods shows that 

both hybrid techniques can be applied to predict fault locations. 
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1. INTRODUCTION  

The transmission system is the electrical power energy element to transfer electrical power from remote 

generation location to distribution systems. A fault that occurs in the transmission system may disturb the 

power source in the delivery scheme which may shut down the customer stations [1]. The fault of a short-

circuit might happen either balanced or unbalanced [2]. Unbalanced fault involves single-phase fault to ground, 

dual-phase, and dual phases to ground, while a balanced fault is a three-phase fault. Some categories of short-

circuit fault have different appearances in current and voltage.  Accordingly, faults that occur on the 

transmission system need to be identified and categorized correctly to make it easier to resolve. Implementation 

of Artificial Neural Networks (ANN) has been performed for the fault category as well as the fault location in 

the transmission line. According to Hessine’s research result, using modular ANN can shorten the duration of 

the training and improve the accuracy of ANN for the types of faults as well as estimating the fault location 

[3]. It has also proposed the application of DWT and support vector machine (SVM) using a sample frequency 

of 50 kHz. Summing the absolute numbers of the detailed derivative at levels 8 and 9 is used with SVM. The 

results show that this technique is applicable in parallel transmission line [4,5].  The demonstration of a mixture 
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performance for the grouping of short circuit faults is available from this research. The work used a 

combination of Discrete Wavelet Transformation (DWT) and Support Vector Machine (SVM) techniques. 

Wavelet Transforms (WT) compensate the Fourier Transforms (FT), which has incomplete data on the 

frequency domain. Signal gained from wavelet transforms is devoted to frequency and time domains [6].  

However, WT is generally indecisive for the category of fault in the transmission link [4]. Essentially, DWT 

is more extensive than Continuous Wavelet Transformation (CWT) to transform voltage and current signal to 

frequency domain [8, 9]. Previous research applied WT for the grouping of fault in equivalent transmission 

system. They operated DWT to take wavelet level 8 at a sample frequency of 12.5 kHz.  The researchers 

successfully classified faults in an equivalent transmission system using the ANN method [10].  Other scientists 

accompanied a DWT learning through Daubechies wavelet (level 4) at a sample frequency of 200 kHz 

employing a Back-propagation Neural Network (BNN). The resulted Mean Square Error (MSE) is 0.03721, 

while Mean Absolute Error (MAE) is 0.11952 for several faults in equivalent transmission system [11]. 

Alternative training similarly declared the number of absolute values of the coefficients of level 8 and 9 as 

SVM input [12]. The produced data by DWT were used by the SVM for classification of the fault. The SVM 

technique for fault prediction is associated with new intelligent methods, for example, Artificial Neural 

Network (ANN), Probabilistic Neural Network (PNN), then Adaptive Neural Fuzzy Inference System 

(ANFIS). This investigation is determined to compare ANFIS and SVM to cut D8 and D9 coefficients using 

DWT through mother Daubechies wavelet (level 4) at 50 kHz sample frequencies. Root Mean Square (RMS) 

is derived through the D8 and D9 for training and test for fault classification for the test system in Riau, 

Indonesia.  

 

2. RESEARCH METHOD  

2.1.  DWT 

DWT can analyse various categories of fault with data gained from frequency and time domain. The DWT 

is beneficial in identifying numerous failures as it is sensitive to signal irregularities [13]. The wavelet 

transformation can be separated into two kinds: DWT and Continuous Wavelet Transforms (CWT). The CWT 

is the amount of indicators overtime increased by the scale and locus of wavelet utility, as in equation (1) and 

(2) [14]: 

 

𝐶 (𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) =  ∫ 𝑓 (𝑡)𝜓𝑠𝑐𝑎𝑙𝑒,   𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑡) 𝑑𝑡

∞

−∞

 (1) 

𝑇 (𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) =  ∫ 𝑥 (𝑡)𝜓𝑠𝑐𝑎𝑙𝑒,   𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
∗  (𝑡) 𝑑𝑡

∞

−∞

 (2) 

 

 

 
Figure 1. DWT Signal processing  

 

 CWT transforms a shifted and scaled copy of signal in the basic wavelet. As a redundant transform, CWT 

has wavelets overlapped and require larger computation resources to compute and store the coefficients than 

DWT. DWT is used to analyse wave indications correctly. The DWT determination employs the Mallat 

algorithm. DWT is separated in dual wave indicators, i.e., filter techniques and down-sample processes. The 

high-pass filter technique produces different signs through high frequency. The low-pass filters provide 
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dissimilar signs through low frequency. Subsequently, the determination of the number is through down-

sampling operation. Thus, it only proceeds half of each data gotten previously [13]. Figure 1 shows the diagram 

of DWT operation.  High frequency indicators remain particulars signal, and signs using low frequencies termed 

rough calculation. A procedure is decayed through recapitulation with a view of the information gained earlier. 

It will be decayed to generate separate estimates and element information. Figure 2 demonstrate the decompose 

repetition procedure to go for an initial wave indication. The situation will be expected to complete by summing 

the approximation information and element information. 

 

 
Figure 2. Repetition of DWT decomposition 

 

In the additional decomposition procedure, the indicator can be divided on numerous low-resolution 

mechanisms. Therefore, the minimal frequency element filter procedure will be pursued continuously. Table 1 

designates the decay of wavelet stage 9 for a cycle when the fault is sampled with frequency of 50 kHz [12]. 

 

Table 1. The wavelet decay instruction 
Flat Estimate Element 

1 0 – 12.5 kHz 12.5 – 25 kHz 

2 0 – 6.25 kHz 6.25 – 12.5 kHz 

3 0 – 3.125 kHz 3.125 – 6.25 kHz 

4 0 – 1.563 kHz 1.563 – 3.125 kHz 

5 0 – 781 Hz 781 – 1.563 kHz 

6 0 – 391 Hz 391 – 781 Hz 

7 0 – 195 Hz 195 – 391 Hz 

8 0 – 98 Hz 98 – 195 Hz 

9 0 – 49 Hz 49 – 98 Hz 

 

 
 

Figure 3. Equivalent planes separate two classes with SVM 

 

 

2.2.  SVM 

SVM is a structure that uses a theoretical linear plane in a high-dimensional interplanetary, also proficient 

through procedures established on bias knowledge optimisation concept. The principal determination of this 

procedure creates optimum separating hyperplane, which purpose optimal parting that can continue the 
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arrangement in best way. Information on the borderline field is known as a support-vector. Figure 3 shows a 

couple of lines separating two record groups. Also, it demonstrates the delimiter ground termed support-vector. 

Two categories are distributed as a result of the equivalent jumping planes. The arrangement of the midpoint is 

synchronised toward the Euclidean distance. 

A primary delimiter field bounds the first class after the next demarcating zone over the next period, the 

formulation articulated in equation (3) [16]: 

 

xi w+ b ≥ 1, yi = 1 

xi w+ b ≥ -1, yi = -1 
(3) 

 

Where w is a standard plane, and b in another field of a usual plane. The bordering value between the bounding 

planes is following the formulation of space to the midpoint [17]: 

 

𝑚 =
2

‖w‖
 (4) 

 

The value of this boundary will make the best use of two parameters; by increasing b and w, its determination 

significantly increased. A constraint in Equation (3) is a scaling constraint by re-scaling b and w. Hence, in 

order to exploit m equals to minimise ||w||2. Two boundary planes on Equation (3) can be articulated using the 

following equation [17]: 

 

𝑦𝑖(xi w + b) ≥ 1 (5) 

 

The greatest partition of the plane is the most substantial boundary which is expressed into constraint 

optimisation [18]: 

min
1

2
‖𝐰‖2 (6) 

 

The SVM of formula was used to classify linear data using a variable called soft margin hyper-plane. Then, 

the best formula of separator become [17]: 

min
1

2
‖w‖2 + 𝐶 (∑ 𝜉𝑖

𝑛

𝑖=1

) (7) 

 

with, 𝑦𝑖(xiw + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0  

 

Parameter C is used to determine inaccuracies in data grouping, and its value is assigned by user. The role of C 

is to minimize training inaccuracies and reduce complexity. The parameter C of SVM is customarily termed box 

constraint [17].  The proportion of accuracy is defined as [9]: 

 

Classification accuracy = 
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑓𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑒𝑠𝑡𝑒𝑑
× 100% (8) 

 

 

 

2.3.  ANFIS 

ANFIS has been developed for fault location prediction. It provided an output of the distance of the 

fault location. Each category of the fault has an ANFIS structure for estimating different fault locations. The 

simulation faults are; single phase to ground (A-G, B-G, C-G), double phase (A-B, A-C, B-C), double phase 

to ground (A-B-G, A-C-G, B-C-G), and three phases (A-B-C). In ANFIS, the design to estimate the fault 

location has been developed from various data input. The membership functions used Generalized Bell and 

Gaussian with three membership functions.  It is designed to obtain and select better accuracy results for ANFIS 

training in fault location.  The training process is carried out in 100 iterations. The ANFIS training was 

conducted with 770 input and 77 targets (each fault). The ANFIS fault classification output for each phase and 

ground is a condition of 1 or 0. It can indicate condition there is a fault in each phase or ground. ANFIS 

approved testing of 200 input (each fault). The variations of the two membership functions performed by 
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ANFIS are Generalized Bell and Gaussian. The accurate values can be calculated by comparing ANFIS with a 

target. The input data implemented in training are the RMS DWT value (coefficient D9) of the voltage and 

current for each phase post fault. As many as 200 inputs and targets performed ANFIS training for fault 

estimation. The output from ANFIS is the approximate point to estimate the fault location that occurs along 

the transmission line. 
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Figure 4. The structure of ANFIS developed 

 

Figure 4 is the ANFIS network structure for estimating fault locations. The red part is the input current and 

voltage, and the blue part is the number of membership functions consisting of three outputs of the membership 

function. The production is contained in the form of the distance of the fault location. The fault location 

estimate is indicated by six input, which is the RMS values of the D9 coefficient of the fault voltage and current 

at a separate phase. Data are to estimate the fault location of ANFIS can be formulated as following: 
 

XFL = [VD9A, VD9B, VD9C, ID9A, ID9B, ID9C]    (9) 

where: 

XFL  : ANFIS input data for fault estimation 

VD9i  : in the RMS value on that D9 coefficient of the fault voltage 

ID9i  : in the RMS value on the D9 coefficient of the fault current 

i : Phase A, B, C 

 

2.4.  Power System Transmission 

Figure 5 is the transmission scheme in three buses: Koto Panjang (KP), Bangkinang (BG), and Garuda 

Sakti (GS), all are in Riau, Indonesia. The transmission scheme is a voltage of 150 kV with a frequency of 50 

Hz. In the transmission link among the Bus KP and Bus GS, the short circuit fault occured.  The substation KP 

consists of four power systems. The separate generator data is specified in Table 2. Subsequently, Table 3 
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illustrates the power transformer constraints connected with the generator. Table 4 is the transmission link 

constraint engaged to separately connecting starting bus to bus.  The distance of a transmission system between 

Bus KP to Bus GS is 64km, Bus KP to Bus BG is 18.19km, and Bus BG to GS is 46.09km. Each bus is placed 

below capacity through the constraints in Table 5. A capacitor bank is arranged by bus to GS through a capability 

of 50 MVAR. 

 

 
Figure 5. Single line diagram transmission scheme 

 

 

Table 2. Factor of generator 

Generator 
MVA short 

circuit (MVA) 
VRMS (kV) Frequency (Hz) X/R 

1, 2, 3 209.25 11 50 13 

4 1260.85 150 50 5 

 

 

Table 3. Factor of transformer 
Parameter High voltage 

side 

Low voltage 

side 

Rate power 60 MVA 

Insignificant frequency 50 Hz 

Appraised voltage 150 kV 11 kV 

Leak resistance 0.5 pu 0.5 pu 

Leak reactant 0.5 pu 0.5 pu 

Assembly Y Y 

 

 

Table 4. Factor of transmission system 
Sequence Resistance 

(Ω/km) 

Inductance 

(Ω/km) 

Susceptance 

(µS/km) 

Positive/Negative 0.079 0.389 2.95e-6 

Zero 0.305 1.029 1.884e-6 

 

 

Table 5. Factor of load 

Bus 
Active power 

(MW) 

Reactive Power 

(MVAr) 

KP 17.95 5.8 

BG 48.032 13.2 

GS 114.788 26.9 

 

 

3. RESULTS AND DISCUSSION  

The data model is run between 0.00002 s in separated model. When the fault happens, a single round 

current surge is recycled as DWT input through the number of models 1 / (10-5 * 50) = 1000 example numbers.  

The computer-generated fault of short-circuiting is single-phase to ground (A-G, B-G, C-G), dual-phase (A-B, 

A-C, B-C), dual-phase to ground (A-B-G, A-C-G, B-C-G) and three-phase (A-B-C) [20]. 

3.1.  Simulation System 
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The constraints used for training and test data are noted in Table 6. The fault resistance is 10 Ω. The 

quantity of models accomplished to gain the training numbers is 6930 data (10 faults * 11 distance of faults * 7 

resistance of faults * 9 FIA).  The number of models accomplished to acquire the test data is 4900 data (10 faults 

* 10 distance of faults * 7 resistance of faults * 7 FIA).  The current measured on the Bus KP becomes reference 

for the phase to ground (AG) of a short circuit. The fault distances through different points through 10% 

increments, resistance of fault 35 Ω, then FIA 50° that can be located is shown in Figure 6. 

 

Table 6. Constraint for training and test data 
Constraint Training data Test data 

Fault distance (%) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 5, 15, 25, 35, 45, 55, 65, 75, 85, 95 

Fault resistance (%) 10, 20, 35, 50, 70, 100, 150 8, 25, 45, 65, 85, 110, 140 

Fault inception angle (o) 10, 20, 30, 40, 50, 60, 70, 80, 90 5, 11, 17, 24, 45, 65, 88 

 

 
Figure 6 The fault current simulation at bus KP for one phase to ground 

 

3.2.  Processing Data 

The fault current occured in one cycle (post-fault) was processed using mother wavelet for Daubechies 

level 4 (DB 4) at level 9 (D9).  DB 4 is beneficial for the investigation of momentary indicators [6, 7, 10]. Figure 

7 shows outcomes of signal processing using DWT procured at level 8 elements (D8) as well as element level 9 

(D9). The value on D8 and D9 of instantaneous currents for a cycle after the fault happens were calculated by 

measuring the Root Mean Square (RMS). This RMS value was then used as input for the SVM method. 

Moreover, the ground current is calculated from the sum of currents of each phase divided by three as following 

[2, 19]: 

 

𝐼0 =
𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐

3
 (10) 

 

 
Figure 7. DWT outcomes in element at (a) D8, (b) D9 
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3.3.  Estimation of Short Circuit Fault 

The ANFIS structures has been trained to estimate the A-G fault location. Table 7 demonstrates that the 

ANFIS structure test results have the smallest RMSE and MSE values using the Gaussian membership function 

(FLAG1) with values of 0.027835 and 0.022561. The ANFIS structure that has the largest RMSE and MSE 

values in the ANFIS structure occurs in the generalised bell (FLAG2) membership function with a value of 

0.060488 and 0.043865. 

 

Table 7. The ANFIS test for estimated fault location (A-G) 

Target (Km) 
MF Gaussian MF Generalized Bell 

Output (Km) Error (%) Output (Km) Error (%) 

0.768 0.789576 0.033712 0.809556 0.064932 

3.968 3.984127 0.025198 4.006951 0.060860 

7.168 7.207151 0.061173 7.233690 0.102640 

10.368 10.387577 0.030590 10.384356 0.025557 

13.568 13.544340 0.036968 13.390206 0.277803 

16.768 16.787157 0.029933 16.822199 0.084686 

19.968 19.946648 0.033363 19.963136 0.007600 

23.168 23,188102 0.031409 23.144264 0.037087 

26.368 26.309714 0.091072 26.291224 0.119963 

29.568 29.520225 0.074648 29.493028 0.117144 

32.768 32.746320 0.033876 32.760203 0.012183 

35.968 35.965673 0.003635 35.964228 0.005894 

39.168 39.136674 0.048947 39.106709 0.095767 

42.368 42.368795 0.001242 42.383853 0.024771 

45.568 45.573165 0.008071 45.591343 0.036473 

48.768 48.764256 0.005849 48.762635 0.008383 

51.968 51.929067 0.060832 51.892942 0.117278 

55.168 55.120119 0.074814 55.077923 0.140745 

58.368 58.362687 0.008302 58.370922 0.004565 

61.568 61.575299 0.011405 61.551078 0.026441 

RSME 0.027835 0.060488 

MAE 0.022561 0.043865 

 

Table 8 is the result of error calculation for the estimated location of the fault for each type of fault that 

has been replicated. The fault that has been computer-generated includes; A-G, B-G, C-G, A-B, A-C, B-C, A-

B-G, A-C-G, B-C-G, then A-B-C. From the test, ANFIS results for estimation fault location with the smallest 

average error testing is generated by the ANFIS is 6.05*10-4 % (A-G), while the most significant average error 

is produced by the ANFIS estimated fault location is 2.9*10-2 % (A-C). The RMS element of D8 is also D9 

for separate phase then ground current is recycled as contribution SVM to acquire a hyper-plane utility. 

Constraint SVM is involved in the limitation box constraint C significance is 1, and the kernel measure 

significance is 0.35.  Hyper-plane established from SVM exercise expending the contribution value of exercise 

numbers. The SVM for approximating the fault location is given six input, namely; the RMS values of the D8 

also D9 coefficients of the current signal post fault in each phase. Data of the SVM estimated fault location 

can be sketched as following: 

a) two RMS coefficient details of the phase current signal A 

b) two RMS coefficient details of the phase current signal B 

c) two RMS coefficient details of the phase current signal C 

 

Table 8. Percentage error ANFIS estimated fault location via ANFIS 

Type of fault 
Error (%) 

average value maximum minimum 

A-G 0.000605 0.002612 0.000002 

B-G 0.000865 0.003601 0.000016 

C-G 0.001145 0.003001 0.000064 

A-B 0.007382 0.024944 0.000384 

A-C 0.029827 0.107867 0.000469 

B-C 0.001452 0.005280 0.000026 

A-B-G 0.002798 0.010721 0.000074 

A-C-G 0.002586 0.007653 0.000084 

B-C-G 0.001158 0.003627 0.000037 

A-B-C 0.007240 0.015574 0.000133 
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The SVM used is a Gaussian kernel type, the data for estimating fault locations are ,  and box constraints 

(C). Table 9 is the output on the RMSE and MAE values, where the value is error limit with a fixed input value 

of 10-3. The gamma parameter and box constraint values are varied. It aims to get a small RMSE result and a 

short training duration. The constraint  has values 10-2 and 10-1, while the parameter C with values 100, 101, 

102, 103, and 104. The training simulations were conducted ten times. 

 

Table 9. Average values of RSME and MAE using the SVM for estimating fault locations 

 

No Model 
Parameter SVM Average of 

RSME 
Average of MAE 

γ C 

1 FL11 

0.01 

1 11.4767 9.6839 

2 FL12 10 1.2711 0.8940 

3 FL13 100 0.1003 0.0624 

4 FL14 1000 0.0255 0.0166 

5 FL15 10000 0.0097 0.0060 

6 FL21 

0.1 

1 8.1796 5.4478 

7 FL22 10 0.7748 0.3567 

8 FL23 100 0.0919 0.0531 

9 FL24 1000 0.0241 0.0137 

10 FL25 10000 0.0186 0.0095 

 

 
Figure 8. Percentage of the SVM accuracy approximating the location of separate fault 

 

The best SVM models for training and testing are selected with parameters  = 0.01 and C = 1000 while 

the preferred SVM model for the estimated fault location is with parameters of  = 0.01 and C = 10000. Figure 

8 shows the result of the SVM testing of the estimated fault location by calculating the error value of the SVM 

model for determining the fault location.  

The test result of fault classification and fault location shows the error percentage value on each ANFIS. 

ANFIS fault type has determined the fault in each phase and ground correctly according to the nature of fault 

that occurs. Accuracy of ANFIS fault classification is 100% without any errors. The error value of ANFIS 

results for estimating each fault's location has been calculated, as shown in Table 9. The variation of SVM 

parameters for fault location estimation is presented in Table 10. It shows the average number of iterations 

needed to achieve the epsilon () 10-3 target and the acquisition of RMSE and MSE values during training and 

testing on each SVM model when an A-G fault occurs.  Table 10 demonstrates that type A-G's estimated fault 

location has several iterations than others when the box constraint parameter increases with the same gamma 

value. The estimated SVM model with the smallest number of iterations is in the FLAG41 SVM model with 

25 iterations, while the largest is in the FLAG26 SVM model with 106 iterations with RMSE of 0.0339 and 

MAE of 0.0154. On the other hand, the SVM representative with the FLAG16 SVM model has the least RMSE 

and MAE values with RMSE of 0.0121 and MAE of 0.0053. 
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Table 10. The result of the SVM training and testing estimates fault of A-G 

No Model 

Parameter of 

SVM 

Training Testing 

γ C Number of 

iterations 

Duration 

(second) 

RSME MAE RSME MAE 

1 FLAG11 

0.01 

0.1 0.1 32 0.6850 18.8862 16.6620 17.7781 

2 FLAG12 1 1 33 0.7976 13.2767 11.5480 11.6038 

3 FLAG13 10 10 65 0.8475 1.5774 1.0528 1.0442 

4 FLAG14 100 100 835 0.8555 0.2011 0.1224 0.1012 

5 FLAG15 
0.01 

1000 19612 1.4918 0.0801 0.0402 0.0341 0.0192 

6 FLAG16 10000 536711 19.9920 0.0339 0.0154 0.0121 0.0053 

7 FLAG21 

0.1 

0.1 26 0.5521 18.4616 16.1580 17.2018 14.7396 

8 FLAG22 1 32 5.8626 9.9236 6.8301 8.1305 5.4483 

9 FLAG23 10 120 0.9430 1.7624 0.8368 0.6329 0.3063 

10 FLAG24 100 4443 1.0366 0.5367 0.1677 0.0665 0.0446 

11 FLAG25 1000 246630 5.2160 0.3878 0.0856 0.0371 0.0198 

12 FLAG26 10000 1000000 33.4580 0.1459 0.0347 0.0299 0.0119 

13 FLAG31 

1 

0.1 26 0.5664 19.1515 16.8270 17.9890 15.4888 

14 FLAG32 1 32 6.2412 16.0910 13.2520 13.8520 10.9490 

15 FLAG33 10 329 0.8285 4.4539 1.9197 1.0795 0.5278 

16 FLAG34 100 3992 0.9242 3.1003 0.8465 0.4476 0.2410 

17 FLAG35 1000 42107 1.6924 3.1305 0.8143 0.4589 0.2418 

18 FLAG36 10000 109702 2.6273 3.1456 0.9314 0.4589 0.2417 

19 FLAG41 

10 

0.1 25 0.4824 19.4533 17.1630 18.3452 15.8696 

20 FLAG42 1 32 0.4480 18.8987 16.5610 17.2258 14.6991 

21 FLAG43 10 54 0.8685 14.4468 11.7830 8.4470 5.8532 

22 FLAG44 100 153 0.8528 11.0734 8.7874 5.0727 2.9511 

23 FLAG45 1000 208 0.4634 11.0734 8.7875 5.0727 2.9512 

24 FLAG46 10000 241 0.8205 10.2713 8.1851 5.0848 2.9600 

 

Figure 9 shows the simulation results that the minimum and maximum error range of hybrid technique 

one is from 2*10-6 % to 0.107867%, while for hybrid technique two is from 8*10-6 % to 0.194868%. The 

comparison results of the minimum and the maximum percentage of errors and the average percentage of errors 

for hybrid techniques one and hybrid techniques two are to prove that between these two hybrid techniques 

does not have significant differences in error results. 

 

 
 

Figure 9. Comparison of the error percentage of techniques hybrid 1 and 2 

 

 

4. CONCLUSION  

In this study, the estimation of the fault location in the electric power transmission system has been carried 

out by simulating the classification of short circuit faults. The DWT has been applied to analyze the type of 

interference obtained from the frequency domain and time domain, therefore, DWT is very useful in detecting 
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and processing various interference data. The results of the DWT were carried out using two techniques, 

namely ANFIS and SVM with training and test variables; resistance disturbance and FIA. Furthermore, the 

significance of the RMS value for levels D8 and D9 for the training and test data has a very small error value. 

In the SVM technique there is an alternative hyperplane dividing line between two classes to find the 

maximum point, the closest pattern as a support vector. Then, ANFIS simulations have been trained to estimate 

the location of the same disturbances as was done in the SVM (A-G fault) technique. The ANFIS structure test 

has the smallest RMSE and MSE values using the Gaussian membership function (FLAG1) with values of 

2.7835 * 10-2 and 2.2561 * 10-2. The ANFIS structure has the largest RMSE and MSE values in the ANFIS 

structure found in the generalized bell membership function (FLAG2), with a magnitude of 6.0488 * 10-2 and 

at 4.3865 * 10-2, but the values are still within tolerance limits. The design of the FL16 SVM model as an SVM 

approximation model was selected for each type of disturbance with a value of 0.01 and a value of 10000 

resulting in the final average test error, specifically for the type of disturbance ABC 2.281 * 10-3% RMSE is 

2.3 * 10-3, and MAE is 1.5 * 10-3. The comparison of the accuracy of the simulation results is shown in the 

form of percentage errors. It is found that hybrid technique one and two have a difference but insignificant in 

results, within the standard of fault tolerance. Finally, the simulation results of these two hybrid techniques 

shows that both hybrid techniques can be applied to predict the location of the disturbance with a satisfactory 

level of accuracy. 
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