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 In this paper, optimal short-term hydrothermal operation (STHTO) problem is 

determined by a proposed high-performance particle swarm optimization 

(HPPSO). Control variables of the problem are regarded as an optimal solution 

including reservoir volumes of hydropower plants (HdPs) and power 

generation of thermal power plants (ThPs) with respect to scheduled time 

periods. This problem focuses on reduction of electric power generation cost 

(EPGC) of ThPs and exact satisfactory of all constraints of HdPs, ThPs and 

power system. The proposed method is compared to earlier methods and other 

implemented methods such as particle swarm optimization (PSO), constriction 

factor (CF) and inertia weight factor (IWF)-based PSO (FCIW-PSO), two 

time-varying acceleration coefficient (TTVACs)-based PSO (TVAC-PSO), 

salp swarm algorithm (SSA), and Harris hawk algorithm (HHA). By 

comparing EPGC from 100 trial runs, speed of search and simulation time, the 

suggested HPPSO method sees it is more robust than other ones. Thus, HPPSO 

is recommended for applying to the considered and other problems in power 

systems.  
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Nomenclature 

Volh,i Volume of the hth HdP in the ith period  

Infh,i Inflow of the hth HdP in the ith period  

Dish,i Discharge of the hth HdP in the ith period 

,min ,max,h hVol Vol  Minimum and maximum volume of the hth HdP 

,min ,max,h hDis Dis  Minimum and maximum discharge of the hth HdP 

, ,h h hx y z  Given coefficients in generation function of the hth HdP  

,min ,max,h hP P  Minimum and maximum power generation of the hth HdP  

Ph,i Generation of the hth HdP in the ith period  

mailto:nguyentrungthang@tdtu.edu.vn


      IJEEI  ISSN: 2089-3272  

 Optimal solutions for fixed head short-term hydrothermal…  (Thanh Long Duong et al) 

649 

,min ,max,t tP P  Minimum and maximum power generation of the tth ThP 

, ,,Load i Loss iP P  Power of load and loss in all branches 

Np Population size 

 

1. INTRODUCTION  

Short-term hydrothermal operation (STHTO) problem considers optimal power generation of hydropower 

plants (HdPs) and thermal power plants (ThPs) with intent to reduce amount of fossil fuel with very high electric 

power generation cost (EPGC). In general, this problem takes into account optimization time period from one 

operation day to one operation week [1]. The problem was considered to be complicated since it considered a 

hydraulic-constraint set from HdPs such as discharge boundaries through turbines, water levels of each HdP in each 

period and generators’ boundaries. Basically, STHTO problem is divided into variable head (VH) and fixed head 

(FH) models in which water head is not a constant during the optimization periods in VH model but the it is fixed 

in FH model [2]. In recent years, ThPs and HdPs have been studied for reaching better electricity power quality by 

using automatic generation control [3-6]. In addition, since renewable energies were developed and installed in 

power systems as a main power source like ThPs and HdPs, the concern of improving electricity power quality [7]. 

Different areas in the same power system are supplied by either ThPs or HdPs, and both ThPs and HdPs together 

with renewable energies. These studies indicate that the power generation combination of ThPs and HdPs is a very 

important issue in power system. Thus, in this paper, the power generation combination for ThPs and HdPs continue 

to be optimized by selecting FH model as the main characteristic of the combined system.   

The STHTO problem has been solved successfully so far by using classical approaches (CAs) and meta-

heuristic algorithms (MHAs). CAs [2, 8] are mainly based on taking partial derivatives of Lagrange optimization 

function with respect to discharge and power generation of ThPs whereas MHAs [9-19] could deal with the problem 

more easily. CAs are Gradient search-based method (GSA) [2], Newton-Raphson method (NRM) [8] and Lagrange 

function-based method [2]. The three approaches have the same characteristic in finding the optimal parameters, 

which is to take partial derivatives and must approximate function as linear functions. So, as valve effects of ThPs 

are taken into account, these methods are unsuccessful in taking the partial derivatives. Furthermore, as taking more 

constraints into account, more control parameters must be used in Lagrange function, leading to more difficulties 

in taking partial derivatives. Another disadvantage from the CAs is that they must be influenced by initial points 

from the starting search process. Different initial points can result in different achieved results but the same initial 

points always obtain the same outputs. For enhancing the robustness of CAs, estimation approaches should be used 

to allocate the most appropriate initial inputs. Derived from the drawbacks, the application range of CAs has not 

been widen in recent years. On the contrary, MHAs are much stronger in dealing with constraints and taking 

nonlinear or non-differentiable functions. A lot of MHAs have been applied such as simulated annealing approach 

(SAA) [9], evolutionary programming approach (EPA) [10-11], modified EPA (MEPA) [12], Fast EPA 

(FEPA)[12], improved version of FEPA (IFEPA) [12], running IFEPA (RIFEPA) [13], Clonal selection 

optimization approach (CSOA) [14], cuckoo search approach (CSA) [15], Gaussian distribution-based CSA 

(GCSA) [15], Cauchy distribution-based  CSA (CCSA) [15] and Levy distribution-CSA (LCSA) [15], one rank-

based CCSA (CORCSA) [16], one rank-based LCSA (LORCSA) [16], adaptive CSA (ACSA) [17], improved CSA 

(ICSA) [18], modified CSA (MCSA) [19], and adaptive and selective CSA (ASCSA) [19].  In general, all MHAs 

can solve the problem successfully and effectively; however, the complex of employed systems has not been 

considered as a good evidence in approximately all these methods, excluding applications of CSA variants [16-19]. 

A main system with the presence of one ThP and one HdP operated in a three-day plan with six periods was used to 

test these methods. Furthermore, only the quadratic function was used for the case of neglecting valve effects of 

ThPs. On the contrary, large scale systems with more complicated objective function were developed in studies 

[19]. Approximately all these methods have not shown persuasive evidences to demonstrate real performance of 

methods because only minimum EPGC has been compared.  

In this paper, operation parameters of one STHTO system including ThPs’ power generation and volumes 

of HdPs are determined for getting the minimum EPGC of all ThPs. The system is solved by implementing PSO 

[20], FCIW-PSO [21-22], TVAC-PSO [23], SSA [24], HHA [25] and a proposed high-performance PSO (HPPSO). 

Among the six employed methods, HPPSO is the modified version of PSO by using CF, IWF and TTVACs. The 

proposed HPPSO can be more effective than other PSO versions because it can take the advantages of CF, IWF 

and TTVACs. In the velocity update process of FCIW-PSO, IWF is multiplied by the old velocity and then the 

result and two other increased terms are added. The obtained sum is not accepted as the new velocity but it and CF 

are multiplied together to reach the new velocity. The two acceleration coefficients in FCIW-PSO are constant and 
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normally set to 2.05. But in TVAC-PSO, they are changed within a starting value to a end value with respect to the 

change of present iteration. The two factors are used to adjust the second term and the third term of the new velocity 

while IWF is used to control the first term of new velocity. IWF is also changed from small values to high values 

meanwhile CF is in charge of narrowing the limit of the new velocity. As a result, the proposed HPPSO can have 

all strong points from other PSO versions and it is really effective for the studied problem in the paper. In the 

summary, the contributions of the paper are as follows: 

1) Show main shortcomings of conventional PSO  

2) Apply recent metaheuristic algorithms including SSA and HHA 

3) Propose a new PSO method, which is effective for Optimal short-term hydrothermal scheduling 

problem 

4) Clarify the outstanding performance of the proposed PSO over other existing PSO methods  

2. FORMULATION OF STHTO PROBLEM   

In the section, the STHTO problem is mathematically expressed by using objective and constraints. It is 

supposed that a typical hydrothermal system with ThPs and HdPs scheduled in optimization periods are producing 

and supplying electricity to loads via a load bus. A typical hydropower system is depicted in Figure 1. The objective 

function and all constraints can be mathematically formulated as follows:  

 
Figure 1. A typical hydrothermal power system 

 

 2.1.  Objective function 

The main target of the problem is to minimize EPGC of all ThPs. The EPGC of each thermal power plant 

(ThP) is a function of power generation and coefficients [21]. For the case of considering valve effects, the EPGC 

function is as follows:  

 
( ) ( )( )

12 2

, , ,min ,

1 1

sin
NN

i t t t i t t i t t t t i

i t

EPGC T k m P n P l s P P
= =

 
= + + +   − 

 
  (1) 

Where 

kt, mt, nt, lt, st are given coefficients in EPGC function of the tth ThP,  

Pt,i is power generation of the tth ThP, 

 Ti is duration of the ith time period, 

 N1 and N2 are the number of ThPs and time periods.    

2.2.  The set of constraints 

2.2.1.  Constraints from hydroelectricity plants:  

Water balance in reservoirs: Volume of reservoir, inflows and discharge at each period must satisfy the 

model below:     

 
, 1 , , , 3 20; 1,..., & 1,...,h i h i h i h iVol Vol Inf Dis h N i N− − + − = = =  (2) 

Where N3 is the number of HdPs. 

 For the cases that i=1 and i=N2, volume of reservoir is constrained by:  

 
, 1 , ; 1h i h avaiVol Vol i− = =  (3) 

 
, , 2;h i h endVol Vol i N= =  (4) 
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Where Volh,avai and Volh,end are available water volume before the first period and remained volume after the N2th 

period. Boundaries of volume and discharge: Volume of reservoir and discharge through turbines are limited within 

power bound and upper bound as follows:   

 

, ,min

3 2

, ,max

; 1,..., ; 1,2,...,
h i h

h i h

Vol Vol
h N i N

Vol Vol

 
= =



 (5) 

 

, ,min

3 2

, ,max

; 1,..., ; 1, ...,
h i h

h i h

Dis Dis
h N i N

Dis Dis

 
= =



 (6) 

Where Dish,i is a function of hydro generation as follows:  

 

( )
2

, , ,h i h h h i h h iDis x y P z P= + +  (7) 

Boundaries of hydro generation: Hydro generation is constrained by:  

 

, ,min

3 2
, ,max

; 1,..., ; 1,...,
h i h

h i h

P P
h N i N

P P


= =



 (8) 

2.2.2. Constraint of thermal generation 

ThPs are not constrained by fuel but capacity at each time period is constrained within a range as follows [27]. 

 

, ,min

1 2
, ,max

; 1,..., ; 1,...,
t i t

t i t

P P
t N i N

P P


= =



 (9) 

2.2.3. Constraints of power system 

Real power balance is a serious constraint in power system due to the stability of frequency [28]. So, the constraint 

below must be exactly met. 

( )
31

, , , ,

1 1

0

NN

t i h i Load i Loss i

t h

P P P P
= =

 
+ − + = 

 
 
   (10) 

3. THE PROPOSED METHOD FOR THE CONSIDERED PROBLEM  

3.1. Conventional Particle Swarm Optimization (PSO) 

Kennedy and Eberhart [19] first developed PSO in 1995 for reaching optimal variables of benchmark 

optimization problems. PSO was then improved to be applied for the same optimization problems but better optimal 

solutions and faster search were required [20-22]. PSO has three different factors including velocity, position and 

fitness function where fitness function is used to evaluate the effectiveness of position and velocity is used to update 

new position. The three main factors are formulated as follows [29-30]: 

1 1 2 2. .( ) . .( )new

m m m m best mV V c Local Pos c Pos Pos = + − + −  (11) 

new new

m m mPos Pos V= +  (12) 

( )new new

m mFit F Pos=  (13) 

Where  
new

mV  and Vm are new and old velocity of the mth individual,  

Localm and Posm are the so-far best and current position of the mth individual,   
new

mPos is new position of the mth individual,  

Posbest is position of the best individual, 

 α1 and α2 are random values within 0 and 1, 

 c1 and c2 are acceleration factors selected within 0 and 2.05,  
new

mFit is new fitness of the mth individual.  

 

3.2. The proposed high-performance PSO (HPPSO) 

The velocity of the PSO above was considered to be ineffective since it did not consider the change during 

the search process. So, constriction factor and weight factor were suggested to be applied for narrowing the search 
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space more effectively [20-21]. Then, velocity update with constriction factor [20] and with inertia weight factor 

[21] were built as follows:  

1 1 2 2[ . .( ) . .( )]new

m m m m best mV CF V c Local Pos c Pos Pos =  + − + −  (14) 

1 1 2 2[ . . .( ) . .( )]new

m m m m best mV IWF V c Local Pos c Pos Pos = + − + −  (15) 

Where: 

( ) ( ) ( )
2

1 2 1 2 1 2

2

2 4

CF

c c c c c c

=
 − + − + + + 
 

 

(16) 

max min
max

max

IWF IWF
IWF IWF NIter

NIter

−
=  

(17) 

Where 

IWF and CF are inertia weight factor and constriction factor.   

IWFmax and IWFmin are the highest and lowest values of inertia weight factor 

 NItermax and Niter are the highest and the current iteration 

  

In addition, PSO was also suggested to be modified by improving acceleration coefficients [17]. The two 

coefficients were varied from the lowest to the highest value similarly to inertia weight factor. For this case, the 

velocity is updated by: 

' '

1 1 2 2[ . .( ) . .( )]new

m m m m best mV V c Local Pos c Pos Pos = + − + −  (18) 

where 

( )'
1 1, 1, 1,

max

start end start

NIter
c c c c

NIter
= + −  

(19) 

( )'
2 2, 2, 2,

max

start end start

NIter
c c c c

NIter
= + −  

(20) 

Where 

𝑐1
′  and 𝑐2

′  are  modified version of c1 and c2, 

c1,start and c2,start are initial values of of 𝑐1
′  and 𝑐2

′ , 

 c1,end and c2,end are final values of 𝑐1
′  and 𝑐2

′ . 

The PSO with two time-varying acceleration factors obtained by (19) and (20) is called TVAC-PSO. On the other 

hand, PSO with the use of both IWF and CF obtained by using (14) and (15) is called FCIW-PSO. In this paper, we 

suggest combining constriction factor, inertia weight factor and modified acceleration coefficients for updating new 

velocity. As a result, the new velocity is formulated by: 

' '

1 1 2 2[ . . .( ) . .( )]new

m m m m best mV CF IWF V c Local Pos c Pos Pos = + − + −  (21) 

3.3. The application of HPPSO for the problem  

The whole search process of HPPSO for the problem is shown in Figure 2 and described as follows: 

Step 1: Set value to population and the maximum iteration 

Step 2: Randomly produce Volh,i and Pt,i (for i=2, …, N3) for each solution Posm  

Step 3: Calculate Dish,I, Ph,i and Pt,i (for t=1)    

Step 4: Calculate fitness function and set NIter to 1 

Step 5: Calculate new velocity and new position using (21) and (12)  

Step 6: Check boundaries and correct if violation happen 

Step 7: Calculate Dish,I, Ph,i and Pt,i (for t=1)   

Step 8: Calculate fitness function and compare to keep better solution  

Step 9: Determine Posbest and Localm 

Step 10: If NIter= NItermax, stop search algorithm. Otherwise, assign NIter= NIter+1 and back to Step 5.  
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Figure 2. Main steps of implementing HPPSO for the considered problem 

4. NUMERICAL RESULTS 

In this section, the proposed HPPSO is evaluated by comparing results of the method to those from other 

previous ones and other implemented methods such as PSO, FCIW-PSO, TVAC-PSO, SSA and HHA. A test 

system with one HdP and one ThP is optimally scheduled over six twelve-hour subperiods [6]. The six methods are 

coded on Matlab and personal computer with CPU of Intel Core i7-2.4GHz-RAM 4GB for reaching 100 successful 

runs.     

4.1. Results from the implemented methods  

Results in details obtained by six methods are reported in Table 1. All the implemented methods are run 

by setting 20 and 40 to Np and NItermax. The performance of the proposed HPPSO can be reflected based on the 

comparison criteria below: 

1) The minimum EPGC: This value indicates the strong search ability of methods. Lower minimum EPGC 

means better solution found and method with lower EPGC is much stronger. 

2) The mean EPGC: This is the average value of 100 solutions. So, lower average value means much 

more stability and method with lower average is more stable than other ones. In addition, standard 

deviation and the fitness function of all successful runs are also reflected the same manner. 

3) The maximum EPGC: This is the maximum EPGC over 100 solutions. So, higher value means worst 

solution is found.  

4) The best convergence, mean and worst convergence characteristic: The curves indicate the search 

speed of compared methods. 

Table 1. Comparison of results obtained by implemented methods 

Method 
Minimum EPGC 

($) 

Average EPGC 

($) 

Maximum EPGC 

($) 

Standard deviation 

($) 

Computation time 

(s) 

PSO 710241.23 722207.46 736951.66 9762.62 0.03 

TVAC-PSO 709864.96 710130.33 712719.1 561.35 0.03 

FCIW-PSO 709865.36 710664.94 720439.18 1450.45 0.03 

SSA 709878.47 711170.53 727938.81 2141.3291 0.03 

HHA 710808.19 719958.19 734081.22 4528.76 0.03 

HPPSO 709862.0489 709900.936 711811.468 224.504 0.03 

 

So, the best characteristic and the mean characteristic are also plotted for comparison in addition to 

numerical results in Table 1. Table 1 indicates that HPPSO can reach lower minimum EPGC, lower mean EPGC, 

Randomly produce Volh,i and Pt,i
for each solution Posm

Calculate Dish,I, Ph,i and Pt,i

Calculate fitness function
and set NIter to 1

Calculate new velocity and 

new position using (21) and (12) 

Calculate Dish,I, Ph,i and Pt,i

Calculate fitness function 

and compare to keep better solution 

Determine Posbest and Localm

NIter = NItermax NIter= NIter+1 

Stop search algorithm

Set value to Np and NItermax

Yes

No
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lower maximum EPGC and lower standard deviation than other ones. As running the six methods, $709862.0489 

is the lowest EPGC of the system and there is no better-found solution with lower EPGC than this value. The 

proposed HPPSO can find 33 solutions with the same EPGC as $709862.0489 whereas other ones cannot find even 

one solution with the EPGC. Figure 3, Figure 4 and Figure 5 show much faster speed of HPPSO as compared to 

other ones for the three convergence characteristics. The solution of HPPSO at the 20th iteration is much faster than 

that of others at the final iteration. Furthermore, fitness function of 100 runs from HPPSO and other methods shown 

in Figure 6 is also a good evidence of outstanding robustness of HPPSO over others. 100 values of EPGC from 

HPPSO in red are approximately equal excluding a few values. These values of others are much higher than those 

of HPPSO and they have very high fluctuations. 

Derived from the analysis above, it can conclude as follows: 

1) HPPSO can find more optimal operation parameters than other applied approaches 

2) HPPSO is always convergent to more optimal operation parameters 

3) HPPSO is much quicker than others 

The optimal solutions found by these applied methods in Table 1 are reported in Table 2. 

 
Figure 3. The best convergence obtained by the six implemented methods 

 
Figure 4. The mean convergence of 100 successful runs 
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Figure 5. The worst convergence obtained by the six implemented methods 

 
Figure 6. Fitness function of 100 runs obtained by six implemented methods 

 

Table 2. Optimal control variable values found by applied methods 

i PSO TVAC-PSO FCIW-PSO SSA HHA HPPSO 

1 104968.078 102102.161 101786.129 100949.606 101807.695 101807.695 

2 88033.081 86472.556 86344.208 84764.958 83151.825 83151.825 

3 96670.317 94366.866 94217.578 93865.750 88506.936 88506.936 

4 60415.019 60005.517 60000.008 60000.009 62806.247 62806.247 

5 75070.935 70434.314 70671.718 70735.533 67818.421 67818.421 

6 60000.000 60000.000 60000.000 60000.000 60000.000 60000.000 

4.2. Comparisons with previous approaches 

In this part, HPPSO is also compared with other ones in previous studies shown in Table 3. The best EPGC 

indicates that HPPSO can find either the same solutions or better solutions than other ones, especially much better 

solutions than GSA, SSA, GA and EPA. Although other methods can find the same EPGC as HPPSO, these methods 

have been run by setting much higher population and more iterations. The overview through these values shows 

that population of others is from 8 to 60 and the maximum iteration is from 70 to 500 but only 20 and 40 are set for 

HPPSO. In addition, it has taken HPPSO 0.03 second but others from 4.54 to 2640 seconds. Clearly, HPPSO is 

much more favorable than previous approaches.   
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Table 3. Comparison of the best EPGC by the proposed method and previous methods  

Method Best EPGC ($) Np Itermax Cpu (s) Method Best EPGC ($) Np Itermax Cpu (s) 

GSA [2] 709877.38 - - - CSOA [13] 709862.05 30 70 4.54 

SAA [9] 709874.36 - 200 901 LORCSA [14] 709862.049 10 300 0.18 

GA [10] 709863.56 30 300 - CORCSA [14] 709862.049 10 300 0.18 

EPA [10] 709862.06 30 300 8 LCSA [15] 709862.049 30 400 0.3 

EPA [11] 709863.29 50 400 2640 CCSA [15] 709862.049 30 400 0.3 

MEPA [12] 709862.05 60 500 159.18 GCSA [15] 709862.049 30 400 0.3 

FEPA [12] 709862.05 60 300 101.4 ACSA [16] 709862.050 8 100 0.12 

IFEPA [12] 709862.05 60 150 59.7 ASCSA [19] 709862.049 20 40 0.03 

RIFEPA [12] 709862.05 - 300 - HPPSO 709862.049 20 40 0.03 

5. CONCLUSION 

In this paper, six methods including PSO, TVAC-PSO, FCIW-PSO, SSA, HHA and HPPSO have been 

applied for solving the STHTO problem. Six implemented methods have been run by setting the same values to 

population size and iterations but obtained results were totally different. The HPPSO could reach the global 

solutions many times over 100 successful runs but other ones have failed to find global solutions even for one time. 

The minimum EPGC, average EPGC, maximum EPGC and standard deviation are necessary evidences for 

demonstrating a real outstanding performance of HPPSO over five other ones. In addition, convergence 

characteristics also indicated that HPPSO was at least two times faster than other implemented ones. Similarly, the 

comparisons with previous methods have shown the same evaluation since HPPSO could reach the same or better 

solutions than other ones; however, HPPSO has used much lower values for control parameters and spent much 

shorter computation time. So, it can conclude that HPPSO should be used for the systems with ThPs and HdPs. 

And in future work, the method will be applied for the larger system dimensions with wind turbines, photovoltaic 

and hydrothermal systems.  
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