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In the era of Internet of Medical Things (IoMT), healthcare monitoring has 

gained a vital role nowadays. Moreover, improving lifestyle, encouraging 

healthy behaviours, and decreasing the chronic diseases are urgently 

required. However, tracking and monitoring critical cases/conditions of 

elderly and patients is a great challenge. Healthcare services for those people 

are crucial in order to achieve high safety consideration. Physical human 

activity recognition using wearable devices is used to monitor and recognize 

human activities for elderly and patient. The main aim of this review study is 

to highlight the human activity recognition chain, which includes, sensing 

technologies, preprocessing and segmentation, feature extractions methods, 

and classification techniques. Challenges and future trends are also 

highlighted. 
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1. INTRODUCTION 

Physical activity (PA) and sports are highly associated with health [1-3]. Hazardously, physical 

inactivity is considered as the fourth risk factor for mortality in the world [4]. Scientific evidences consider 

physical activity and sports are key elements of health and wellbeing [5, 6]. Moreover, regular PA has 

physical and mental health benefits such as [7-10]:  

- Decreasing the risk of chronic diseases such as diabetes, cardiovascular, stroke, depression, anxiety, high 

blood pressure, heart disease, many types of cancer, hypercholesterolemia, and arthritis. 

- Controling the weight and obesity. 

- Enhancing cognitive performance. 

- Improving the mood and solving sleep difficulties.  

- Building healthy muscle, bones, and joints.  

Nowadays, improving lifestyle, encouraging  healthy behaviors, and decreasing the chronic diseases 

are urgently required [11, 12]. Importantly, the use of advanced technology and computer capabilities in 

healthcare industries [13] has gained a vital role of our daily lives [14, 15]. However, tracking and 

monitoring elderly and patients are challenges [16]. Healthcare services for those people are vital in order to 

achieve high safety living [17-19]. Wearable devices are now highly used for human activity recognition. 

They are used as a predictor for any abnormal health cases [20, 21]. Figure 1 shows human activity 

monitoring using wearable sensors.  
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The main aim of this review study is to present the importance of modern technologies for 

improving the healthy behavior and lifestyle of the humans. Moreover, physical human activity recognition 

chain using wearable sensors is highlighted. 

 

 
Figure 1. Human activity monitoring using wearable sensors 

 

2. HUMAN ACTIVITY RECOGNITION 

The analysis of human activity data is crucial [22]. However, data obtained by sensors can be used 

as a predictor of health status. Basically, the recognition of activities can be divided into two categories, 

external sensors and wearable sensors [23]. A main example of external sensors is smart homes [24, 25] 

which have the ability to recognize complex activities [26] such as preparing a meal and answering a phone 

call. Nowadays, in computer vision and machine learning fields, human activity recognition using wearable 

sensors has become one of the state-of-the-art research areas, where Figure 2 shows human activity 

recognition chain [27]. 

 

 
Figure 2. Human activity recognition chain. 

Initially, to make the data suitable for analysis, obtained sensor’s data are preprocessed [28] before it 

goes through the rest of the chain. As example, signals have to be filtered firstly. In order to remove high 

frequency components, low pass filters are used. In addition to filtering technique, data conversion, 

calibration, normalization, and cleaning may be used in this stage. The main aim of the segmentation stage 

[29] is to seek the segments, which contain a valuable data about activities, and to reduce the amount of 

processed data. Sliding window techniques are the common example of the segmentation stage [30]. Feature 

extraction stage [31-34] is used to find a high resolution of data representation for each segment. Extracted 

features can be divided into four main categories: time domain, frequency domain, learning techniques, and 

other techniques. Tables 1 and 2 summarize the time and frequency domain-based techniques, respectively. 

Table 1 summarizes time domain based techniques. Moreover, Table 2 summarizes frequency domain based 

techniques, while Table 3 summarizes intelligent learning based techniques and Table 4 summarizes 

intelligent learning based techniques. 
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Table 1. Physical human activity recognition feature extraction and selection techniques based on time 

domain techniques 
The technique  References  

Statistical values: mean, variance, skewness 

and kurtosis  

[35] 

Maximum and minimum values  [36] 

Fourier transform  [37] 

Wavelet transform [38] 

Entropy  [39] 

Mean Absolute Deviation (MAD)  [40] 

Signal magnitude area  [41] 

Zero crossing rate  [42] 

Interquartile range  [43] 

Hidden conditional random fields  [44] 

 

Table 2. Physical human activity recognition feature extraction and selection techniques based on frequency 

domain techniques 
The technique  References  

Discrete Fourier Transform (DFT)  [45] 

Discrete Cosine Transform (DCT)  [46] 

Spectral centroid  [47] 

Principal frequency [48] 

Frequency domain entropy  [49] 

Maximum frequency  [50] 

Fast Fourier Transform (FFT)  [51] 

FFT energy  [52] 

FFT mean and standard deviation  [53] 

Mel-Frequency Cepstrum [54] 

Perceptual Linear Predictive Cepstrum [55] 

 

Table 3. Physical human activity recognition feature extraction and selection techniques based on intelligent 

learning 
The technique  References  

Artificial Neural Networks                       [56, 57] 

Hidden Markov Fields (HMF)  [58, 59] 

Dynamic Bayesian Networks (DBN)  [60] 

Codebook approach (CB)  [61] 

Convolutional Neural Network (CNN)  [62] 

Hand-crafted features (HC)  [63] 

Multi-Layer-Perceptron (MLP)  [64] 

Long Short-Term Memory network (LSTM)  [65] 

Autoencoder (AE)  [66] 

 

Table 4. Physical human activity recognition feature extraction and selection techniques based on other 

learning 
The technique  References  

Autoregresive Model (AR)  [67] 

Multi-class Linear Discriminant Analysis (MLDA)  [68, 69] 

Principal Components Analysis (PCA)  [70] 

HAAR filters [71] 

Shape analysis [72] 

Bag-of-Words  [73] 

Linearly Dependent Concept  [74] 

 

In the classification stage, the classifier (classification algorithm/technique) uses the extracted 

features to differentiate between different human activities [75, 76]. Table 5 summarizes different 

classification algorithms.  
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Table 5. Classifiers used for physical human activity recognition 
Classification technique  References 

Autoregresive Model (AR)  [77, 78] 

Linear regression  [79, 80] 

Logistic regression [81, 82] 

Markov Models [83, 84] 

Random Forest [85, 86] 

Boosting and Bagging [87, 88] 

Sequential Minimal Optimization [89-91] 

Fuzzy Logic [92-94] 

Relevance vector machines [95, 96] 

Support Vector Machines [97, 98] 

Least Squares Support Vector Machines [99, 100] 

Adaptive minimum distance [101, 102] 

Gaussian Mixture Model (GMM) [103, 104] 

Naive Bayes [105, 106] 

Gaussian naive bayes [107, 108] 

Bernoulli naive bayes [109, 110] 

Multinomial naive bayes [111, 112] 

Bayesian Networks [85, 113, 114] 

K-nearest neighbors [115, 116] 

Zero rule [116, 117] 

One rule  [103, 118] 

Decision tree [119, 120] 

Fisher’s linear discriminant  [121, 122] 

Decision stump  [123, 124] 

Stochastic gradient descent [125, 126] 

Linear discriminant analysis  [127, 128] 

Quadratic discriminant analysis [129-131] 

Boosted tree [132, 133] 

Conditional Random Fields [134, 135] 

Skip Chain [136, 137] 

Codebook  [138, 139] 

Linear Predictive Coding [140, 141] 

Neural Network: Multilayer Perceptron  [142, 143] 

Neural Network: Basic radial function [144-146] 

Multilayer Neural Networks [144-146] 

Deep Learning: Convolutional Neural Networks (CNNs) [139, 147-153] 

Deep Learning : Deep Belief Networks (DBNs) [154-156] 

Deep Learning: Autoencoder [157-161] 

Deep Learning: Sparse Coding [162-164] 

Deep Learning: Recurrent Neural Network (RNN) [165-168] 

Deep Learning: Boltzmann machine  [169-172] 

Deep Learning: Feedforward Neural Network (FNN) [173-175] 

 

 

3. WEARABLES AND SENSING TECHNOLOGY 

Currently, wearable devices and sensors [176-180] (such as pulse monitors, mobile phones, smart 

watches, and smart glasses) are used in many modern applications such as industry, medical field, and 

security [181-183]. In the medical applications, the main purpose of these devices and sensors is to obtain a 

reliable data to use them in monitoring/tracking people’s activities and behaviors [184]. However, signs of 

humans’ body such as brain signals, blood pressure, temperature, heart rate, motion, spinal posture, sweat 

rate, respiration rate and glucose level can be monitored [185]. Moreover, with the help of wearable devices 

and sensors[186], healthcare providers can continuously and remotely monitor all signs and activities [187-

190]. As an example of remote activity monitoring, sensors can be used to track subject’s motion and 

unexpected activities, such as fall detection [191].   

In the PA and sports, activity recognition [192-194] can be used to obtain physical activities such as 

running, driving, jumping, swimming, dancing, playing sports, walking, lying, standing, sitting, hiking, and 

https://en.wikipedia.org/wiki/Glucose
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jogging  [195, 196]. Several studies have applied activity recognition for patients, physically or mentally 

disabled people, children, and elderly [197]. Thus, wearable computing and sensing technology will 

positively enhance health and medical technology [198]. This leads to reduce medical cost, cure at home, 

redefine the doctor-patient relationship, and enhance medical services [199, 200]. Several  types of sensors 

are developed and applied for the monitoring of activities and physiological parameters [201]. Table 6 

summarizes available market sensors used in physical human activity monitoring [34, 202, 203].  

 

Table 6. Available market sensors used in physical human activity monitoring 
Sensor  Application  

Piezoresistive Sensor [204] Force or pressure measurement 

Sweat rate sensor [205] Sweat measurement 

Inertial sensors [206, 207] 

 

Linear and angular accelerations 

measurements 

Accelerometers [208] Acceleration measurement 

Shoe monitor sensor [209] Locomotion measurement 

ElectroCardiogram (ECG) sensors [210] Rate and regularity of the heart beats 

measurement 

Body temperature sensor [211] Skin temperature measurement 

Blood pressure sensor [212] Blood pressure measurement 

Pulse oximetry sensor [213] Oxygen saturation level in blood measurement 

Glucose sensor [214] Glucose rate measurement 

Smart phones [215, 216] Several messurments 

Cameras [217] Recognition of activities and gestures from 

video sequences 

GPS [218, 219] Human’s movment 

Spirometer, Electrooculography (EOG), and galvanic skin [220] Physiological sensor 

Electroencephalogram (EEG) [221, 222] Brain signals  

Magnetic field sensor [223] Inertial sensor 

4. CHALLENGES AND FUTURE TRENDS  

This section summarizes human activity recognition challenges and future trends [76, 224-239]:    

- Diversity of physical activities: definition of the activities and their specific characteristics is 

challenging task. 

- Activity variation: certain activity may lead to multiple different styles of human motion. 

- Outdoor/ uncontrolled environment: background noise may affect human activity recognition 

algorithms. 

- Data collection and unavailability of big datasets.: intelligent algorithms for human activity 

recognition needs sufficient and big training data. Most available datasets are laboratory datasets.   

- Feature extraction: knowledge expert- driven feature extraction methodes have to be extensivly 

discussed. However, time and frequency methodes do not have the ability to deal with dynamic 

nature of human activities.  

- Computational time: new feature extraction processes need more computational time. 

- Performance and accuracy: multiple sensors or multiple classifiers have to be used  

- Intra-class variability and inter-class similarities: Humans act differently.  

- Performance evaluation: false negative state must be reducing.  

- Complex activities: complex and multitasking activities are diffecult to recognize.  

- The NULL Class: required activities may interfere with activities that have similar 

behaviour/patterns but that are irrelevant to the scope. 

- Class imbalance: the number of instances of one class far exceeds the other. 

- Flexibility: the HAR system must be flexible to add new users without needing to re-train the 

system. 

- Privacy and security: threats maybe occure due to highly sensitive information. 

- Safety: touchable batteries maybe dangerous.  

- Wearable sensors placement: how and where the wearable sensors can placed and attached to related 

locations in the body. 

Design of wearable sensors: the sensor must be easy and comfortable for the users. 

https://en.wikipedia.org/wiki/Glucose
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- Single sensor modalities: information fusion stratigies have to discussed more. 

- Energy efficiency: online continous sensing is energy consuming. 

- The size: size of the sensor must be reduced.   

- Obtrusiveness: human does not able to wear many sensors. 

- Ergonomics: wearable devices must be comfortable for the users. 

- Sealing: wearable devices must be protected from water and sweat. 

- Noise: various noise levels for the same modality may occur. 

5. CONCLUSION 

In the IoMT era, analysis of human activity data is vital and represents the future of healthcare 

industry. Signs of humans’ body such as brain signals, blood pressure, temperature, heart rate, motion, spinal 

posture, sweat rate, respiration rate and glucose level can be monitored. Data obtained by sensors can be used 

as a predictor of health status. Thus, this literature has covered the physical human activity recognition chain 

using wearable sensors. Initially, in order to make the data suitable for analysis, obtained sensor’s data are 

preprocessed and segmented. Feature extraction stage is used to find a high resolution of data representation 

for each segment. Extracted features can be analyzed by four main methods: time domain, frequency domain, 

learning techniques, and other techniques. The classifier (classification algorithm/technique) uses the 

extracted features to differentiate between different human activities. Importantly, this review paper maybe 

used as a report of all algorithms used in human activity researches. 
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