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A fixed window function which is similar in shape to a semi-ellipse is 

proposed. The semi–ellipse which has its major axis to be equal to the 

window length and the minor axis at unity produced about 4.2 dB lower 

ripple ratio than the rectangular window. The proposed window function is 

derived from the equation of an ellipse in the explicit and parametric forms. 

First of all, the spectral characteristic of the proposed window is studied in 

terms of spectral parameters and compared with other fixed windows like 

Rectangular, Bartlett, Hann, Hamming and Blackman windows. The window 

simulation results reveal that the proposed window produced comparable 

spectral characteristic with existing standard fixed windows. Secondly, the 

paper presents the application of the proposed window in a digital filter 

design. The filter analysis comparison results with other fixed windows 

namely Bartlett, Von Hann, Hamming, and Kaiser window, an adjustable 

window, confirm that filter design with the proposed window exhibits good 

spectral characteristic, and can be used to design better filter than the Bartlett 

window using less than half the Bartlett’s filter length for a fixed transition 

width. The similicity of its coefficients formulation and design algorithm 

makes it a good choice for digital filter design applications.   
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1. INTRODUCTION

Digital filters are essential part of digital signal processing (DSP). DSP growth over the years is 

because of the astonishing performance of the digital filters. The ideal approach to the design of discrete-time 

infinite impulse responses filters involves the transformation of a continuous-time filter into a discrete-time 

filters meeting some prescribed specifications [1, 2]. Discrete-time filters can be classified on the basis of the 

duration of their impulse response either as infinite impulse response (recursive) filters or as finite impulse 

response (nonrecursive) filters. The finite impulse response (FIR) filters are frequently used in digital filter 

design due to the fact that they are stable, and they have linear phase characteristics. Its major drawback is 

complexity because it requires relatively large filter length compared to infinite impulse response (IIR) filter 

in satisfying prescribed filter characteristics [2-4]. 

FIR filters design can be achieved using different techniques and most of them are based on ideal 

filter approximation. These techniques include window technique based on Fourier series, frequency 

sampling technique, and numerical method [2-4]. The simplest technique of FIR filter design is the window 

method. A window is an array consisting of coefficients that meet proposed filter requirements [2, 3]. The 

impulse response of an ideal filter is infinite in nature so truncating at some point say M at both negative and 

positive sides of the filter impulse response (see Figure 1) yields a symmetrical FIR filter of length, 𝑁 =
2𝑀 + 1. The effect of making the infinite-duration impulse response to be finite gives rise to the Gibbs 

phenomenon [4-6] – ripples in the passband and attenuation in the stopband as shown in Figure 2. 

mailto:nhenryuzo@gmail.com
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Figure 1. The impulse response of an ideal filter 

The truncation done in Figure 1 is achieved using a sharp-edge window which is rectangular in 

shape. However, increasing the filter length, N increases the frequency of the oscillation, but does not reduce 

the amplitude of the ripples in the passband and stopband rather the discontinuity is significant no matter how 

long the filter length is made as shown in Figure 2.  

Figure 2. The Gibbs phenomenon 

Fortunately, the application of window functions which have tapering edge improves this situation. 

Figure 3 depicts the rectangular (sharp-edge) and nonrectangular (tapering edge) window function. Therefore, 

multiplying the ideal filter impulse response, hid(n), by a window function w(n), results in the windowed FIR 

filter, h(n). The FIR digital filter design using windows is discussed in Section 2.4.  

The idea is to reduce the abruptness of the truncated ends and thereby improve the frequency 

response. The desired objectives of windowed FIR filter design include: 

• Minimize the ripples in the passband to achieve good flat passband. 

• Minimize the ripples in the stopband to achieve good stopband attenuation. 

• Shrink the main-lobe width to realize a narrow transition band width (i.e. fast roll-off). 

• The length of the filter should be made as few as possible to decrease complexity. 

Several different windows are available, and a list of window functions could be found in [7]. 

Windows can be categorized as fixed or adjustable window depending on the number of independent window 

parameters in their function [8]. A fixed window has only one independent parameter – the window 

length.The window function proposed in this work is fixed. Some fixed windows exist in literature namely 

Rectangular, Triangular (aka Bartlett window), Hamming, Von Hann and Blackman windows [1-4, 6, 7]. An 

adjustable window has two or more independent parameters which include the window length. A variety of 

adjustable window functions also exist in literature like the Kaiser window [9], ultraspherical window[10] 

and Dolph Chebychev window[11]. The independent parameters are used to control the window 

characteristics. 
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Figure 3 depicts the rectangular (sharp-edge) and nonrectangular (tapering edge) window function. 

Figure 3. The sharp-edge rectangular window gives rise to Gibbs oscillation while the tapering-edge windows 

reduce the problem 

Besides, window functions can be combined to produce a hybrid window function with improved 

spectral characteristics for various filter applications. Some of these hybrid windows include Bartlett-Hann 

[3, 7] and Blackman-Harris [12]. Most window functions proposed lately fall into this category; the authors 

in [13] developed a hybrid of Blackman window and Kaiser window; the authors in [14] combined tangent 

hyperbolic function and a weighted cosine series, while in [15] they combined Blackman Window and 

Lanczos Window.   

In this paper, an efficient formulation for generating the coefficients of the Semi-ellipse window is 

proposed and its application for the design of FIR digital filters that would satisfy prescribed specifications is 

demonstrated. The paper is organized as follows. Section 2, first of all, introduces the fixed window functions 

and the basic parameters that classify their spectral characteristic; secondly, an efficient formulation for 

generating the coefficients of the Semi-ellipse window is described; thirdly, the parameters that describe the 

proposed window are illustrated; lastly, the proposed window is used in the design of FIR digital filters with 

other windows which illustrates the use of its design algorithm with some examples. Section 3 provides the 

results and discussion while Section 4 gives the conclusion. 

2. PROPOSED RESEARCH METHOD

2.1. Window spectral characteristics 

A typical window function diagram is shown in Figure 4(a) which is noncausal because it is zero-

centered. A causal window function can be obtained by shifting the window function by half its length, hence 

making the window to be zero for negative time (see Figure 4(b)). The shift property of the Fourier transform 

that makes the impulse response to be symmetrical about (𝑁 − 1) 2⁄  has introduced a linear phase form [2]. 

Figure 4. The noncausal (a) and causal (b) window functions 

The most commonly used window functions are defined in their causal forms using the following 

equations [2-4, 6, 7]: 

• Rectangular window

𝑤𝑟𝑒𝑐(𝑛) =  1,  {
0 ≤ 𝑛 ≤ 𝑁 − 1 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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• Triangular (Bartlett) window

𝑤𝑡𝑟𝑖(𝑛) =   {

2𝑛

𝑁−1
;  0 ≤ 𝑛 ≤

𝑁−1

2

2 −
2𝑛

𝑁−1
;  

𝑁−1

2
≤ 𝑛 ≤ 𝑁 − 1

0;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

• Von Hann window

𝑤ℎ𝑎𝑛(𝑛) = 0.5 −  0.5cos (
2πn

𝑁−1
),   {

0 ≤ 𝑛 ≤  𝑁 − 1 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

• Hamming window

𝑤ℎ𝑎𝑚(𝑛) = 0.54 −  0.46cos (
2πn

𝑁−1
),   {

0 ≤ 𝑛 ≤  𝑁 − 1 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4) 

• Blackman window

𝑤𝑏𝑙(𝑛) = 0.42 − 0.5 cos (
2𝜋𝑛

𝑁−1
) + 0.08 cos (

4𝜋𝑛

𝑁−1
),   {

0 ≤ 𝑛 ≤  𝑁 − 1
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5) 

• Kaiser window

Unlike all the fixed windows mentioned above, the Kaiser window is an adjustable window

function. The window is proposed by Kaiser [9], and it is used widely. The Kaiser window function

is given by:

𝑤𝑘𝑎𝑖(𝑛) =  
𝐼0(𝛽.√1 − (

𝑛−𝛼

𝛼
)

2
)

𝐼0(𝛽)
; {

0 ≤ 𝑛 ≤  𝑁 − 1 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6) 

     where ∝ =  
𝑁−1

2
and 𝐼0 is a modified zero order Bessel function of the first kind.

    and, 𝛽 =  {

0.1102(𝐴𝑠 − 8.7);                                                            𝐴𝑠 > 50

0.5842(𝐴𝑠 − 21)0.4 + 0.07886(𝐴𝑠 − 21);       21 < 𝐴𝑠 < 50
0;                                                                                           𝐴𝑠 < 21

(7) 

where 𝐴𝑠 = minimum stopband attenuation

The filter length, N can be determined by selecting the lowest odd value of N that would satisfy the 

inequality:  

𝑁 ≥  
𝜔𝑠𝑎𝑚𝑝𝐷

∆𝜔
 + 1 (8) 

Parameter D is determined using the expression: 

𝐷 =  {
0.9222; 𝐴𝑠 ≤ 21 
𝐴𝑠− 7.95

14.36
;  𝐴𝑠 > 21

(9) 

Where 𝜔𝑠𝑎𝑚𝑝 is the normalized sampling frequency and ∆𝜔  is the transition width.

However, windows are analysed in the frequency domain in order to compare and classify them in 

term of their spectral characteristics. The frequency spectrum of a window can be obtained as given 

by [1]   

𝑊(𝑒𝑗𝜔𝑇) =  𝑒−𝑗𝜔(𝑁−1)𝑇/2 𝑊0(𝑒𝑗𝜔𝑇)      (10)

Where 𝑊0(𝑒𝑗𝜔𝑇) is the amplitude function, N is the window length, and T is the interval between

samples and T is taken to be 1 second throughout this paper for simplicity, hence T = 1. 

The normalized amplitude spectrum of a typical window is shown in Figure 5 [16]. 
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Figure 5. Normalized amplitude spectrum of a typical window 

Figure 5 depicts the two basic parameters that characterize a window in the frequency domain. They 

are the main-lobe width, WML and the ripple ratio, r also refer to as the maximum side-lobe 

amplitude. The main-lobe width, WML is the bandwidth between the first negative and first positive 

zero crossing which is equal to 2WR, and ripple ratio, r is the maximum side-lobe amplitude, 

𝐴𝑆𝐿𝑚𝑎𝑥
 divided by the main-lobe amplitude, 𝐴𝑀𝐿. The ripple ratio is given as expressed in (11) [1].

𝑟 = (
𝐴𝑆𝐿𝑚𝑎𝑥

𝐴𝑀𝐿
) 100% or 𝑅 = 20 log (

𝐴𝑆𝐿𝑚𝑎𝑥

𝐴𝑀𝐿
) dB (11) 

2.2. The proposed Semi-ellipse window 

In this section, we derived the proposed window function using the equation of an ellipse in two 

different forms that yielded equivalent results. These methods are illustrated as in [17]: 

• Equation of an ellipse in explicit form

• Equation of an ellipse in parametric form

2.2.1. Equation of an ellipse in explicit form 

The equation of an ellipse in explicit form (12) with reference to Figure 6 showing an ellipse 

inscribed in the rectangle AEFD.  
(𝑛+ℎ)2

𝑎2 +  
(𝑤+𝑘)2

𝑏2 = 1  (12) 

Where a is the radius of the major axis, and b is the radius of the minor axis while its centre 

coordinate is h on n-axis and k on w-axis 

Figure 6. An ellipse with radius of the major axis, a = (N-1)/2 and the radius of the minor axis, b = 1 

having its center at the origin 

Referring to Figure 6, 𝑎 =  
𝑁−1

2
(13) 

and b = 1 (14) 

also, the ellipse centre coordinate, (h, k) = (0, 0) 

Substituting (13) and (14) into (12), with centre of coordinate of the ellipse as (0, 0) yields: 
4𝑛2

(𝑁−1)2 + 𝑤2 = 1 (15) 

The last equation can also be rewritten as: 
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𝑤 =  ±√1 −  
4𝑛2

(𝑁−1)2 (16) 

Considering the positive semi-ellipse (see Figure 6), inscribed in rectangle, ABCD (the rectangle 

with the solid line), the proposed Semi-Ellipse window is given by: 

𝑤𝑠𝑒(𝑛) =  √1 − 
4𝑛2

(𝑁−1)2  ;      {
−

𝑁−1

2
 ≤ 𝑛 ≤  

𝑁−1

2

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(17) 

Figure 7. Proposed semi-ellipse window shifted to run from 0 to (N-1) 

The proposed window functions when shifted to the right by (N-1)/2 to runs from 0 to (N-1), using 

only positive indexes, is shown in Figure 7. Thus, the causal form of the proposed Semi-ellipse window is 

defined as: 

wse(n)𝑐𝑎𝑢𝑠𝑎𝑙 = wse (n − ( 
𝑁−1

2
)) =

2

(𝑁−1)
√(𝑁 − 1)𝑛 − 𝑛2;   {

0 ≤ 𝑛 ≤  𝑁 − 1
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18) 

2.2.2. Equation of an ellipse in parametric form 

The general parametric equations of an ellipse with centre at coordinate (h, k) are given by: 

𝑛 = ℎ + 𝑎𝑐𝑜𝑠𝑡 (19) 

And, 

𝑤 = 𝑘 + 𝑏𝑠𝑖𝑛𝑡        (20) 

where the parameter t is an angle 0 ≤  t ≤ 2π (see Figure 6). Equation (19) can also be rewritten as 

𝑡 = arccos(
𝑛−ℎ

𝑎
)               (21)

Substituting (21) into (20) yields, 

𝑤 = 𝑘 + 𝑏 sin(arccos(
𝑛−ℎ

𝑎
))                   (22)

Considering the semi-ellipse plotted in Figure 7 and replacing all the variables appropriately, (22) 

yields: 

𝑤 = sin(arccos(
2𝑛

𝑁−1
− 1))                   (23)

Therefore, the equivalent function of the proposed semi-ellipse window of (18) in parametric form is 

given by: 

𝑤𝑠𝑒(𝑛) = sin (𝑎𝑟𝑐𝑐𝑜𝑠 (
2𝑛

𝑁−1
− 1)) ; {

0 ≤ 𝑛 ≤  𝑁−1

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(24) 

2.3. The proposed window spectral characteristics 

In this section, the window spectrum of the proposed Semi-ellipse window is observed and 

examined to determine its spectral characteristics in terms of the main-lobe width and the ripple ratio. 

Generally, it is observed that the main-lobe width of window functions decreases as the window length 

increases [1-4]. Hence, N is proportional to 1/WML, we can control the main-lobe width using the length of 

the window.  The proposed Semi-ellipse window length, N is plotted against the reciprocal of its main-lobe 

width, WMLse as shown in Figure 8. The result reveals that the main-lobe width of the proposed Semi-ellipse 

WMLse window assumes a value that can be determined as given by: 

𝑊𝑀𝐿𝑠𝑒
≈

5

𝑁
 (xπ rad/sample) (25) 
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where 𝑊𝑀𝐿𝑠𝑒
is the proposed Semi-ellipse main-lobe width and N is the window length

On the other hand, the ripple ratio of the proposed Semi-ellipse window is also plotted as a function 

of the window length. Figure 9 shows a plot of the numerical results which reveals that the ripple ratio of the 

proposed window assumes a value of about -17.5 dB which is independent of the window length, N.  

The proposed window function is plotted in time domain (see Figure 10) and frequency domain (see 

Figure 11) using Matlab. The normalized side lobe peak is found to be ≈ -17.5 dB and the normalized main-

lobe width is ≈0.098π rad/sample for N = 51. Table 1 shows the window parameters of the proposed Semi-

ellipse window put together with the existing fixed windows parameters as presented in [2, 4, 6]. 

Table 1. Window parameter of the proposed Semi-ellipse window with other fixed windows 

Window Type Main-lobe width 
(xπ rad/sample) 

Ripple ratio  
(dB) 

Rectangular  4
𝑁⁄ -13.3 

Triangular (Bartlett) 8
𝑁⁄ -26.5 

Von Hann  8
𝑁⁄ -31.5 

Hamming 8
𝑁⁄ -42.3 

Blackman 12
𝑁⁄ -58.1 

Proposed Semi-ellipse 𝟓
𝑵⁄ -17.5 

2.4. FIR digital filter design using windows 

Generally, the filters designed using windows have symmetrical impulse response. In the filter design 

using window technique, an ideal frequency response of the desired filter is assumed which produces an 

Figure 8. The variation of the N with 1/WMLof the 

proposed Semi-ellipse window 
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infinite duration impulse response upon application of inverse Fourier transform. Practically, ideal filters 

cannot be implemented, but by approximation practically realizable filters can be achieved. The ideal and 

realizable frequency response of a lowpass filter as shown in Figure 12 [2] as given by [2-4, 6]: 

𝐻𝑖𝑑(𝑒𝑗𝜔𝑇) =  {
1 ;   |𝜔| ≤  𝜔𝑐 

0 ;   𝜔𝑐 <  |𝜔|  ≤  𝜋
(26) 

where ωc is the cut-off frequency. 

Figure 12. The frequency response of the ideal and realizable lowpass filter 

The infinite impulse response of a lowpass filter is as expressed below: 

ℎ𝑖𝑑(𝑛𝑇) =  {

𝑠𝑖𝑛𝜔𝑐𝑛𝑇

𝑛𝜋
 ;   𝑛 ≠ 0

𝜔𝑐

𝜋
;   𝑛 = 0

(27) 

Thus, -∞ ≤ n ≤ ∞ 

The impulse response of a realizable finite-duration filter is obtained by multiplying the infinite-duration 

impulse response, ℎ𝑖𝑑(𝑛𝑇) by the window function, 𝑤(𝑛𝑇) as in the expression [2-4].

ℎ(𝑛𝑇) =  ℎ𝑖𝑑(𝑛𝑇) ∗ 𝑤(𝑛𝑇); −𝑀 ≤ 𝑛 ≤ 𝑀 (28) 

Where 𝑤(𝑛𝑇) is a window function of length, N = 2M + 1 

If N is odd, then n is an integer and fraction if N is even. 

Thus,  for odd length:  |n| = {0, 1, 2, 3, ….., M} and 

for even length:   |n| = {0.5, 1.5, 2.5, 3.5, ….., M} 

In this paper, N is taken to be odd because odd-length FIR filter is easy and preferred for designing all filter 

types [2, 18]. The filter realized in (28) in noncausal, and the causal filter can be obtained by delaying the 

impulse response by a period (𝑁 − 1)/2  as expressed below: 

ℎ(𝑛) = ℎ ((𝑛 − (
𝑁−1

2
)) 𝑇) ;  0 ≤ 𝑛 ≤ 𝑁 − 1 (29) 

The periodic convolution of the ideal frequency response, 𝐻𝑖𝑑(𝑒𝑗𝜔) and the frequency spectrum of the

window, 𝑊(𝑒𝑗𝜔) produces the frequency response of the FIR filter, 𝐻(𝑒𝑗𝜔𝑇). This is given by:

𝐻(𝑒𝑗𝜔𝑇) = 𝐻𝑖𝑑(𝑒𝑗𝜔) ⊛ 𝑊(𝑒𝑗𝜔) =
1

2𝜋
∫ 𝐻𝑖𝑑 (𝑒𝑗(𝜔−𝜃)𝑇)

𝜋

−𝜋
𝑊(𝑒𝑗𝜃)𝑑𝜃 (30) 



IJEEI ISSN: 2089-3272 

Design of FIR digital filters using Semi-ellipse window (Henry N. Uzo et al) 

655 

         (a)  (b) 

        (c)                (d) 

Figure 13. The frequency responses of (a) Lowpass, (b) Highpass (c) Bandpass and (d) Bandstop filters 

Although Figure 12 shows the frequency response for a lowpass filter, the relation of the ripples is valid for 

other filter types as shown in Figure 13[3]. The diagrams show the ideal frequency responses of all the four 

standard filters and their impulse responses can be computed using their respective functions as shown in 

Table 2 [3, 19]. 

Table 2. The causal impulse response of the standard filters {where 𝑀 =  (𝑁 − 1) 2⁄ } 

Filter Type Ideal Impulse Response function 

Lowpass ℎ𝑖𝑑(𝑛) =  {

sin(𝜔𝑐(𝑛−𝑀))

𝜋(𝑛−𝑀)
 ; 𝑓𝑜𝑟  𝑛 ≠ 𝑀   (0 ≤ 𝑛  ≤ 2𝑀) 

𝜔𝑐

𝜋
 ;    𝑛 = 𝑀

Highpass ℎ𝑖𝑑(𝑛) =  {
− 

sin(𝜔𝑐(𝑛−𝑀))

𝜋(𝑛−𝑀)
 ; 𝑓𝑜𝑟  𝑛 ≠ 𝑀   (0 ≤ 𝑛  ≤ 2𝑀)

1 − 
𝜔𝑐

𝜋
 ;    𝑛 = 𝑀

Bandpass ℎ𝑖𝑑(𝑛) =  {

sin(𝜔𝑐2
(𝑛−𝑀))

𝜋(𝑛−𝑀)
− 

sin(𝜔𝑐1
(𝑛−𝑀))

𝜋(𝑛−𝑀)
; 𝑓𝑜𝑟  𝑛 ≠ 𝑀   (0 ≤ 𝑛  ≤ 2𝑀)

𝜔𝑐2−𝜔𝑐1

𝜋
 ;         𝑛 = 𝑀

Bandstop ℎ𝑖𝑑(𝑛) =  {

sin(𝜔𝑐1
(𝑛−𝑀))

𝜋(𝑛−𝑀)
− 

sin(𝜔𝑐2
(𝑛−𝑀))

𝜋(𝑛−𝑀)
;   𝑓𝑜𝑟  𝑛 ≠ 𝑀   (0 ≤ 𝑛  ≤ 2𝑀)

1 − 
𝜔𝑐2−𝜔𝑐1

𝜋
 ;         𝑛 = 𝑀

The transition width ∆ω, the peak-to-peak passband ripple Ap, and the minimum stopband attenuation As can 

be calculated using (31), (32) and (33), respectively for a specified sampling frequency.  

∆ω =  𝜔𝑠 − 𝜔𝑝 (31) 

𝐴𝑝 = 20 log(
1+ 𝛿𝑝

1− 𝛿𝑝
) (32) 

𝐴𝑠 = −20 log 𝛿𝑠 (33) 

Then, set 𝛿 = 𝑚𝑖𝑛{𝛿𝑠, 𝛿𝑝} (34) 

where 𝛿𝑝 is the peak ripple value in the passband, 𝛿𝑠 in the peak ripple value in the stopband, 𝜔𝑠 is

the stopband edge frequency, and 𝜔𝑝 is the passband edge frequency.

Therefore, (33) can be rewritten as: 

𝐴𝑠 = −20 log 𝛿        (35)

The transistion bandwidth is symmetric about the cutoff frequency, 𝜔𝑐; therefore, 𝜔𝑐  can be computed as in

the expression: 

𝜔𝑐 =  
∆ω

2
=  

𝜔𝑠− 𝜔𝑝

2
(36) 
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The normalized frequency can be determined from the absolute frequency using the expression: 

𝜔 =  
2𝜋𝑓

𝑓𝑠𝑎𝑚𝑝
(37) 

Where 𝑓 is the absolute frequency in cycle/sec, 𝑓𝑠𝑎𝑚𝑝 =  1
𝑇⁄  is the sampling rate in samples/sec,

and 𝜔 is the normalized frequency in radians/sample 

2.4.1. FIR digital filter using the proposed window 

In the filter application, the window main-lobe width is responsible for the transition width of the 

filter while the ripple ratio affects the passband and stopband ripples. Hence, the narrower the main-lobe 

width, the better the transition width and the smaller the ripple ratio the better the passband ripple and 

stopband attenuation. However, narrower transition width and smaller ripples are desired in filter 

applications, but windows trade-off main-lobe width with maximum side-lobe amplitude therefore reduction 

of both quantities cannot be achieved at the same time.  

Furthermore, to determining the parameters of the proposed window in filter application, we used the 

proposed window in a lowpass filter design due to the fact that other filters are designed using lowpass filter 

and then transforming it to the desired response [4, 20]. The frequency spectrum of the proposed window in a 

lowpass filter is determined using (30) and stopband attenuation is plotted as a function of the filter length as 

shown in Figure 14. This simulation can be done easily in Matlab [2, 6, 19, 21, 22]. The simulation results 

presented in Figure 14 shows that as we increase the window length N, the stopband attenuation of the 

proposed Semi-ellipse is approximately -27 dB which is independent of the filter length like in the case of the 

ripple ratio (see Figure 9). As shown previously in Figure 8, the transition width, ∆ω  also decreases as the 

filter length increases; thus, 𝑁 ∝ 1 ∆ω⁄ . A plot of N versus 1/∆ω for the proposed window is shown in Figure 

15. The result shows that the estimated transition width of the proposed window in FIR filter design can be

determined as in (38). Table 3 [2, 6, 19] shows the summary of the parameters of the popular fixed window 

functions with the proposed window parameters added in bold letters at the bottom of the table. 

∆𝜔𝑠𝑒 ≈
2.8

𝑁
 (xπ rad/sample)        (38)

where ∆𝜔𝑠𝑒 is the proposed Semi-ellipse transition width and N in the filter length

Table 3. Window parameter of the proposed Semi-ellipse window with other fixed windows 

Window Name Transition width, ∆𝜔 

(xπ rad/sample) 

Min. Stopband 
Attenuation  

Approximate value Exact value (dB) 

Rectangular  4
𝑁⁄ 1.8

𝑁⁄ 21 

Triangular (Bartlett) 8
𝑁⁄ 6.1

𝑁⁄ 26 

Von Hann  8
𝑁⁄ 6.2

𝑁⁄ 44 

Hamming 8
𝑁⁄ 6.6

𝑁⁄ 53 

Blackman 12
𝑁⁄ 11

𝑁⁄ 74 

Proposed Semi-ellipse 𝟓
𝑵⁄ 𝟐. 𝟖

𝑵⁄  27 

Figure 14. Stopband attenuation of the proposed 

window versus window length 
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In the design of nonrecursive filters using fixed windows, the minimum stopband attenuation is 

determined to confirm the window is suitable for designing the prescribed filter. The choice of the minimum 

stopband attenuation is selected such that it is a little greater than that of the prescribed filter. A lowpass filter 

can be designed using the proposed Semi-ellipse window by applying some equations expressed in the 

previous sections in this paper. First of all, the minimum stopband attenuation of the prescribed filter is 

determined as in (32 - 35) using the given filter design specifications. Assuming 𝐴𝑠 of the proposed window

satisfies the filter specification presented, the algorithm shown below can be used to design a lowpass FIR 

filter using the proposed Semi-ellipse window. 

Algorithm for lowpass filter design using Semi-ellipse window: 

Step 1. Input the filter specification ωs, ωp, As and Ap. 

Step 2. Compute the transition width, ∆ω of the filter using (31). 

Step 3. Compute ωc using (36). 

Step 4. Compute the filter length, N required for the specified transition width using (38) and rounding 

up to the nearest odd integer. 

Step 5. Compute the window function coefficients using (18) or (24) according to the filter length 

obtained in Step 4. 

Step 6. Compute the ideal lowpass filter impulse response coefficients as in Table 2 according to the 

filter length obtained in Step 4. 

Step 7. Compute the causal finite-duration impulse filter as in (29) 

Step 8. Check the filter design achieved to ensure it satisfies the prescribed specification, and if it does 

not, increase N by 2 and go back to Step 5. 

The Algorithm for the design of lowpass filter can also be used in the design of highpass, bandstop 

and bandpass filter. However, for bandstop and bandpass filters, the narrower of the two transition bandwith 

is selected for the filter design [2, 4]. Therefore,  

For bandstop: ∆ω =  min [(𝜔𝑠1
−  𝜔𝑝1

), (𝜔𝑝2
−  𝜔𝑠2

)]    (39)

and  𝜔𝑐1 =  𝜔𝑝1
+ 

∆ω

2
and 𝜔𝑐2 =  𝜔𝑝2

− 
∆ω

2

For bandpass: ∆ω =  min [(𝜔𝑝1
− 𝜔𝑠1

), (𝜔𝑠2
−  𝜔𝑝2

)] (40) 

and 𝜔𝑐1 =  𝜔𝑝1
−  

∆ω

2
and 𝜔𝑐2 =  𝜔𝑝2

+  
∆ω

2

Example 1  

Design a lowpass filter with the following specifications: 𝑓𝑝 = 5 𝑘𝐻𝑧, 𝑓𝑠 = 5.6 𝑘𝐻𝑧, 𝛿 = 0.056 and 𝑓𝑠𝑎𝑚𝑝 =

25 𝑘𝐻𝑧 using the Triangular (Bartlett), Hann, Hamming, Kaiser and Semi-ellipse windows. 

Solution: 

Step 1. Using (35), 𝐴𝑠 ≈ 25 𝑑𝐵.

Step 2. Using (37), 𝜔𝑝 =  0.4𝜋 𝑎𝑛𝑑 𝜔𝑠 =  0.448𝜋 (𝑟𝑎𝑑/𝑠𝑎𝑚𝑝𝑙𝑒)

Using (31), ∆ω = 0.048π (rad/sample). 

Step 3. Using (36), compute 𝜔𝑐 of the ideal filter as 𝜔𝑐 =  0.424𝜋 (𝑟𝑎𝑑/𝑠𝑎𝑚𝑝𝑙𝑒).

Step 4. From Table 3, the filter lengths that will satisfy the transition width for Bartlett, Hann, 

Hamming, and Semi-ellipse were determined as N = 127, 129, 137, and 59, respectively. 

Using (8) and (7), the Kaiser parameters N and β were determined as 51 and 1.332, respectively 

Step 5. Compute the window function coefficients for the Triangular as in (2), Hann as in (3), 

Hamming as in (4), Kaiser as in (6) and Semi-ellipse as in (18) using their filter lengths 

obtained in Step 4. 

Step 6. Compute the ideal lowpass filter impulse response coefficients as in Table 2 using the filter 

lengths obtained in Step 4. 

Step 7. Compute the causal finite-duration impulse reponse using results of Step 5 and Step 6 for the 

windows. 

Step 8. The parameters obtained were used in Matlab to plot the frequency response of the filter using 

the different windows. The minimum stopband attenuation obtained for Bartlett, Hann, 

Hamming, Kaiser, and Semi-ellipse were -26.30, -44.00, 53.40, -25.99, and -27.15 dB;  the 
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transistion widths  achieved  were 0.0502π, 0.0488π, 0.0493π, 0.0485π, 0.048π rad/sample, 

respectively. Figure 16 shows the magnitude responses of the designed lowpass filters. 

Example 2 

Design a bandpass filter with the specifications below using the Triangular (Bartlett), Hann, Hamming, 

Kaiser and Semi-ellipse windows. For 0 ≤ 𝜔 ≤ 100: 𝐴𝑠 = 25.0 𝑑𝐵
For 115 ≤ 𝜔 ≤ 300: 𝐴𝑝 = 1.0 𝑑𝐵

For 325 ≤ 𝜔 ≤ 500: 𝐴𝑠 = 25.0 𝑑𝐵
𝑓𝑠𝑎𝑚𝑝 = 1000 𝐻𝑧

(a) 

(b) 

(c) 

Figure 16. Diagram shows (a) the frequency 

response of the lowpass filters of Example 1, an 

enlarged view of the (b) stopband and (c) 

passband ripples 

(a) 

(b) 

(c) 

Figure 17. Diagram shows (a) the frequency 

response of the bandpass filters of Example 2, an 

enlarged view of the (b) stopband and (c) 

passband ripples 
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Solution: 

Step 1. Using (32) and (33), 𝛿𝑝 = 0.0575 and  𝛿𝑠 = 0.0562 and using (35), 𝐴𝑠 = 25.0 𝑑𝐵

Step 2. Using (37), 𝜔𝑠1
=  0.2𝜋, 𝜔𝑝1

=  0.23𝜋, 𝜔𝑝2
=  0.6𝜋, and 𝜔𝑠2

=  0.65𝜋 (𝑟𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒⁄ )

Using (40), ∆ω = min(0.03π, 0.05π) = 0.03π (rad/sample) 

Step 3. Using (40), determine 𝜔𝑐1
 and 𝜔𝑐2

 of the ideal passband filter as 𝜔𝑐1
=  0.215𝜋 and 𝜔𝑐2

=

 0.615𝜋 (𝑟𝑎𝑑/𝑠𝑎𝑚𝑝𝑙𝑒) 

Step 4. From Table 3, the filter lengths that will satisfy the transition width for Bartlett, Hann, 

Hamming, and Semi-ellipse were determined as N = 203, 207, 221, and 93, respectively. 

Using (8) and (7), the Kaiser parameters N and β were determined as 81 and 1.332, respectively 

Step 5. Like in Example 1, the window function coefficients for the Triangular, Hann, Hamming, 

Kaiser and Semi-ellipse window were determined using the filter lengths obtained in Step 4. 

Step 6. Compute the ideal bandpass filter impulse response coefficients as in Table 2 using the filter 

lengths obtained in Step 4. 

Step 7. Compute the causal finite-duration impulse reponse using results of Step 5 and Step 6 for the 

different windows. 

Step 8. The parameters obtained were used in Matlab to plot the frequency response of the filter using 

the different windows. The minimum stopband attenuation obtained for Bartlett, Hann, 

Hamming, Kaiser, and Semi-ellipse were -26.29, -43.94, 53.25, -25.75, and -27.03 dB;  the 

transistion widths  achieved  were 0.0302π, 0.0304π, 0.0300π, 0.0281π, 0.0314π rad/sample, 

respectively. Figure 17 shows the magnitude responses of the designed bandpass filters. 

3. RESULTS AND DISCUSSION

The experiments to determine the proposed window parameter in Figure 8 and 9 show that its main-

lobe width is about  5π
N⁄  rad/sample and its ripple ratio remains relatively independent of N at approximately

-17.5 dB for values of N in the range 11 to 201. In filter design, its minimum stopband attenuation also 

remains relatively independent of N at approximately 27 dB for values of N in the range 11 to 201(see Figure 

14) while Figure 15 reveals that its transition width is about 2.8π
N⁄  rad/sample.

Table 4. Summary of results of Examples 1 and 2 

Window Name 

Results of Example 1 – Lowpass filter 

Filter Length, N Transition Width, ∆ω 

(Rad/sample) 

Minimum Stopband Attenuation, As 

(dB) 

Triangular (Bartlett) 127 0.0502 26.30 

Von Hann  129 0.0488 44.00 

Hamming 137 0.0493 53.40 

Kaiser (β = 1.332) 51 0.0485 25.99 

Proposed Semi-ellipse 59 0.0480 27.15 

Results of Example 2 – Bandpass filter 

Triangular (Bartlett) 203 0.0302 26.29 

Von Hann  207 0.0304 43.94 

Hamming 221 0.0300 53.25 

Kaiser (β = 1.332) 81 0.0281 25.75 

Proposed Semi-ellipse 93 0.0314 27.03 

In the two filter application examples illustrated in this paper, the fixed windows Triangular 

(Bartlett), Hann, Hamming, proposed window and the adjustable Kaiser window satisfy the requirements for 

the two filter specifications presented. Table 4 summarizes the numerical results of the lowpass and bandpass 

filters of Example 1 and 2, respectively. The filters designed for the lowpass and bandpass filters using the 

windows are shown in Figures 16 and 17, respectively. As observered in Figure 16(a) and 17(a), the 

transition widths of all the filters implemented with the different windows closely approximates the specified 

transition widths in both examples as recorded in Table 4.  

In both examples presented in this paper, it is observed from Table 4 that the Hamming and Von 

Hann windows produced the best minimum stopband attenuation of 53 dB and 44 dB, respectively, which is 

far more than the minimum stopband attenuation (25 dB) of the prescribed filter. The choice of the Hamming 

and Hann windows with minimum stopband attenuation far greater than the prescribed filter, as expected, 

produced a trade-off in the transition width which can only be compensated with increase in the number of 
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coefficients (filter length). This in turn increases the filter complexity which is not desired in FIR filter 

design. As observed in Table 4, the number of coefficients required to implement the filters using Hamming 

and Hann windows in both Examples (137 and 129, respectively, in the lowpass-filter example, and 221 and 

207, respectively, in the bandpass-filter example) are more than twice the number of coefficients used to 

implement the same filters for the Kaiser window and the proposed window. Besides, the filters implemented 

with both windows produced minimal ripples in the passband and stopband compared to the other filters 

implemented with the other windows in this study. 

In the other hand, the Bartlett window (As = 26 dB) is just right for the stopband attenuation 

presented (25 dB), but the filter lengths required to satisfy the filters (127 in Example 1, and 203 in Example 

2) in both Examples are more than twice that are needed in the case of Kaiser and the proposed window like

in the case of the Hamming and Von Hann windows. 

The adjustable Kaiser window (As ≈ 26 dB), which can be tuned with its independent parameter β to 

satisfy the prescribed filters in both Examples, implements the filters with the least filter lengths (51 for the 

lowpass filter, and 81 for the bandpass filter).  

The proposed window (As = 27 dB) implements the filters in both cases with minimal filter lengths 

(59 and 93 for the lowpass and bandpass filters, respectively) than the other fixed windows which implies 

reduction in filter complexity. Although the Kaiser window produced a little fewer coefficients filters than 

the proposed window compared to the Hann, Hamming and Bartlett windows used in the Examples, the 

proposed window produced smaller ripples along the stopband and passband than the Kaiser window (see 

part (b) and (c) of Figures 16 and 17).  

4. CONCLUSION

In this paper, a new fixed elliptical window which is derived from the equation of an ellipse is 

proposed. Its main-lobe width is about  5π
N⁄  rad/sample and its ripple ratio is about -17.5 dB which remains

relatively independent of the filter length. In filter design, its minimum stopband attenuation also remains 

relatively independent of the filter length at approximately 27 dB while the transition width is about 2.8π
N⁄  

rad/sample. In the investigation of the proposed window in filter design, the performance was proven to be 

better than the Bartlett window in terms of stopband attenuation and filter length where it can be used to 

design better filters using less than half the Bartlett’s filter length for a fixed transition width. The proposed 

window produced smaller amplitude ripples along the passband and stopband than the Kaiser while the 

Kaiser used fewer coefficients for a fixed transition width. Besides, the simplicity in the proposed window’s 

coefficients formulation and design algorithm may make it preferable to the Kaiser window. 

In this paper, we introduced a new fixed window - the Semi-ellipse window. We studied its spectral 

characteristic and its filter applications illustrated with some examples confirmed that its performance can be 

compared with other standard fixed windows. However, window function is selected based on the one that 

best satisfies the filter specification presented. The combination of the proposed window with other windows, 

like in the case of Bartlett-Hann window, will in no doubt produce filters with better filtering characteristics. 

This set a direction for further research.  
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