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Abstract 
Electrical power quality (EPQ) in distribution systems is a critical issue for commercial, industrial 

and residential applications. The new concept of advanced power electronic based Custom Power Devices 
(CPDs) mainly distributed static synchronous compensator (D-STATCOM), dynamic voltage restorer 
(DVR) and unified power quality conditioner (UPQC) have been developed due to lacking the performance 
of traditional compensating devices to minimize power quality disturbances. This paper presents a 
comprehensive review on D-STATCOM, DVR and UPQC to solve the electrical power quality problems of 
the distribution networks. This is intended to present a broad overview of the various possible 
DSTATCOM, DVR and UPQC configurations for single-phase (two wire) and three-phase (three-wire and 
four-wire) networks and control strategies for the compensation of various power quality disturbances. 
Apart from this, comprehensive explanation, comparison, and discussion on D-STATCOM, DVR, and 
UPQC are presented. This paper is aimed to explore a broad prospective on the status of D-STATCOMs, 
DVRs, and UPQCs to researchers, engineers and the community dealing with the power quality 
enhancement. A classified list of some latest research publications on the topic is also appended for a 
quick reference. 

  
Keywords: power quality, voltage sag, voltage swell, distributed static compensator, voltage source    
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1. Introduction 

Nowadays electrical power quality is a very important issue in the electrical distribution 
system. It has been always a challenging task to maintain the power quality within acceptable 
levels [1-11]. In general, power quality disturbances that affect the voltage and current wave-
forms quality are imbalances, harmonics, flickers, voltage sags and swells [12-17]. PQ problems 
can lead to poor power quality which may occur because of increased losses, undesirable and 
abnormal nature of equipment, problem of interference etc [18-21]. 

To develop dynamic, flexible and adjustable solution to the electrical power quality 
disturbances, passive L-C filters [22-24], active power filters (APFs) [25-29], hybrid filters [30] 
and custom power devices (CPDs) [31-36] are used from time to time.  

This paper focuses on a DSTATCOM, DVR and UPQC type compensating custom 
power devices. The CPDs mainly DSTATCOMs, DVRs and UPQCs are the APF family 
members connected in shunt, series and a combination of shunt and series to achieve superior 
control over different power quality disturbances simultaneously.  

This paper is intended to present a comprehensive survey of previous research on 
DSTATCOM, DVR and UPQC type custom power devices for power quality enhancement in 
power distribution network. Over 200 publications [11-218] are seriously reviewed to classify 
them in different categories.  

The D-STATOM, DVR and UPQC type custom power device are categorized based on 
the (1) type of converter topology (voltage source converter and current source converter); (2) 
supply system (single-phase two-wire, three-phase three-wire and four-wire).  

Therefore, this paper is presented as follows: The state of the art of D-STATCOM, DVR 
and UPQC are presented in section 2, section 3 illustrates the classification of custom power 
devices (D-STATCOM, DVR and UPQC). Section 4 describes the control methodologies and 
approaches including the derivation of reference signal and current/voltage control techniques. 
Section 5, latest trends and technical consideration on CPDs are discussed; finally, section 6 
discusses the conclusion part of the paper. 
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2. DSTATCOM, DVR and UPQC: State Of The Art 
Electrical power quality (EPQ) problems are an issue that is becoming increasingly 

important to all levels of usage such as industrial, commercial and utilities. The power quality 
issues include short-term events such as voltage sags, swells or even transients with duration of 
less than a few seconds. Power system harmonic and flicker issues also fall into the category of 
power quality (PQ), even though these issues tend to occur much longer intervals than sags 
and transients [11]. Table 1 shows the various power quality problems and their causes. The 
authors [12-16] discussed voltage sag and its characteristics in detail. M.R.Alam et al. [17] 
proposed an algorithm for detection; classification and characterization of voltage sag and swell 
in electricity networks, using three-phase voltage ellipse parameters. The proposed method 
employs the instantaneous magnitude of three-phase voltage signals in three axes, which are 
separated from each other by 120º.  

From time to time different efforts have been carried out to provide an active and 
flexible solution to mitigate power quality disturbances. Before the advent of active filters, 
passive filters based on inductors and capacitors [22-24] were used and still used in many 
power transmission and distribution applications, but it has various disadvantages such as 
instability, fixed compensation, resonance with supply as well as loads and utility.  

To overcome these drawbacks active power filters (APFs) have been used [25-29]. 
However, they are costly options for power quality enhancement because their ratings are 
sometimes very close to full load (up to 80%) in typical applications.  

To face the power quality problems and increase the reliability, an advanced power 
electronic based devices have launched over last decades. These power electronic based 
devices are called Custom power devices (CPDs) [31-36]. N.G.Hingorani [7] introduced the 
concept of custom power. Custom power solution can be network reconfiguration type or 
compensation type as shown in Figure1. In this paper, a comprehensive review of 
compensating type is presented [9]. The compensating custom power devices are used for 
active filtering, load balancing, voltage regulating (sag/swell), harmonic elimination and power 
factor correction. These devices are either connected in shunt or in series or a combination of 
both and also called D-STATCOM, DVR and UPQC.  

D-STATCOM: D-STATCOM is the most important solid state shunt connected CPD. It 
has been widely used to precisely regulate system voltage, improve voltage profile, reduce 
voltage harmonics, reduce transient voltage disturbances and load compensation. D-STATCOM 
controller can be constructed based on both voltage source inverter topology and current 
source inverter (CSI) topology [11], [20], [37], [38] as shown in Figure 1. In practice, CSI 
topology is not used for D-STATCOM because higher losses on the DC reactor of CSI 
compared to the DC capacitor of VSI [39]. The authors [40], [41] proposed reverse blocking 
insulated gate bipolar transistor has eradicated the need for the series diode and making CSI a 
good alternative. The principal of generating instantaneous active and reactive powers by D-
STATCOM is shown in Figure 2. In Figure 2, voltages and currents are represented with 
instantaneous space vectors obtained using a power invariant Clarks transformation. Figure 3 
are presented in three cases: the general one, for reactive power equal to zero and for active 
power equal to zero. Form the Figure 3 it is clear that by generating an appropriate AC voltage it 
is possible to generate arbitrary instantaneous vectors of both active and reactive power. [11] 
The authors in [37], [42-44], [45-47] discuss the various aspects such as modeling, design and 
simulation for reactive power compensation, unbalanced and harmonic compensation and 
voltage regulation (sag/swell). In [9], [48], a D-STATCOM model is used for feasibility and 
validating the design. K.R. Padiyar [10], H. Fugita et al. [49], Arya et al. [50] discussed D-
STATCOM for voltage regulation in detail. 
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Figure 1. Schematic Diagram of VSI, CSI and ZSI based DSTATCOM 
 
 

 

Figure 2. Operating Principle of DSTATCOM (a) General Case (b) Reactive Power Zero and (c) 
Active Power Zero 

 
 
DVR: A dynamic voltage restorer (DVR) is a power electronic (PE) converter-based 

CPD, which can protect sensitive loads from all supply-side disturbances other than outages. It 
is connected in series with a distribution feeder as shown in Figure. 3 and also is capable of 
generating or absorbing real and reactive power at its AC terminals. The basic principle of a 
DVR is simple: by inserting a voltage of the required magnitude and frequency, the DVR can 
restore the load-side voltage up to the desired amplitude and waveform even when the source 
voltage is either unbalanced or distorted [11]. A typical location in the distribution system and 
the operating of the DVR is shown in Figure.3. The different aspects such as modeling, design 
and simulation for harmonic elimination, voltage flicker suspension [9], voltage sag and swell 
mitigation are reported in [51-54]. A.K.Jindal et al. [55] highlighted dynamic voltage restorer for 
voltage regulation function. 
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Figure 3. Basic Structure of DVR 

UPQC: For enhancing power quality in the system and protecting sensitive loads a 
universal solution can use by an integration of the series-parallel active power filters called 
UPQC as depicted in Figure 4.UPQC is a flexible device that can compensate almost all types 
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of PQ disturbances related to voltage and current simultaneously. Shunt active power filter is 
the most promising to tackle the current-related problems such as current harmonics, current 
unbalance, reactive current whereas, the series APF is the most suitable to overcome the 
voltage-related problems such as voltage harmonics, voltage unbalance, voltage flicker, voltage 
sag and swell.  

In operating principal, UPQC is a union of shunt and series APFs with two VSI-based 
common self-supporting DC bus. The shunt APF is controlled in a current controlled mode such 
that it produces a current that is equal to the set of the reference current as produced by the 
control algorithm of UPQC. 
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Figure 4. Schematic Diagram of UPQC 
 
 

     L
*i t =i t -i tssh

                         (1) 

 

where i ( t)sh  ,
*

i ( t)s  , i (wt)L  represents the shunt APF current, reference source current and 

load current. Shunt active power filter should inject a current to eliminate the harmonics 
produced by a nonlinear load. 

The series active power filter is controlled in voltage control mode such that it generates 
a voltage and injects in series with line to achieve a sinusoidal and distortion free voltage at the 
load terminal. In the case of voltage sag (VS) condition, series APF should inject a voltage to 
maintain the load voltage. 

 

     L
*V t = V t -V tsc s                        (2)  

 

where V ( t)sc  ,
*

V ( t)L  , V ( t)s   represents the series APF voltage, reference load voltage and 

source voltage. The system modeling aspects of the UPQC are reported in [56-63]. In [64], a 
mathematical modeling and design of a versatile UPQC are discussed clearly. A.Ghosh et al. 
[65] discussed the application of UPQC for voltage regulation in critical loads. 

 
 

Table 1. Some Effects of Power Quality Problems for the Different Voltage Events 
Broad 

Classification 
Specific 

Classification 
Typical Characteristics Disturbance Consequence 

  Duration Magnitude   

1. Transients  
1.1 Impulsive 

 
50 ns- 1ms             < 6 kV 
  

Insulation failure. 
Reduced Lifetime of 

transformers and motors 

 
1.2 Oscillatory 

 
5 µs-0.3 ms             0 – 4 pu 

 
2.Short  
duration 
variations 

 
2.1. Interruption 
 
2.2. Sag 
 
 

 
10 ms – 3 min            < 1% 

10 ms – 1 min          1 - 90% 

 

 
 

 
Disconnection. 

 
Disconnection of 

sensitive loads. Fail 
functions. 
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2.3. Swell 10 ms – 1 min    110 - 180% 

 
 

 

 
Disconnection of 

equipment may harm 
equipment with 

inadequate design 
margins 

 
3. Long 
duration 
variations 

 
 
3.1 Under Voltage 
 
 
3.2 Over Voltage 

 
 
> 1 min                 80-90% 
 
 
> 1 min               160-120% 

 

 

 

Disconnection of 
sensitive loads. Fail 

functions. 
Disconnection of 

equipment may harm 
equipment with 

inadequate design 
margins 

 
4. Curve 
distortion 

 
4.1 Harmonics 

 
Stationary              0- 20% 

 

 

 
Extended heating. Fail 
function of electronic 

equipment 

 
5. Voltage 
Unbalance 

 
 

___ 

 
 

Stationary            0.5 - 2% 

 

 

Voltage quality for 
overloaded phase. Over 
load and noise from 3-

phase equipment. 

 
6.Voltage 
Fluctuation 

 
___ 

 
Intermittent          0.2 - 7% 

 

Ageing of insulation. Fail 
function. flicker 

 
 
3. Classification of Custom Power Devices (D-STATCOM, DVR AND UPQC) 

In this section, classification of compensating type custom power devices is given. As 
shown in Figure.5, a pictorial view for the classification of custom power devices. The custom 
power devices are mainly classified in two main categories: (1) based on converter topology and 
(2) based on supply system. 

 
 

 

Figure 5. Classifications of CPDs 
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3.1. Based on Converter Topology 
This D-STATCOM, DVR and UPQC type custom power devices can be constructed 

based on voltage source inverter (VSI) topology, current source inverter (CSI) topology [11] and 
Z-source inverter topologies. 

 Figure 6 (a-c) depicts single-line representation of a CSI based D-STATCOM, DVR and 
UPQC system configuration [18], [20], [21]. The D-STATCOM, DVR and UPQC may be 
constructed using a pulse width modulated (PWM) current source inverter (CSI) [27], [28], [37-
41], [66-70] which uses an inductor LDC as a common energy storage to form the DC link. In 
practice, D-STATCOM, DVR and UPQC based on current source inverter are not used due to 
high cost, higher losses, [20], [39], and also it cannot find its application in multilevel 
configurations. The second topology is based on VSI, which is the most common and popular 
inverter topology can be used in D-STATCOM, DVR and UPQC system configurations [9], [20-
26], [29- 36], [42-65], [70-218]. 
 

 

(a) 

 

(b) 
 
 

 
 

(c) 
 

Figure 6. CSI-Based (a) DSTATCOM (b) DVR and (c) UPQC 
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Figure 7(a-c) shows the configurations of D-STATCOM, DVR and UPQC based on 
voltage source inverter (VSI) and Figure 8(a-c) shows the Z-source inverter based 
configurations. 

The VSI-based topology has the advantages over CSI-based topology include cheaper, 
flexible overall control, no need of blocking diodes and capable of multilevel operation [18]. 
A.Ghosh et al. [9] explained a CSI is usually more reliable and fault tolerant than a VSC 
because the large series inductor limits the rate of rise of current in the event of a fault. 
However, CSIs have higher losses because of the need to store energy by circulating current in 
the inductors which are lossier than capacitive energy storage. Since capacitors are more 
efficient, smaller and less expensive than inductors, VSIs are most commonly used in D-
STATCOM, DVR and UPQC system configurations. 

 

 

(a) 
 
 

 

(b) 
 
 

 

(c) 
 

Figure 7. VSI-Based (a) DSTATCOM (b) DVR and (c) UPQC 
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Figure 8. ZSI-Based (a) DVR (b) DSTATCOM and (c) UPQC 
 
 

3.2. Based On Supply System 
To mitigate the power quality disturbances in power distribution system different D-

STATCOM, DVR and UPQC configurations are introduced and they can be divided based on 
the type of the supply system topology. In general, AC supplies or loads on the power system 
can be mainly classified into single-phase two-wire (1p2w) and three-phase three-wire (3p3w) 
and four-wire (3p4w) source. The supply voltage related power quality problems have similar 
characteristics for single-phase and three-phase systems. In addition, three-phase systems 
need voltage unbalance compensation capability to provide enhanced power quality (PQ). The 
load current harmonics and reactive current are the major limitations for a single-phase system. 
For the case of three-phase three-wire (3p3w), one must need to consider current unbalance 
apart from the reactive and harmonics current.  
 
3.2.1. Single-phase two wire (1p2w) compensating devices 

Single-phase two-wire (1p2w) systems are used in all three modes as shunt (D-
STATCOM) [71-74], series DVR [75-83] and a union of both as UPQC [84-101].  
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Figure 9 (a-c) shows the most popular DSTATCOM, DVR and UPQC configurations 
consist of two H-bridge inverters [72-74], [83], [84], [86- 97], [99], [101] in single-phase two-wire 
(1p2w) system to compensate the power quality (PQ) issues by injecting current in case of D-
STATCOM, voltage in case of DVR and both in the case of UPQC of the electrical power 
distribution system. 

 Figure 10(a-c) shows the most commonly used D-STATCOM, DVR and UPQC 
configuration to consists of 3-leg inverters [102] in single-phase two-wire (1p2w) system to 
mitigate the power quality (PQ) disturbances by injecting current, voltage and both current and 
voltage.  

Figure 11(a-c) depicts the most popularly use D-STATCOM, DVR and UPQC system 
configuration which consists of half-bridge inverters [85], [98], [100], [103] in single-phase two-
wire (1p2w) system to compensate the power quality (PQ) problems by injecting current in case 
of D-STATCOM, voltage in case of DVR and both in the case of UPQC of the electrical power 
distribution system. 

 
 

 
(a) 

 
 

 
 

(b) 

 
 

(c)  
 

Figure 9. Two H-bridge (a) DVR (b) DSTATCOM and (c) UPQC 
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(b) 

 

(c) 
 

Figure 10. 3-Leg (a) DVR (b) D-STATCOM and (c) UPQC 
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Figure 11. Half-Bridge (a) DSTATCOM (b) DVR and (c) UPQC 
 
 

3.2.2. Three-phase three wire (3P3W) Compensating devices 
Three-phase three-wire (3p3w) nonlinear loads such as adjustable speed drives 

(ADSs), frequency converter, current regulator, arc welding drives/machines and arc furnace 
causes several power quality (PQ) problems such as voltage sag, swell, harmonics etc. . Most 
widely preferred and suitable three-phase three wire (3p3w) voltage source converter (VSC)-
based D-STATCOM , DVR and UPQC network configurations are shown in Figure 12 (a-c) and 
are widely reported in literature [56-60], [70],[104-118], [119-130], [131-179]. 
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(a) 

 

 
(b) 

 

(c) 
 

Figure 12. Three-phase Three-Wire (a) DVR (b) DSTATCOM and (c) UPQC 
 
 
3.2.3. Three-phase four-wire (3p4w) compensating devices 

A large number of single-phase (1-ϕ) loads may be supplied from three-phase (3-ϕ) 
mains with a neutral conductor. They cause excessive neutral current, harmonics and reactive 
power burden. To reduce the neutral current in a three-phase four-wire (3p4w) system [180-
183], various D-STATCOM, DVR and UPQC configurations have been applied, mainly two split 
capacitor (2C), four-leg (4L ) and three H-bridge (3HB) configurations. The first one uses three 
H-bridge voltage source converters (VSCs) and these H-bridges are connected through 
isolation transformers. The split capacitor topology and four-leg topologies are looking similar. 
The fundamental difference between these two topologies is the number of power 
semiconductor devices and the connection of the neutral wire. 
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3.2.3.1. Three H-bridge topology 
Figure 13 a-c shows the three-phase four-wire (3p4w) D-STATCOM, DVR and UPQC 

system configuration based on three H-bridge (3HB) topologies in three-phase four wire 
distribution system and are reported in [65],[184-193]. Three H-bridge (3HB) topology consists 
of three single-phase (1-ϕ) H-bridge (full bridge) voltage source inverter (VSI) tied with a 
common self supporting DC bus [194]. The main advantage of this topology is the control can 
be done either as a three-phase (3-ϕ) unit or three separate single-phase (1-ϕ) units. The 
maximum voltage that appears across each H-bridge is the single phase voltage and not the 
three-phase voltage as in the case of capacitor midpoint or four-leg topology. 

 
 

 
(a) 

 
 

(b) 

 
 

(c) 
 

Figure 13. Three-Phase Four-Wire Three H-bridge (a) DVR (b) DSTATCOM and (c) UPQC 
 
 

3.2.3.2. Three-phase four-wire split capacitor (2C) topology 
The split capacitor topology uses the standard three-phase traditional inverter where the 

DC capacitor is split and the neutral wire is directly connected to the electrical mid-point of the 
capacitors through an inductance. The capacitors midpoint allows load neutral current to flow 
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through one of the DC capacitors Cd-1, Cd-2 and return to the AC neutral wire. Figure 14 (a-c) 
shows the 3p4w D-STATCOM, DVR and UPQC system configuration based on split capacitor 
topology [195-208]. In this topology, the voltage unbalance between the capacitors is one of the 
series problems [18], [20], [209]. This is due to the direct flow of neutral current through one of 
the capacitors (Cd-1, Cd-2), causes voltage variations among them. There are two possible 
ways to balance the capacitors: (1) by adjusting the switching of the inverter [209], but this 
approach requires additional control circuitry and (2) by using additional power electronic 
switching circuitry, but this approach increases the cost. 

 

 
(a) 

 
 

(b) 

 
 

(c) 
 

Figure 14. Three-phase Four-Wire Split Capacitor (a) DVR (b) DSTATCOM and (c) UPQC 

 
 

3.2.3.3. Three-phase four-wire (3p4w) four-leg (4L) topology 
Figure 15 a-c shows the 3p4w D-STATCOM, DVR and UPQC system configuration 

based on three phase four-wire (3p4w) four-leg (4-L) topology. For elimination of high neutral 
currents the 4-leg topology used in 3P4W systems [27], [210-218].Having a higher number of 
switching devices this topology outweighed the split capacitor topology by number for factors 
[27], [209]: (a) Better controllability: In 4- leg topology only one DC-bus voltage needs to be 
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regulated. This importantly simplifies the control circuitry with better controllability [27]. (b) Lower 
DC voltage and current requirement: This topology requires a lower DC-bus voltage and current 
with it. (c) Higher order harmonics in DC side current: In this topology, the DC side current has 
only higher order harmonics and will not contribute to significant ripple on the DC-bus voltage. 

 

 

(a) 

 

(b) 

 
(c) 

 
Figure 15. Three-Phase Four-Wire Four-Leg (4L) (a) DVR (b) DSTATCOM and (c) UPQC 

 
 

4. Control Techniques for Custom Power Devices (D-STATCOM, DVR and UPQC) 
The election of strategy control is essential to get the desired compensation aim. 

Control technique is the heart of the D-STATCOM, DVR and UPQC devices. It plays the most 
important role in overall performance in any power electronics based system. The control of 
custom power devices (DSTATCOM, DVR and UPQC) is realized in three stages. In the first 
stage, the necessary current and voltage signals are sensed to gather accurate system 
information. In the second stage compensating signals in terms of current and voltage levels are 
produced based on different control methods and DSTATCOM, DVR and UPQC configurations. 
In the third stage of control, the gating signals for the solid state devices of the compensating 
devices are derived either in the open loop or closed loop. The open and closed loop schemes 
are used only for lower order systems. For second and higher order systems sliding mode 
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control, linear quadratic regulator (LQR), pole-shift control, deadbeat control, and Kalman filter 
are used. Recently, for improving the dynamic and steady state performance of the devices, the 
complex algorithms like fuzzy logic [46], [82], [108], [115], [125], [161], [163], neural networks 
and genetic are implemented with the help of microprocessor and microcontroller 
 
4.1. Derivation of Reference Signal 

Generation of reference signals either in terms of voltage, current and both are 
important part of custom power devices (D-STATCOM, DVR and UPQC) for their control, 
transient as well as steady-state performance. The performance of the D-STATCOM, DVR and 
UPQC are strictly depends on its reference signal production technique. In general, control 
strategies to generate compensation or reference signals are based on frequency domain and 
time domain correction techniques [9] as shown in figure 16. In addition, to these control 
methods for power electronic based compensating type custom power devices (D-STATCOM, 
DVR and UPQC) can also be categorized on the basis of linear and nonlinear, classical and 
modern, hard and soft computing, online and off-line, but for the sake of brevity, they are not 
discussed here. 
 
 

 

Figure 16. Reference Signal Derivation 
 
 

4.1.1. Compensation in Frequency-Domain Technique 
The most commonly used model in the frequency-domain (FD) [9] is a balanced three-

phase (3ϕ) system at fundamental and harmonic frequency and single-phase (1-ϕ) system. 
They are mainly divided into Fourier transform, Wavelet transform, infinite impulse response 
and Kalman filter. 
 
 
4.1.1.1. Fourier Transform (FT) 

One of old techniques used in analysis of non-sinusoidal signals is Fourier transform. 
Fourier analysis has been used for power quality assessment for a long period. It permits 
mapping of signals from time domain to frequency domain and vice-versa by decomposing the 
signals into several frequency components. Application of Discrete FT and fast Fourier 
transform (FFT) are very useful to overcome some of the disadvantages of the earlier one [18], 
[20], [21], [27], [28]. In custom power devices (D-STATCOM, DVR, and UPQC) FFT is used to 
extract the harmonic components from the harmonic polluted signals. Due to excessive 
computation in online application, FFT has high response time. 
 
4.1.1.2. Wavelet Transform (WT) 

Fourier transform fails in the analysis of transients owing to the non-sinusoidal property, 
Wavelet transforms (WT) helps us in such cases. Wavelet transform analysis [18], [20], [21] has 
been suggested as a new tool for measurement and monitoring power quality problems both in 
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absence and presence of transients [5], [9], [11], [18], [20],[21],[53],[133],[218]. Fourier 
transform or Wavelet transform is a cumbersome computation and results in a large response 
time. Hence, this makes it difficult for real –time application with dynamically varying loads [21]. 
 
4.1.1.3. Kalman Filtering method 

For detection and analysis of voltage events (voltage sag and swell) in distribution 
system Kalman filter have been used. The Kalman filtering method gives the information on 
both magnitude and phase angle of the supply voltage during the voltage sag and swell events 
and the point-on-wave where the voltage events begin unlike the RMS method [18], [20], [81], 
[98], [121], [145], [212]. 
 
4.1.2. Compensation in Time-Domain (TD) Technique 

Control methods for D-STATCOM, DVR and UPQC in the time-domain are based on 
instantaneous derivation of compensating commands in the form of either voltage, current or 
both voltage and current signals. There are a large number of control methods in time-domain. 
Few are briefly discussed here. 
 
4.1.2.1. Instantaneous Reactive Power Theory (p-q Theory) 

Akagi introduced the first version of the instantaneous reactive power theory in English. 
It is also known as p-q theory for three-phase (3-ϕ) circuits. However, it is only become known 
worldwide after their second publication (1984). This theory is based on a coordinate’s 
transformation from a-b-c (or 1-2-3) axes to new α-β-0 axes. The aim of p-q control strategy is 
to find an effective strategy to compensate nonlinear loads using active power filters. Initially it 
was applied to balanced three-phase three-wire systems (3p3w) and then it was extended to 
unbalanced four-wire systems [18], [20], [21], [56], [61], [71], [92], [110], [116], [131], [133], 
[134], [136], [144], [146], [159], [161], [165], [167], [173], [180-183], [187], [188], [190], [202], 
[203], [213], [216]. 
 
4.1.2.2. Synchronous detection theory (SDT) 

The synchronous detection algorithm is very similar to the instantaneous reactive power 
algorithm and relies in the fact that three-phase currents are balanced. The mean power is 
calculated and equally divided between the three phases. In synchronization process, the 
signals are synchronized with respect to the phase voltage for each phase. Implementation of 
this technique is very easy, but it suffers voltage harmonics [20], [27], [28], [133], [202]. 
 
4.1.2.3. Cross-vector theory (CVT) 

In cross-vector theory (CVT) Clarks (α-β-0) transformation does not necessarily 
required because, it directly calculates the instantaneous powers in the a-b-c coordinates. 
Cross-vector theory (CVT) defines one instantaneous real power and three instantaneous 
imaginary powers by scalar/vector product of the voltage and the current space vectors in a 
three-phase four wire system. The sum of the instantaneous real and imaginary powers is equal 
to the instantaneous apparent power and this power is used to maintain the power conversion 
[20], [181], [182]. 

 
4.1.2.4. Global theory (GT) 

This theory does not need any kind of reference frame transformation because the 
reference compensation currents are directly determined in the a-b-c reference frame. 
Therefore, this theory gives less complexity in realizing the control circuit of the D-STATCOM, 
DVR and UPQC. Using this theory D-STATCOM, DVR and UPQC are able to compensate 
reactive power, suppress harmonics and neutral currents of the distorted and unbalanced load 
without supplying and consuming active power [20], [182], [183]. 
 
4.1.2.5. Vectorial theory (VT) 

Vectorial theory uses the same power variables as the original instantaneous imaginary 
power in phase coordinates. This method also does not need any kind of coordinate 
transformation. The current vector is divided into three components. The first one is collinear 
with respect the modified voltage vector and it transports the instantaneous active power. The 
second one is collinear with respect to the zero sequence voltage vector, and it transport the 
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instantaneous zero-sequence power and third one is normal with respect to the modified and 
zero-sequence voltage vectors and it transports the instantaneous reactive power [20], [180], 
[182]. 
 
4.1.2.6. p-q-r theory 

The instantaneous reactive power theory (IRPT) bear disadvantages of not 
compensating the load under distorted and unbalanced point of common coupling (PCC) 
voltages. To overcome these limitations the original p-q theory has been modified and generally 
known as p-q-r theory. The D-STATCOM, DVR and UPQC controllers based on this modified p-
q-r theory can be found in [18], [20], [21],[113],[119], [180- 182],[188],[192], [205] 
 
4.1.2.7 Synchronous Reference Frame (SRF) Theory 

The synchronous reference frame (SRF) theory is developed in time-domain based 
reference current/voltage generation technique. The SRFT is performing the operation in 
steady-state or transient state as well as for generic voltage and current and capable of 
controlling the active power filters in real time system [15] , [18], [20], [21], [27], [28], [51], [54], 
[57], [58], [76], [77], [82], [104], [106], [111], [115], [120], [121], [125], [127], [128], [130],[131], 
[133], [134], [137], [141], [142], [150], [153], [155], [160], [167], [177], [178], [179], [180], [182], 
[187], [189], [190], [195], [204], [203], [207], [213],[214], [217], [218], [219]. One of the important 
characteristics of this theory is the simplicity of calculation because it involves only algebraic 
calculation. The undesired AC components are eliminated using low pass filters. The controller 
mainly deals with DC quantities so the system is stable, but causes a time-delay in filtering the 
DC quantities. 
 
4.1.2.8. Instantaneous symmetrical component (ISC) theory 

A symmetrical component theory is generally a choice in the D-STATCOM, DVR, and 
UPQC applications to extract the fundamental positive-sequence component when the systems 
supply voltages are unbalanced and distorted. The ISC theory based control algorithm is 
capable of providing perfect compensation of any kind of unbalance and harmonics in the load 
[18], [20]. [21], [65], [105], [109], [126], [136], [137], [182], [184], [188], [195-199], [201], [213]. 
 
4.1.2.9 Neural Network (NN) based theory 

Neural network (NN) technique can handle efficiently the multi-input multi-out control 
system. Thus, the artificial neural network technique can be utilized to develop the controller for 
the D-STATCOM, DVR and UPQC to compensate different voltage and current related power 
quality problems [53] [68] [108], [115], [138], [150], [220]. 
 
4.1.2.10. Back Propagation (BP) based theory 

Back propagation control algorithm is used to identification of user faces, industrial 
processes, data analysis, mapping data, control of power quality improvement custom power 
devices (D-STATCOM, DVR and UPQC). Bhim Singh et al. [118] proposed a BP algorithm is 
implemented in three-phase shunt connected power quality improvement device known as D-
STATCOM. Due to more numbers of learning steps, the training process is slow, but after the 
training of samples, BP technique generates very fast trained output response [20], [118]. 
4.1.2.11. Learning vector quantization (LVQ) based theory 

Learning vector quantization (LVQ) technique [59], [181] is used to determine the 
structure of classifier by minimizing the bounds of the trained error and generalization error. 
 
4.1.3. Other algorithms 

To determine the current and voltage compensating signals there are numerous 
optimizations and estimated techniques such as adaptive linear neuron (ADALINE), LMS-based 
ADALINE, differential evolution, Fortescue decomposition with recursive DFT, and peak 
detection can be used. 

 
4.2. Current/Voltage Control Techniques 

Generation of suitable gating signal is the most important part of D-STATCOM’s, DVR’s 
and UPQC’s control technique and has a high influence on the compensation performance [39]. 
Figure 17 shows the classification of current/voltage control techniques. The current/voltage 
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control techniques often categorized as feed-forward (open-loop), feed-back (closed-loop) and 
second and higher order systems. 

 
 

 
 

Figure 17. Classifications of Current/Voltage Control Techniques 
 
 
4.2.1. Feed forward (Open-loop) methods 

 The feed forward method is divided into sinusoidal pulse width modulation 
(SPWM) and space vector pulse width modulation (SV-PWM) methods. 
 
4.2.1.1. Sinusoidal pulse width modulation (SPWM) method 

 The most popular form of pulse width modulation (PWM) synthesis is the 
sinusoidal pulse width modulation (S-PWM) [20], [47], [77], [80-82], [107], [111], [112], [117], 
[125], [126], [130], [203], [205], [207]. In an S-PWM scheme the modulating signal is sinusoidal 
and carrier signal is a triangular wave. The magnitude of these two signals is compared to 
generate firing pulses which in turn is used to control the inverter. To increase the performance 
of multilevel inverter based D-STATCOM, DVR and UPQC the multicarrier S-PWM control 
methods are generally used. The multicarrier S-PWM can be categorized according to vertical 
and horizontal carrier signals typically being triangular wave forms as shown in figure 17. The 
vertical multicarrier S-PWM techniques can be sub-categorized as (a) Phase- Disposition pulse 
width modulation (PD-PWM): Phase-disposition pulse width modulation (PD-PWM) technique 
employs a (m-1) number of carriers which are all in phase accordingly. All eight carrier waves 
are in phase with each other in nine-level converter [20], [110]. (b) Phase opposition Disposition 
pulse width modulation (POD-PWM): Phase opposition disposition pulse width modulation 
(POD-PWM) technique employs an (m-1) number of carriers which are all in-phase above and 
below the zero reference. All eight carrier waves are phase-shifted by 180º between the ones 
above and below zero reference in nine-level converter [20], [110]. (c) Alternative Phase 
Opposite Disposition pulse width modulation (APOD-PWM): This technique requires each of (m-
1) carrier waveform for an m-level phase waveform to be phase displaced from each other by 
180º’ alternatively [20], [110]. The horizontal multi-carrier SPWM is identified as phase-shifted 
(PS) control techniques. This technique employs a (m-1) number of carriers, phase-shifted by 
90º accordingly. All eight carrier waves are phase-shifted by 90º in nine-level converter. 
 
4.2.1.2. Space vector pulse width modulation (SV-PWM) method 

Space vector pulse width modulation (SV-PWM) is one of the popular PWM techniques 
used in multilevel inverters and best among all the PWM methods. In this method eight different 
switching combinations are possible for a three-phase three-leg (3-L) inverter based D-
STATCOM, DVR and UPQC . Six active vectors (V1-V6) form the axes of a hexagon among 
these eight switching vectors and feed electric power to the load. Two-adjacent zero vectors 
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(V0-V7) are located at the origin and do not feed any power to the load [20], [27], [43], [83], [84], 
[70], [114], [127], [131], [202], [205], [214]. 
 
4.2.2. Feed-back (Closed-loop) methods 

Most custom power devices like D-STATCOM, DVR and UPQC are operated in closed 
loop fashion in which they either track a specific current reference or a voltage reference or 
both. The hysteresis controller or bang-bang controller is the most common form of tracking 
control for lower order closed loop systems. 

 
4.2.2.1 Hysteresis controller 

The method of controlling a voltage source inverter (SVI) so that an output 
current/voltage is generated which follows a reference current/voltage waveform, known as 
hysteresis current/voltage control. In hysteresis current control, limit bands are set on either side 
of a signal representing the desired output voltage waveform. The sign reference signal wave of 
desired magnitude and frequency compared with the actual signal. When the signal cross the 
prescribed hysteresis upper limit, upper switch is turned OFF and the lower switch is turned ON. 
Similarly when the signal cross the prescribed lower limit, the lower switch is turned OFF and 
the upper switch is turned ON. Hysteresis control technique is widely used in  the D-STATCOM, 
DVR and UPQC applications because of its ease of implementation, fast dynamic response and 
inherent peak current-limiting capability [20], [28], [56], [58], [59], [65],[72], [76], [86], [94], [159] 
[161], [165], [169], [171], [175], [183], [184], [185], [186], [187], [188], [198], [200], [201], [211], 
[217]. 

 
4.2.3 Second and higher order systems 

First order systems are readily stabilized by proportional controllers, even when the gain 
approaches infinity, while many resonant systems become unstable under high proportional 
control. 

 
4.2.3.1 Sliding mode controller (SMC) 

Sliding mode controller (SMC) can be alleviated the need for accurate mathematical 
models [20], [27], [73], [94], [133]. This controller does not need accurate mathematical model, 
but requires knowledge of parameter variations to ensure stability. As the power electronic 
based custom power devices such as DSTATCOM, DVR and UPQC converters are highly 
variable structured, sliding mode control offers several advantages such as stability even for 
large supply and load variations, robustness, good dynamic response and simple 
implementation. 

 
4.2.3.2 Linear quadratic regulator (LQR) 

Linear quadratic regulator (LQR) consists of the two weighting matrices one Q and R 
whose value set by hit and trail method until satisfactory steady-state response with minimum 
settling time is achieved. Due to presence of wide gain margin (GM) (-60º to + ∞) and phase 
margin (PM) (-60º to +60º) the linear quadratic regulator control ensures the stability of closed 
system with robustness feature. Another important feature of the LQR is that it can tolerate the 
input non-linearity [20], [59], [185]. 

 
4.2.3.3 Predictive and Deadbeat controller 

Predictive and deadbeat method predicts the current error vector on the basis of the 
actual/present error and the load parameters (R, L, C) at the beginning of each modulation 
period. The voltage to be generated by pulse width modulation during the next modulation 
period is determined to minimize the forecast error [20]. 

 
4.2.3.4 Constant switching frequency predictive algorithm 

In this technique, the predictive algorithm calculates the voltage vector signals once 
every sampling period. This will force the current vector according to it’s signal. The main 
disadvantage of this algorithm is that it does not guarantee the inverter peak current limit [20]. 
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4.2.3.5 Deadbeat controllers 
When the choice of the voltage vector is made in order to null the error at the end of the 

sample period, the predictive controller is called a deadbeat controller [20], [58], [94], [133]. 
 

4.2.3.6 Pole-shift controller 
This controller produces a variable switching frequency control action and designed in 

such a way that the desired reference voltage, current and both are tracked accurately. This 
type of pole-shift control can only be used when the systems state space model is well known. 
For simplicity, a single phase distribution system is considered for all the system studies, but it 
can easily be extended to a three-phase distribution system [9], [20], [187]. 

 
 

5. Technical and Economical Consideration 
The use of D-STATCOM, DVR and UPQC type CPD’s to improve electrical power 

quality is reported since mid 1990s [34]. CPD’s mainly D-STATCOM, DVR and UPQC have 
been developed with high performance, more functionalities and low costs. To reduced rating 
and enhance performance of CPD’s efforts have been made for optimize the control, energy 
saving, reduced parts, reduced switching losses, minimum power injection, and selective 
harmonic elimination. The control techniques applied to DSTATCOM’s, DVR’s and UPQC’s will 
play most important role to alleviate/mitigate the PQ problems. So optimizing the control 
techniques and executing multifunctional control are the main research trend. The CPD’s 
provide maximum amount of real power to the load is a deciding factor in determining the 
capability of the device. The selection of D-STATCOM, DVR and UPQC structure for practical 
applications is most significant task for scientists and engineers. The main design 
considerations for proper selection of CPDs are: manufacturing cost level, current and voltage 
distortion level, dv/dt stress level, power rating and output voltage level. 

 
 

6. Conclusion 
A comprehensive review and discussion on the D-STATCOMs DVRs and UPQC’s to 

enhance the electrical power quality at utility grid has been reported in this paper. The extensive 
review and classification of topologies\configurations and control techniques of compensating 
type CPDs provide compensating solution to different PQ disturbances. With the required 
features, customers can select a particular compensating device (D-STATCOM, DVR and 
UPQC). This exhaustive review on DSTATCOM, DVR and UPQC will be useful reference guide 
to the users, manufacturers and researchers working in the field of PQ improvement using 
CPDs. 
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