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 Hyperspectral image classification is very complex and challenging process. 

However, with deep neural networks like Convolutional Neural Networks 

(CNN) with explicit dimensionality reduction, the capability of classifier is 

greatly increased. However, there is still problem with sufficient training 

samples. In this paper, we overcome this problem by proposing an Artificial 

Intelligence (AI) based framework named Deep Adversarial Learning 

Framework (DALF) that exploits deep autoencoder for dimensionality 

reduction, Generative Adversarial Network (GAN) for generating new 

Hyperspectral Imaging (HSI) samples that are to be verified by a discriminator 

in a non-cooperative game setting besides using a classifier. Convolutional 

Neural Network (CNN) is used for both generator and discriminator while 

classifier role is played by Support Vector Machine (SVM) and Neural 

Network (NN). An algorithm named Generative Model based Hybrid 

Approach for HSI Classification (GMHA-HSIC) which drives the 

functionality of the proposed framework is proposed. The success of DALF in 

accurate classification is largely dependent on the synthesis and labelling of 

spectra on regular basis. The synthetic samples made with an iterative process 

and being verified by discriminator result in useful spectra. By training GAN 

with associated deep learning models, the framework leverages classification 

performance. Our experimental results revealed that the proposed framework 

has potential to improve the state of the art besides having an effective data 

augmentation strategy. 
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1. INTRODUCTION 

  Hyperspectral imaging (HSI) is one of the remote sensing techniques that captures electromagnetic 

spectrum of different wavelength ranges. The sensors used for HSI give several hundreds of spectral bands of 

give surface. In HSI imagery, each pixel be considered as a high-dimensional vector with data corresponding 

to spectral reflectance in certain wavelength. In HSI, it is possible to identify subtle spectral differences which 

make it suitable for many real-world applications such as estimation of crop LAI, estimation of soil salinity, 

mineral mapping, fusion of images and sparse un-mixing in spatial domain to mention few. Classification of 

hyperspectral images is one such widely used application [1], [2], [3], [4], [5]. From the recent studies such as 

[6], [7], [8], HSI classification is found very significant research area that attracted remote sensing community. 

HSI classification determines the class of each pixel depending on the pixel’s spectral characteristics. HSI 

images are high-dimensional in nature. Classification of HSI imagery throws certain challenges such as curse 

of dimensionality, limited training samples and large spatial variability. The challenge of having limited 

training samples decreases generalization capability of classification methods. The large spatial variability is 

caused by factors linked to changes in temporal, atmospheric, environmental and illumination conditions. 

  Literature reflects the use of machine learning and deep learning methods for HSI classification. Semi-

supervised learning-based approaches are widely used for such activity [1], [3], [8], [9], [10], [11],[8],[12], 
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[13] as it helps in using available training samples as well. Deep learning based convolutional approaches are 

used in [6], [8], [14], [15]. Apart from Convolutional Neural Network (CNN), most of the studies used 

Generative Adversarial Network (GAN) models in order to deep with shortage of training samples in HSI 

classification approaches. A typical GAN model consists of a generator and discriminator who play non-

cooperative game to leverage quality in the given HSI task. GANs are widely used in the research of HSI 

classification. While single discriminator is used in [1],[2],[3],[16],[17], a multi-discriminator-based GAN is 

found in [18] to ascertain the impact of each discriminator on the results of classification. Several flavors of 

GAN models came into existence. They include cascade conditional model [17], Conditional Random Fields 

(CRFs) based model [19], Adaptive drop-back enhanced model [7], Markov Random Fields (MRFs) based 

model [14], quality aware model [20] and Functional Network Connectivity (FNC) based model [21]. While 

many of the GAN models do not use an explicit classifier, we understood that giving random noise and class 

label to generator and using classifier module with GAN could improve classification performance. Out 

contributions in this paper are as follows.  

1. We proposed a framework known as Deep Adversarial Learning Framework (DALF) for HSI 

classification based on GAN architecture that is made up of generator (G), discriminator (D) and 

classifier (C).  

2. An algorithm named Generative Model based hybrid approach for HSI Classification (GMHA-HSIC) 

which drives the functionality of the proposed framework.  

3. A prototype is built using Python data science platform to evaluate the DALF and its underlying 

algorithm besides comparing the results with the state of the art. 

 

  The remainder of the paper is structured as follows. Section 2 reviews literature on many existing 

generative models for HSI classification. Section 3 presents the proposed framework while Section 4 provides 

evaluation methodology. Section 5 focuses on the presentation of empirical results. Section 6 provides 

conclusions and possible scope for future work in the area of HSI classification.  

 

2. RELATED WORK 

  Literature has rich information of GAN usage for HSI classification as it could synthesize new 

samples. Zhan et al. [1] proposed a semi supervised approach based on GAN for HSI classification. It was 

named as HSGAN which could provide better performance over traditional approaches. Zhu et al. [2] proposed 

two GAN architectures namely 1D-GAN and 3D-GAN and analyzed the potential different and the new 

opportunities in HSI classification. They observed that samples generated by GAN could improve performance 

of the classification. He et al. [3] proposed a filter mechanism to extract spectral-spatial features that are used 

in the GAN architecture. With limited number of training samples, their method could perform effectively. 

They intend to improve it further using graph-based learning method. Jiang et al. [16] proposed HADGAN 

which detects anomalies and exploit reconstruction constraints. It learns discriminative reconstruction in the 

background by using anomaly targets is the focus of it towards hyperspectral anomaly detection. Liu et al. [17] 

focused on hyperspectral sample generation using cascade conditional generative adversarial nets. A two-stage 

GAN named C2GAN is proposed for generating samples.  

  Zhong et al. [19] used Conditional Random Fields (CRFs) along with GAN for realizing GAN based 

architecture for HSI classification. It is named GAN-CRF which has a generator and discriminator with semi-

supervised learning besides having probabilistic graphical models. Xue [5] proposed a 3D capsule network for 

spectral-spatial classification. The discriminator could provide better performance with generated labelled 

samples and existing training samples. In presence of scarcity in training samples, it could provide better 

performance. Wu et al. [6] focused on temporal imaging with Temporal Fourier Transformation (TFT) which 

is reconfigurable. This could be used further in imaging and vision applications. Jiang et al. [22] proposed 

HSRGAN that learns spectral and spatial features. They defined a loss function that could provide to improve 

performance while generating images. Paoletti et al. [23] on the other hand investigated deep learning 

classifiers used with HSI classification.  

  From the literature, it is found that many of the GAN models do not use an explicit classifier. However, 

we understood that giving random noise and class labels to a generator and using a classifier module with GAN 

could improve classification performance. It is achieved with the proposed framework in this paper. 

 

3. DEEP ADVERSARIAL LEARNING FRAMEWORK 

3.1 The Framework 

  We proposed a deep learning-based framework named Deep Adversarial Learning Framework 

(DALF). The framework exploits GAN architecture. Right from the introduction of GAN architecture in [24], 

it is widely used in different computer vision applications. The rationale is to generate new samples to leverage 

input space to the system. In most of the existing GAN models, target distribution is limited to certain data 
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points. In this paper, we use CNN as generator where it creates data pints related to the underlying distribution. 

Towards this end, generator is trained to use an adversarial objective function to approximate the distribution. 

Generator gets this function by invoking the discriminator network. Both generator and discriminator form a 

non-cooperative game to improve performance in HSI classification. The generator learns to create new 

samples while the discriminator learns and finds whether a sample belongs to fake or real distribution. The 

proposed GAN also has a classifier module that classifies the HSI samples based on training (with class label) 

spectra samples. The aim of the GAN in general is to solve the min-max problem expressed in Eq. 1. 

 
𝑚𝑖𝑛 𝑚𝑎𝑥

𝐺 𝐷
𝑉(𝐷, 𝐺) = 𝐸𝑋~𝑝(𝑥)[𝑙𝑜𝑔 (𝐷(𝑋))] + 𝐸𝑋~𝑝(𝑧)[𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧)))]        (1) 

 

  Where G and D denote generator and discriminator components. Random noise input is denoted as z 

while G(z) is the fake data. The D is aimed at maximizing log(D(x)) while G is meant to minimize log(1-

D(G(z)). The expectation operator is denoted by E. The proposed framework for HSI classification is provided 

in Figure 1. 

 
Figure 1. Proposed GAN based framework for HSI classification 

 

  Generator is given not only noise as input but also real class labels. The G is expected to produce fake 

spectra samples denoted as G(z). The classifier is any machine learning technique such as Support Vector 

Machine (SVM) to classify spectra samples based on the labelled real spectra. The objective function of the 

proposed GAN is divided into two parts as expressed in Eq. 2 and Eq. 3. 

 

𝐿𝑠 = 𝐸[𝑙𝑜𝑔 𝑃(𝑠 = 𝑟𝑒𝑎𝑙|𝑋𝑟𝑒𝑎𝑙)] + 𝐸[𝑙𝑜𝑔 𝑃(𝑠 = 𝑓𝑎𝑘𝑒|𝑋𝑓𝑎𝑘𝑒)]             (2) 

𝐿𝑐 = 𝐸[𝑙𝑜𝑔 𝑃(𝑐 = 𝑟𝑒𝑎𝑙|𝑐𝑟𝑒𝑎𝑙)] + 𝐸[𝑙𝑜𝑔 𝑃(𝑐 = 𝑓𝑎𝑘𝑒|𝑐𝑓𝑎𝑘𝑒)]              (3) 

 

  Where 𝐿𝑠denotes the likelihood of correct input source while 𝐿𝑐denotes the likelihood of correct class 

labels. The optimization of D and optimization of G are achieved by maximizing Ls+Lc and Ls-Lc respectively. 

Both generator and discriminator are implemented using the CNN as used in [25]. The generator produces fake 

spectra data based on the input noise and class labels. The discriminator takes fake spectra and real spectra as 

input (both are unlabelled) and discriminates real samples from fake ones. The classifier takes fake spectra and 

labelled spectra as input and produces classification results.  

 

3.2 Proposed Algorithm  

  An algorithm named Generative Model-based Hybrid Approach for HSI Classification (GMHA-

HSIC) which drives the functionality of the proposed framework is proposed. The success of DALF inaccurate 

classification is largely dependent on the synthesis and labelling of spectra on regular basis. The synthetic 

samples made with an iterative process and being verified by discriminator result in useful spectra. By training 

GAN with associated deep learning models, the framework leverages classification performance. 
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Algorithm: Generative Model-based Hybrid Approach for HSI Classification  

Input: Noise z, real class labels C, real unlabeled spectra X1, real labelled spectra X2 

Output: HSI classification results R 

1. For each noise sample s in z 

2. Generator learns/relearns using CNN model, and feedback from Generator 

3. fakeSpectraGenerateFakeSpectra(G,C,s) 

4. Discriminator receives fake spectra 

5.    Discriminator receives X1 

6.    Discriminator learns using CNN model  

7.    (Real/Fake) Discrimination(D, fakeSpectra, X1) 

8. Discriminator sends feedback to Generator  

9. R Classify(fakeSpectra, X2) //using SVM or NN 

10.    LsCompute Ls using Eq. 2 

11.    LcCompute Lc using Eq. 3 

12.    Optimize Generator to maximize Ls-Lc 

13.    Optimize Discriminator to maximize Ls+Lc  

14.    Return R 

15. End for  

Algorithm 1: Multi-Task Learning Based Hybrid Prediction Algorithm 

 

  As presented in Algorithm 1, it takes noise z, real class labels C, real unlabelled spectra X1, real 

labelled spectra X2 as input and produces HSI classification results with the help of the proposed generative 

adversarial network model. For each noise sample given in the form of z. There is an iterative process in which 

the discriminator learns using the CNN model and produces fake spectra data by taking noise samples and class 

labels as input. Each time fake data is created, it is used by the discriminator along with unlabelled real spectra 

samples to classify the samples into real/fake. It is done by using CNN model by the discriminator. Thus the 

discriminator gives its criticism (feedback) to a generator which is crucial in the non-cooperative game 

involved in realizing GAN architecture. With the given feedback is used, the discriminator gains more 

knowledge and produces more optimal fake samples. In every iteration, Ls and Lc are computed to optimize 

G and D for improving performance. The classifier used is either SVM or NN which is meant for producing 

classification results using given fake samples and real labelled spectra.  

 

3.3 Parameter Tuning for SVM and NN 

Training parameters tuned for SVM on real data are C and kernel which are used as svm_C and 

svm_kernel respectively in the Python code as per Scikit-Learn library. The hyperparameter C is meant for 

adding penalty for misclassified instances. If C influences decision boundary affecting classification accuracy. 

If C is large, the classifier tries to minimize the number of misclassified instances. Though we did experiments 

with 0.1, 1, 10,100 and 1000 as C value, we found highest performance in terms of accuracy when C value is 

1000. Therefore, C is fixed at 1000 and kernel used is “linear” as it is found faster. While a trained SVM is 

applied on fake data, a Pipeline object is created and used with different tunable parameters.  

 

Table 1. Parameters used for steps attribute of Pipeline object used in SVM 

Parameter  Value 

C 1000 
cache_size 200 

class_weight None 

coef0 0.0 
decision_function_shape ovr  

degree 3 

gamma auto  
kernel  linear 

max_iter -1 

probability  false 
random_state None 

shrinking  True  

tol 0.001 
verbose false 

 

  As presented in Table 1, the parameters used are found relatively good for synthetic data. With respect 

to neural network, MLPClassifier is used in the implementation. Its parameter details are as given in Table 2. 

Table 2. Provides parameters used in NN classifier 



                ISSN: 2089-3272 

IJEEI, Vol. 9, No. 4, December 2021:  954 – 965 

958 

Parameter Value 

hidden_layer_sizes 100 

activation  relu  
solver adam 

alpha 0.0001 

learning_rate constant  
learning_rate_init 0.001 

max_iter 200 

early_stopping False  

 

  The parameters provided are used in order to tune the performance of the NN classifier. NN classifier 

is used in the proposed GAN based system for classification of hyperspectral images. 

 

3.4 Deep Autoencoder  

  The proposed framework uses an autoencoder which is adapted from [26]. It is an unsupervised 

learning-based technique for dimensionality reduction. It exploits neural networks for representation learning. 

The autoencoder is made up of three layers. A visible layer, a hidden layer and a reconstruction layer with d 

inputs, L units and d units respectively. The training procedure has two steps as expressed in Eq. 4 and Eq. 5. 

 

ℎ = 𝑓(𝑤ℎ𝑥 + 𝑏ℎ)       (4) 

𝑦 = 𝑓(𝑤𝑦𝑥 + 𝑏𝑦)       (5) 

 

  Where f(.) is an activation function while bh and by denote bias of hidden and output units respectively. 

The waits associated with input and hidden layers respectively are denoted as wh and wy. Euclidean distance 

between x and y is used to compute reconstruction error.  

 
 

4.  EVALUATION METHODOLOGY 

  Experiments are made using the implementation made with Python data science platform using 

Google Colab. The CNN framework explored in [25] is used for building generator and discriminator. The 

classifier is made up of either SVM or NN. Dataset is collected from Pavia university dataset [27]. The Pavia 

University dataset is a hyperspectral image dataset which gathered by a sensor known as the reflective optics 

system imaging spectrometer (ROSIS-3) over the city of Pavia, Italy. The image consists of 610×340 pixels 

with 115 spectral bands. The image is divided into 9 classes with a total of 42,776 labelled samples, including 

the asphalt, meadows, gravel, trees, metal sheet, bare soil, bitumen, brick, and shadow. Prior to making 

experiments with the proposed GAN architecture, the ground truth is obtained from the dataset as presented in 

Figure 2.  

 
Figure 2. Ground truth details used in experiments; (a) composite view (b) full ground truth view (c) mask 

view (d) train ground truth view 

 

  The ground truth is generated and presented for Pavia university dataset [27] which is used to evaluate 

the performance of the proposed algorithm and compare it with the state of the art. Based on the ground truth, 

the performance of the proposed framework in generating spectra samples and HSI classification with SVM 

and NN is evaluated.  

  Based on the confusion matrix the performance metrics such as precision, recall and F1-score derived 

from number of true positives, number of true negatives, number of false positives and number of false 

negatives.  
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Table 3. Performance metrics 

Metric Formula Value range Best Value 

Precision (p) 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

[0; 1] 1 

Recall (r) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

[0; 1] 1 

F1-Score 
2 ∗

(𝑝 ∗  𝑟)

(𝑝 + 𝑟)
 

[0; 1] 1 

 

  As presented in Table 3, the metrics result in a value between 0 and 1. The value 1 indicates best 

performance. 

 

 

5. EXPERIMENTAL RESULTS 

  After experimentation, there are two spectra sample distributions. Evaluation is made to know whether 

fake distribution is as good as real distribution. After generating synthetic spectra, it is evaluated with two 

machine learning classifiers such as SVM and NN. The performance of the proposed framework is compared 

against state of the art as well.  

 

Samp

le # 

Real Data Synthetic Data Generated by GAN 

1 

  
2 

 
 

3 
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4 

 
 

5 

 
 

6 

  

7 

  

8 
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9 

  
Figure 3. Results of synthetic spectra generation by the GAN based framework 

 

  As presented in Figure 3, the results of generator of the proposed DALF framework for 9 samples are 

presented. To ascertain the utility of the synthetic spectra, they are evaluated with two classification techniques 

such as SVM and NN.  In both real and synthetic samples’ results, the horizontal axis shows the number of 

iterations while the vertical axis shows the value for mean_spectrum – std_spectrum (blue dotted line at the 

bottom), mean_spectrum (orange line at the middle) and mean_spectrum + std_spectrum (green dotted line at 

the bottom). 

 

Table 4. SVM classification performance on real spectra 
Sample # SVM Performance (%) on Real Data 

Precision Recall F1-score 

1 0.85       0.94       0.89       

2 0.93       0.96       0.94      

3 0.79     0.72       0.75      

4 0.93       0.90       0.91       

5  1.00       1.00       1.00       

6 0.87       0.78       0.82       

7 0.83       0.48       0.61       

8 0.83       0.84       0.84       

9 1.00       1.00        1.00        

 As presented in Table 4, the HSI classification performance with SVM is provided in terms of precision, 

recall and F1-score for different real spectra samples.  

 

Table 5. SVM classification performance on synthetic spectra 

Sample # SVM Performance (%) with Synthetic Data 

Precision Recall F1-score 

1 0.92       0.96       0.94 

2 0.97      0.99 0.98 

3 0.97 0.88 0.92 

4 0.99     0.96 0.98 

5  0.96       1.00       0.98 

6 0.95       0.93 0.94 

7 0.93       0.65 0.77 

8 0.94       0.96 0.95 

9 1.00       0.95        0.97 

 

As presented in Table 5, the HSI classification performance with SVM is provided in terms of 

precision, recall and F1-score for different synthetic spectra samples.  
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Table 6. NN classification performance on augmented spectra 
Sample # NN Performance (%) with Real Data 

Precision Recall F1-score 

1 0.9350     0.9396     0.9373 
2 0.9677     0.9741     0.9709 

3 0.8540     0.7753     0.8127 

4 0.9524     0.9429     0.9476 
5 0.9976     0.9843     0.9909 

6 0.9126     0.9101     0.9114 

7 0.8450     0.8437     0.8443 
8 0.8567    0.8815     0.8689 

9 0.9989     0.9944     0.9966 

 

As presented in Table 6 the HSI classification performance with NN is provided in terms of precision, 

recall and F1-score for different augmented spectra samples 

 

 
Figure 4. HSI classification performance of SVM on real samples 

 

  As presented in Figure 5, the real spectra samples are provided in horizontal axis and the HSI 

classification performance in terms of precision, recall and F1-score is provided in vertical axis. More in 

precision, recall and F1-score refers to more in performance. It is observed from the results that each spectra 

sample exhibited different level of performance with respect to SVM classification. Both sample 5 and sample 

9 showed 100% performance.  

 

 
Figure 5. HSI classification performance of SVM on synthetic samples 
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  As presented in Figure 5, the synthetic spectra samples are provided in horizontal axis and the HSI 

classification performance in terms of precision, recall and F1-score is provided in vertical axis. More in 

precision, recall and F1-score refers to more in performance. It is observed from the results that each spectra 

sample exhibited different level of performance with respect to SVM classification. Sample 7 showed least F1-

score with 0.77.  

 

 

 
Figure 6. HSI classification performance of NN on real samples 

 

As presented in Figure 6, the real spectra samples are provided in horizontal axis and the HSI 

classification performance in terms of precision, recall and F1-score is provided in vertical axis. More in 

precision, recall and F1-score refers to more in performance. It is observed from the results that each spectra 

sample exhibited different level of performance with respect to NN classification. Sample 3 showed least F1-

score with 0.8127.  

 

 
Figure 7. HSI classification performance of NN on augmented samples 

 

As presented in Figure 7, the augmented spectra samples are provided in the horizontal axis and the 

HSI classification performance in terms of precision, recall and F1-score is provided in vertical axis. More in 

precision, recall and F1-score refers to more in performance. It is observed from the results that each spectra 

sample exhibited the different level of performance with respect to NN classification. Sample 3 showed the 

least F1-score with 0.8125.  

Table 5. HSI classification performance on real spectra 
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Sample # 

Performance Comparison (F1-Score) 

SVM  

(real data) 

NN  

(real data) 

SVM  

(synthetic data) 

NN  

(augmented data) 

1 0.89 0.9373 0.94 0.9445 

2 0.94 0.9709 0.98 0.9725 

3 0.75 0.8127 0.92 0.8125 

4 0.91 0.9476 0.98 0.9558 
5 1 0.9909 0.98 0.9957 

6 0.82 0.9114 0.94 0.917 

7 0.61 0.8443 0.77 0.8745 
8 0.84 0.8689 0.95 0.8684 

9 1 0.9966 0.97 0.9938 

 

As presented in Table 5 the HSI classification performance of SVM and NN with real, synthetic and 

augmented data, in terms of F1-score is provided.  

 

 
Figure 8. HSI classification performance of two models in terms of F1-Score 

 

As presented in Figure 8, the HSI classification performance of SVM and NN are compared for the 

real, synthetic and augmented (training is given on real and synthetic samples) spectra samples. The results 

revealed that each sample showed different possibilities in terms of classification performance. For each 

sample, the classification performance is evaluated. The performance of NN is better than that of SVM on real 

data. When it comes to synthetic data used with SVM and augmented data used with NN, SVM showed better 

performance. As synthetic data cannot capture class boundaries well, it is observed that augmented data with 

NN showed less performance. However, with GAN based framework, it is an encouraging fact that augmented 

data is working as good as original data at least in the context of weakly supervised HSI classification.  

 

6. CONCLUSION AND FUTURE WORK 

The cold start problem with insufficient training samples for hyperspectral image classification and 

the problem of leveraging classification efficiency is considered in this paper. Towards this end, we proposed 

an Artificial Intelligence (AI) based framework named Deep Adversarial Learning Framework (DALF) that 

exploits deep autoencoder for dimensionality reduction, Generative Adversarial Network (GAN) for generating 

new Hyperspectral Imaging (HSI) samples that are to be verified by a discriminator in a non-cooperative game 

setting besides using CNN for classification. The success of DALF inaccurate classification is largely 

dependent on the synthesis and labelling of spectra on regular basis. The synthetic samples made with an 

iterative process and being verified by discriminator result in useful spectra. By training GAN with associated 

deep learning models, the framework leverages classification performance. Our experimental results revealed 

that the proposed framework has the potential to improve the state of the art besides having an effective data 

augmentation strategy. In future, we intend to improve the DALF and evaluate with hyperspectral imaging 

samples of different domains.  
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