
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 

Vol. 10, No. 2, June 2022, pp. 410~420 

ISSN: 2089-3272, DOI: 10.52549/ijeei.v10i2.3475  410 

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index 

Single Input Single Head CNN-GRU-LSTM Architecture for 

Recognition of Human Activities 

Updesh Verma1, Pratibha Tyagi2, Manpreet Kaur3

 1,2,3Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering and 
Technology (sliet), Longowal, Punjab, India 

Article Info ABSTRACT 

Article history: 

Received Oct 30, 2021 

Revised May 17, 2022 

Accepted May 28, 2022 

Due to its applications for the betterment of human life, human activity 

recognition has attracted more researchers in the recent past. Anticipation of 

intension behind the motion and behaviour recognition are intensive 

applications for research inside human activity recognition. Gyroscope, 

accelerometer, and magnetometer sensors are heavily used to obtain the data 

in time series for every timestep. The selection of temporal features is 

required for the successful recognition of human motion primitives. Different 

data pre-processing and feature extraction techniques were used in most past 

approaches with the constraint of sufficient domain knowledge. These 

approaches are heavily dependent on the quality of handcrafted features and 

are also time-consuming and not generalized. In this paper, a single head 

deep neural network-based approach with the combination of a convolutional 

neural network, Gated recurrent unit, and Long Short Term memory is 

proposed. The raw data from wearable sensors are used with minimum pre-

processing steps and without the involvement of any feature extraction 

method. 93.48 % and 98.51% accuracy are obtained on UCI-HAR and 

WISDM datasets. This single-head deep neural network-based model shows 

higher classification performance over other architectures under deep neural 

networks. 
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1. INTRODUCTION

Human activity recognition (HAR) has emerged as a very challenging topic nowadays. It has various

applications for human beings, such as health assistance, intelligent surveillance, intelligent homes, 

rehabilitation, abnormal behaviour recognition, personal fitness, gaming, etc. HAR is a process of a group of 

some steps to recognize human physical motions, posture, and ambulation with the help of various sensors. 

Different types of sensors have been used previously in HAR, such as video sensors, wearable sensors, 

ambient sensors, object sensors, smartphone sensors, wireless sensors, etc. In this way, HAR can be broadly 

classified into two streams one is sensor-based, and the other one is video-based. In the video-based stream 

of HAR, video sensors like cameras are generally used to take images and videos of human motions and 

classify them according to the framework[1]. In other streams of sensor-based approaches, wearable sensors 

like accelerometer, gyroscope, and magnetometer in the form of inertial measurement unit (IMU), ambient 

sensors like RADAR sensors, wi-fi sensors, and object sensors such as pressure sensors are used for 

recognition of human activities[2].   

Machine learning algorithms have been widely used in previous research in HAR, such as K-Nearest 

Neighbour (KNN)[3], Support Vector Machine(SVM)[4], and Random Forests[5]. Ensemble empirical mode 

decompositionbased features and game theory-based feature selection methods were used for activity 

recognition [6]. The evaluation of these features and the selection method was done by using KNN and SVM 
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classifiers. Sensor and classifier fusion layer was used in the hierarchical fusion model based on entropy, and 

for estimation of weights, the weight entropy method was used[7]. Machine learning-based methods require a 

very time-consuming and qualitative feature extraction technique, feature selection methods, and at the same 

time, domain knowledge. After consideration of a lot of preparation, pre-processing, and feature extraction 

operations on data, only decent performance can be achieved. These HAR systems based on machine 

learning are applicable only for specific applications and cannot classify similar tasks from other sources[8].   

Deep learning-based models have gained tremendous momentum nowadays due to their successful 

performance in the fields of natural language processing, object detection. Image segmentation, 

classification, etc. Deep learning models gained momentum in HAR over machine learning due to their 

automatic feature extraction from raw sensor data. These extracted deep features can represent the original 

data more closely. Deep learning models with minimum pre-processing steps are capable of classifying 

different labels with minimum human intervention. Different deep learning models such as Deep Belief 

Network (DBN)[9], Convolutional Neural Network (CNN)[10], Deep feedforward neural networks, and 

Recurrent Neural Networks (RNN)[11] are heavily used in some of the past research. HAR has been 

recognized by exploiting some deep learning models such as LSTM, CNN, CNN-LSTM, and more. A 

smartphone-based activity recognition model based on CNN was proposed in[12]. Time series data of 

multivariate were utilized and classified with deep CNN framework in[13]. Another deep learning model 

based on CNN with time-series data of univariate was proposed for an end to end classification in[14]. The 

accelerometer sensor was used to recognize human activities with CNN-based architecture. CNN was used to 

extract local features, and the global characteristics of the signal were defined with the help of statistical 

features[15]. CNN as a multilayer classifier, where CNN and Pooling layers were used alternatively, 

followed by a fully connected layer for HAR in[16]. This model has experimented on publicly available UCI-

HAR datasets [4].  

Another neural network that has been widely exploited in the series of deep neural networks is the 

Recurrent Neural Network (RNN). HAR is a classification problem inside the time series dataset, so that 

temporal dependency is heavily required for such types of time series datasets for an efficient classification 

task. RNN provides good temporal dependencies for time series classification problems so that various RNN 

models were widely used in previous research. For example[17], a framework based on an LSTM feature 

extractor was proposed to experiment with the WISDM dataset to recognize human activities[18]. In another 

LSTM model, where the accelerometer and gyroscope sensor's data were first normalized, normalized data 

was passed through stacked LSTM and then utilized soft-max activation function for classification task[19]. 

Another bi-directional LSTM for recognizing human activities by accelerometer and gyroscope sensors of 

mobile phone, mounted on subject's waist was proposed in [20]. Bi-directional LSTM was proposed using 

the smartphone-based publicly available dataset UCI-HAR to recognize human activities[21]. In recent times 

various combinations of CNNs layers and RNN layers have been used. For an example, activity recognition 

system based on CNN followed by RNN dense layer was proposed for HAR in[22]. One model based on the 

combination of CNN and LSTM was proposed to take advantage of both networks. That model could be able 

to access data from multimodal sensors without heavy data pr-processing steps. That model utilized 

gyroscope and accelerometer data in both the cases, individually and combination[23]. Two LSTM layers 

followed by convolutional layers based model and after the extraction of features that model was succeeded 

by Global Average Pooling(GAP), Batch normalization and soft-max activation[24].   

In recent studies in literature, the multi-head deep neural network with the combination of CNN and 

RNN has been proposed. For instance, in[25], multi-head CNN-RNN architecture for anomaly detection with 

multiple sensors was proposed in an industrial environment. In that model, one CNN head was used for one 

sensor, and then the feature map of each CNN head was concatenated and fed to the next RNN model for 

finding the temporal information in the feature map. One CNN and one LSTM head were connected in 

parallel as a multi-head system, and the feature map was then concatenated and passed to the soft-max 

function for classification in[26]. Multihead LSTM, multi-head CNN-LSTM, and multi-head Conv-LSTM 

models were designed and ensembled in[27] for recognition of the expenditure of patients on medications.  

Some other methods like Extreme Learning Machine(ELM), which is a feedforward network and has no 

backpropagation ability was proposed for recognition of human motions in[28][29]. Self-adapted architecture 

with a new sensor location based on ELM was proposed in[30]. The U-net-based model was proposed in[31] 

for activity recognition by using time series signals of sensors. Most of the approaches defined in past studies 

for HAR were utilized various feature extraction and selection methods. The accuracy of those approaches 

depended on the quality of handcrafted features and required expert knowledge of the domain[32]. In this 

paper, a single-input single head CNN-GRU-LSTM model is designed for HAR using raw wearable sensor 

data such as gyroscope, accelerometer without the process of handcrafted feature extraction. The feature 

extraction process inside deep learning models faces significant challenges due to the imbalanced and noisy 

data obtained from a smartphone or inertial wireless measurement units. In this modelling, the size of the 
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filter in the convolutional layer is chosen as 7. This combination of three deep neural networks made HAR 

fruitful in terms of less computational cost, relevant accuracy, and good f-1 score by taking advantage of the 

trio. CNN extracted the local features, and GRU, LSTM maintains the long-term temporal dependencies of 

mapped features. The model experimented over two publicly available datasets UCI-HAR[4] and 

WISDM[33]. 

 

1.1. Contribution of this paper 

a. Hybrid architecture of deep neural networks by taking the advantages of CNN, GRU, and LSTM is 

proposed to recognize human activities by taking the raw wearable sensor data with negligible pre-

processing steps and without a handcrafted feature extraction process.  

b. The local features are extracted by the CNN layer and GRU; LSTM maintains the long-term 

temporal dependencies of these mapped features so that the model can recognize the diverse data.  

c. The model is experimented with over two publicly available datasets UCI-HAR, WISDM and 

gained accuracy of 93.48 %, 98.51%, respectively. 

 

1.2. Organization of paper 

The rest of the paper contains the following sections: Section II describes the methodology behind this 

proposed work of a single input single head CNN-GRU-LSTM activity recognition model. Section III 

describes the proposed approach's experiments and results, and the last section IV, consists of the conclusion. 

 

 

 

2. METHODOLOGY 

 Human activity recognition is a time series classification problem. Successfully detecting activities from 

raw sensor data obtained from smartphone and wearable units requires an efficient feature extraction process. 

This proposed single input single head CNN-GRU-LSTM model extracts temporal feature map from the 

CNN layer then long-term temporal dependencies are maintained by GRU and LSTM layers. LSTM layer is 

also used to eradicate the gradient vanishing and exploding problem, which is common in CNN. This deep 

neural network approach finds the way for end-to-end classification from raw sensor data to feature 

extraction and then classification—the architecture experiments on two publicly available datasets UCI-HAR 

and WISDM.   

 

2.1. Data Segmentation 

 The first step towards activity recognition is a segmentation of acquired raw data from wearable 

sensors. This process of data segmentation is carried out with the help sliding window. WISDM data set is 

segmented in the timesteps of 128 and 3 features for every timestep. UCI -HAR data was already available in 

a segmented form where data was segmented into 128 timesteps, and every timestep consisted of 9 features. 

So that the input vector size for the WISDM dataset is 128x3 and the input vector size for the UCI-HAR 

dataset is 128x9. This 128-size input vector is considered as one sample for one activity. This vector size of 

length 128 is calculated over n channels where the value of n is equal to the value of features of a particular 

dataset. In this case, the value of n for the WISDM dataset is three and for the UCI-HAR dataset is 9. 

 

2.2. Feature Extraction 

The advantages of both CNN and RNN are utilized by combining CNN and RNN. These neural 

networks have the capability of automatic feature extraction. CNNs[34] are generally used for processing the 

data of multiple arrays.   

The architecture of CNN generally consists of CNN layer, pooling, and at last, fully connected layer. 

Operation of convolution on time series data of length K and width M is depicted in fig1., where M is 

nothing but the features available in the dataset. Feature map is generated after convolution between filters of 

length n and depth h, and time-series data of length K and features M. Each convolution unit generates its 

feature map. A set of local input time series data and kernel of size n x h are multiplied by exact overlapping 

with each other so that the size of the regional input time series, which is also called the receptive field, must 

be equal to the size of the filter for the generation of the feature map. Each value in the receptive field is 

multiplied with the weights of the filter bank, and then all the obtained values are summed up then obtained 

one number is   
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Figure 1. Operation of Convolutional layer on input data 

 

The single value of the feature map. This value obtained by multiplication and addition is then passed 

through the non-linear function called activation function Rectified Linear Unit. The number of feature maps 

depends on the number of kernels used. These feature maps then passed through the pooling layer, which 

helped reduce the feature map's dimension by taking the maximum value inside the local patches. A regularly 

used Dropout layer reduces the chances of overfitting.  

CNN performance is recognized as the extraction of local features by taking time-series data in frames. 

Local values inside the data frame are highly correlated with concerned activities. CNN takes each frame of 

the dataset independently and takes this information in terms of a feature map, so it can be said that CNN 

follows the shortterm dependencies. So, it is crucial to extract the features locally due to the high correlation 

between the values of features for activity recognition; hence CNN performs the crucial task. But long-term 

dependencies are also required for precise recognition of activities.\  

RNN is introduced to gain the advantages of long-term dependencies, but due to the large size of the 

activity dataset, the gradient vanishing problem[35] gets associated with traditional RNN. So traditional RNN 

is not useful for activity recognition. GRU is introduced[36] to overcome this gradient vanishing and gradient 

exploding problem in traditional RNN. GRU, an extension of traditional RNN, is used to gain the advantages 

of long-term dependencies of time series sequences for the activity dataset[37].  

GRU and LSTM layers are added after the CNN layer to connect the past information with the present 

scenario in the proposed model. The reset gate and update gate is part of the GRU unit, and LSTM consists of 

the input gate, output gate, and forget gate. LSTM can be able to capture more long-term dependencies than 

the GRU unit. The human activities dataset is generally considered as a very long dataset in dimensions so 

that intense temporal longterm dependencies are required. Both unit LSTM and GRU in combination can 

provide very long-term dependencies, and the model with these combinations can handle the data of large 

variations and diversity.  

2.3. Proposed Architecture 

 

In the following fig 2, the different parts of the proposed model are shown in the form of part A, part B, 

and Part C. Part A describes the CNN unit this unit followed by the GRU unit and LSTM unit, which are 

described as part B and part C respectively. In part, three convolutional 1D layers are used with the activation 

function of Relu and each CNN layer, followed by max-pooling and dropout layer. In part B, three GRU 

units are used, and a dropout layer follows each GRU unit. In part C first LSTM layer and second LSTM 

layer are followed by the dropout layer and flatten layer, respectively.  
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Figure 2. Different parts of CNN-GRU-LSTM 

  

The complete architecture of the proposed model with the combination of part A, part B, and Part C is 

shown in fig 3. 64 filters in the first layer of CNN and 32 filters in the remaining two layers are used for 

extraction of local features. A 10% dropout follows each layer of CNN with a filter size of 7. 10% dropout is 

selected by the number of experiments in the range of 10% to 50% dropout and the observation of impact on 

accuracy. Three GRU layers with 64 units in the first layer and 32 units in the remaining two layers are used 

in part B to capture the long-term dependencies and return sequences passes to the next layers. A 10% 

dropout follows each GRU unit. Two LSTM layers with 32 units are used in part C, where the first layer is 

followed by 10% dropout, and a flattening layer follows the second. LSTM layers are used to understand 

better more temporal long-term dependencies of time series sequences of data.  

In the last section flatten layer is followed by a dense layer with 128 units, and this, in turn, is followed 

by a 10% dropout. The Batch-normalization layer is used for the normalization of the feature map for better 

classification efficiency. At last, a fully connected layer with a soft-max activation function is used.  

  

 
Figure 3 proposed Architecture CNN-GRU-LSTM for human activity recognition 
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3. EXPERIMENTS AND RESULTS 

The proposed model is trained and tested on UCI-HAR and WISDM datasets. Table 1 describes the 

hyperparameters for the proposed model. Other hyperparameters are taken as default. The model is trained to 

reduce the loss function. Keras with TensorFlow backend is used for implementation of the proposed model 

in google colab. The values of parameters for performance evaluation, datasets used, and results are 

described in this section.  

Table 1. description of hyperparameters 
Hyperparameter Used values 

Loss function Sparse categorical cross-entropy 

Optimizer Adam 

Batch size 400 

Learning rate 0.001 

Dropout 10% 

Filter size 7 

Pool size 2 

Length of input vector 128 

Epochs 500 

Number of channels 
9 for UCI-HAR dataset 3 for the 

WISDM dataset 

   

3.1. Datasets 

UCI-HAR[4]: The University of California Irvine (UCI) released the dataset and publicly available it on 

the UCI repository. Thirty volunteers participated, and waist-mounted smartphone's inbuilt sensors like 

accelerometer and gyroscope were used. Total six human activities (sitting, standing, walking, walking 

downstairs, and walking upstairs) were recorded with the sampling frequency of 50Hz. Three axial body 

acceleration, three axial angular velocities, and a total of three axial acceleration; hence a total of 9 features 

were measured and stored. Butterworth low pass filter with a cut-off frequency of 0.3 Hz was used to 

segregate body acceleration and gravity. 2.56 s window was used for data segmentation, and 70% of the total 

subject's data were recorded as training data and the rest as testing data. A total of 10299 samples were 

recorded, where 7352 were taken as training samples and 2947 as testing samples.  

WISDM[33]: Wireless sensor data mining lab of Fordham University was used to acquire the WISDM 

dataset. A total of 36 volunteers participated in that project, and they performed six activities (jogging, 

descending stairs, ascending stairs, walking, sitting, and standing) with placing a smartphone in their pocket. 

An inbuilt accelerometer sensor of the smartphone with a sampling frequency of 20Hz was used for acquiring 

the data. Twenty-nine subjects are selected for this paper to train the proposed model and the rest for 

validation. Data normalization is performed with the normalization of all values in the range of 0-1. 

 

3.2. Performance Representation 

The performance of the proposed model is represented by accuracy score, f1-score, precision, recall, 

and confusion matrix. Accuracy is defined as the ratio of correctly classified labels or targets to a total 

number of samples. Correctly classified labels are generally known as adding a total number of true positives 

(TP) and true negatives (TP). Wrongly classified terms are generally considered as false positive (FP) and 

false-negative (FN).  

𝑇𝑃 + 𝑇𝑁 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =                                           (1)  

   𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

The ratio of samples that are correctly predicted positive to the all-positive predicted samples is known as 

precision.  

        𝑇𝑃 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =                                                                          (2)  

𝑇𝑃 + 𝐹𝑃 

The ratio of correctly predicted positives to the samples which actually exist as positive, known as recall.  

𝑇𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙 =                                                                                 (3)  

           𝑇𝑃 + 𝐹𝑁 

For the performance evaluation of the model that is going to test on an unbalanced dataset, the f1-

score is generally calculated. The harmonic mean of precision and recall is known as the f1 score.  
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         2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =                                               (4)  

          𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

The confusion matrix describes all the predicted classes and actual classes with their 

interrelationship positively or negatively. Rows of this matrix are the actual classes, and columns are 

considered as predicted classes.  

 

        
(a)                                                                         (b) 

Figure 4. (a) Confusion matrix of the proposed model on UCI-HAR dataset (b) confusion matrix of the 

proposed model on WISDM dataset 
  

 

 

  
                                                            (a)                                                                                   (b) 

Figure 5. (a) Plot of training and testing loss of proposed model on UCI-HAR dataset (b) Plot of training and 

testing accuracy of proposed model on UCI-HAR dataset. 
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   (a)                                                                                                  (b) 

Figure 6. (a) Plot of training and testing loss of proposed model on WISDM dataset (b) plot of training and 

testing accuracy of the proposed model on WISDM dataset. 

 

 

3.3. Results and Discussion 

Fig 4(a) shows the confusion matrix of the proposed CNN-GRU-LSTM architecture on the test dataset 

of UCI HAR and fig 4(b) shows the confusion matrix on the test dataset WISDM of the proposed model. 

Both the figures under fig. 4 describe that the five activities of the test dataset of the UCI-HAR dataset 

obtained accuracy and f1-score greater than 90% and all the activities of the test dataset of the WISDM 

dataset obtained accuracy and f1-score greater than 95%. Fig 5(a) shows the training and testing loss of the 

proposed model on the UCI-HAR dataset and fig 5(b) shows the training and testing accuracy of the 

proposed model on the UCI-HAR dataset. In the same way, fig 6(a) and fig 6(b) show the training and testing 

loss of the proposed model on the WISDM dataset and the training and testing accuracy of the proposed 

model on the WISDM dataset, respectively. Table 2 and Table 3 describes the effectiveness of proposed 

model on both the dataset. The effectiveness of the proposed model on the UCI-HAR dataset is described in 

table 2, where some previous models are taken for comparison with the proposed model. It is found that the 

proposed model outperformed six models in terms of accuracy and f1-score on the UCI-HAR dataset.  

The effectiveness of the proposed model on the WISDM dataset is described in table 3, where some 

previous models are taken for comparison with the proposed model. It is found that the proposed model 

outperformed nine models in terms of accuracy and f1-score. 

 

 

Table 2. Comparative performance of proposed model on UCI-HAR dataset 
Frameworks Accuracy (%) F-1 score (%) 

Res-LSTM [38] 91.6 91.5 

CNN-LSTM [39] 92.13 - 

Stacked LSTM [40] 93.13 - 

CNN [41] 92.71 92.93 

Single input CNN-GRU model  

A[42] 

93.03 93.01 

Single input CNN-GRU model  

B[42] 

92.43 92.42 

Proposed 93.48 93.5 
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Table 3. Comparative performance of frameworks on WISDM dataset 

Frameworks Accuracy (%) F-1 score 

Statistical features and reweighted genetic algorithms [43]  94.02  -  

CNN [44]  93.32  -  

LSTM-CNN [45]  95.85  -  

U-Net [46]  96.4  96.5  

Single input CNN-GRU model A [42]  92.03  92.42  

Single input CNN-GRU model B [42]  94.71  94.50  

Single input CNN-GRU model C [42]  92.37  92.55  

Multi input CNN-LSTM [42]  95.54  95.55  

Multi input CNN-GRU [42]  97.21  97.22  

   Proposed 98.51  98.52  

 

The novelty of the proposed model is to introduce the in-depth knowledge of long-term 

dependencies to the model by using both the units GRU and LSTM. Comparative analysis with similar 

research is included in this paper and found that this less complex model performed better than some existing 

research. Outstanding performance is observed in the case of the WISDM dataset with an accuracy of 

98.51% and an f1-score of 98.52%. Due to the well understanding of short-term and long-term dependencies 

on temporal sequences of time series datasets, architecture could handle the diverse nature of data. 

 

Table 4. Computational Performance analysis on the basis of trainable parameters 

Model 
UCI-HAR dataset WISDM dataset 

Parameters Accuracy (%)  F-1 score (%) Parameters Accuracy (%)  F-1 score (%) 

Standard CNN [47] - - - 1.55M 96.83% - 

Residual Network [47] - - - 2.30M 98.32% - 

Zhang et al [48] - - - 2.77M 96.4 95.4 

2D CNN (without total 

acceleration) [49] 

7.314M 85 - - - - 

2D CNN (with total 

acceleration) [49] 

7.314M 85.2 - - -- - 

Proposed 1.13M 93.48 93.5 1.13M 98.51 98.52 

 

Table 4 represents the computational efficiency of proposed architecture over some previous researches 

on the basis of used number of trainable parameters. Standard CNN was implemented in [47] by Gao et al., 

with 1.55 million parameters and obtained lesser accuracy by 1.68% than our proposed work with 

1.13million parameters on WISDM dataset. The residual network was implemented in [47] with 2.30 million 

trainable parameters and obtained a lesser accuracy by 0.19% than our model with 1.13 million trainable 

parameters on same dataset. The Multi-head attention-based CNN model were used in [48] for HAR and 

achieved a lesser accuracy and F-1 score by 2.11% and 3.12% respectively with 2.77 million trainable 

parameters on WISDM dataset than our proposed architecture. The various deep learning models were designed 

by Tufek et al., in [49] on UCI-HAR dataset and two conditions were applied on dataset. In the first condition only 

accelerometer and gyroscope were considered and in second condition, the whole dataset was used including total 

acceleration and it is observed that our model gets much higher accuracy with fewer number of parameters. Hence, we 

can say that as far as computational efficiency is concerned then this research, proposed in this paper 

performed well than the other similar previous researches. 

 

4. CONCLUSION 

Convolutional Neural Networks and Recurrent Neural Networks for human activity recognition are 

implemented and tested on publicly available datasets. The framework CNN-GRU-LSTM outperformed 

some similar research in this field. These architectures gained advantages of three neural networks CNN as 

well as GRU and LSTM. CNN generates local features of the input sequence with efficient local 



IJEEI ISSN: 2089-3272  

 

Single Input Single Head CNN-GRU-LSTM Architecture for Recognition… (Updesh Verma et al) 

419 

dependencies, and GRU utilizes its efficiency of capturing the long-term dependencies. Long-term 

dependencies in depth are provided to this framework by the LSTM unit, and hence this proposed model can 

handle more diverse data. The performance of the proposed model is tested on publicly available datasets 

such as WISDM and UCIHAR, and it is found that the architecture outperformed some multi-head 

architectures. This single head and input model with diverse data handling capacity is computationally 

efficient and more accurate than other similar architectures.    
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