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 Differential Drive Wheeled Mobile Robot (DDWMR) is a nonholonomic 

robot with constrained movement. Such constraint makes robot position 

control more difficult. A closed-loop control system such as PID can control 

robot position. However, DDWMR is a Multiple-Input-Multiple-Output 

system. There will be many feedback gains to be tuned, and the wrong value 

will make the system unstable. Therefore this research proposes an offline 

autotune method to choose optimal feedback gain that minimizes a fitness 

function. The fitness function uses Integral Absolute Error (IAE) and Integral 

Time Absolute Error (ITAE). These works propose to autotune feedback gain 

for DDWMR Jetbot, which implements a PI control system with six feedback 

gains. The methods used to tune the feedback gain are Particle Swarm 

Optimization (PSO) and Bird Swarm Algorithm (BSA). There are four 

different scenarios to do the autotune. The autotune result performance shows 

that those two methods can find an optimal gain to make the robot follow four 

different continuous trajectories without much trajectory deformation. PSO 

and BSA can do an autotune PI gain with six variables to minimize the Integral 

Absolute Error (IAE) and Integral Time Absolute Error (ITAE) 
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1. INTRODUCTION 

Differential drive wheeled robot (DDWMR) is one of the most common configurations of terrestrial 

robots. A DDWMR consists of two independently actuated wheels, each driven by a DC motor. It is also 

commonly equipped with a wheel that is not actuated but moves freely and supports the chassis. If the chosen 

output is the robot's position, its dynamics may vary depending on the chassis centre [1]–[5]. 

A robot needs to control its position using many kinds of an algorithm to ensure the robot position is 

correct. There are many control algorithms for robots to handle position in coordination in wheeled mobile 

robots [1], [6]–[9]. PID is one method that presents a cost-effective way for robots' DC motor drive [10]. 

The PID control model consists of proportional (Kp), integral (Ki), and derivative (Kd) feedback 

gains. PID control method is a linear system method. Because DDWMR robots have many states to control, 

the feedback gains became too many that it would be challenging to select them [10]–[12]. 

Some research uses autotune methods to solve the feedback gain's selection difficulties [13]–[18]. 

Autotune methods in a control system automatically choose a feedback gain to minimize a given fitness 

function. One method that can build an autotune is a bio-inspired algorithm such as Particle Swarm 

Optimization (PSO), Cuckoo Search and Bird Swarm Algorithm (BSA). Although many bio-inspired 

algorithms exist, BSA performs better than the simple PSO and Differential Evolution (DE) [19]. 

Designing an autotune system using a bio-inspired algorithm needs a fitness function. In a control 

system, some research uses transient response and tracking response. A robot that continuously moves to track 
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a trajectory can use Integral Absolute Error (IAE) and Integral Time Absolute Error (ITAE) as the performance 

metric. 

The control of DDDWMR starts with robot mechanic configuration either it’s a 2-wheel type in [2], 

[13], [16] the 3-wheel type in [1], [6], [8], [10], [14]–[16], [20], or the 4-wheel type in [1], [4], [7], [21]. From 

mechanic configuration, we get a model and configure the kinematic and dynamic of the robot. Finally, the last 

is to design the control system such as PID. PID stands for: proportional, integral, and derivative, denoted P, I, 

D. It is the most commonly used feedback control technique. It minimizes the error by measuring the difference 

between the output value and the required set-point and adjusting the control inputs. 

Control systems combine with optimization methods to improve quality and reduce development costs to 

achieve high-quality output [20]. In [12], PID gain parameters coefficients are tuned manually. Although the 

control technique is PID, [12] used PDI instead because the D-control term contributes more to the application's 

accuracy. The robot in [12] used an infrared sensor as a feedback to avoid obstacles and find cargo manually. 

Because of the stability of their system, finding the best gain would be a problem.  

The cuckoo optimization method is used to design the PID controller, which updates the translation 

& angular velocities to track the path [9]. The objective function is evaluated by calculating individual errors 

in three (x, y, and theta) directions. The proposed method is validated by analyzing the simulations for different 

paths. 

Cuckoo Search is an evolutionary optimization algorithm effective for solving non-linear problems 

with higher accuracy and convergence rate. To calculate PID parameters cuckoo algorithm is an effective 

method. When used in mobile robot velocity equations, the obtained PID parameters provide a path that is very 

much close to the desired result.  

An advanced fuzzy immune PED-type control algorithm is proposed for robot path tracking. The 

tracking controller combines an organism's fuzzy control and immune feedback mechanism with conventional 

PID control. The proposed methods mixed connection of conventional PID and P-type immunity feedback 

controllers. So some parameters can point to their control performance individually. 

Meanwhile, the controller's parameters are optimized by an immune genetic algorithm. The 

effectiveness of the proposed method is demonstrated by a series of simulation and comparison studies [20]. 

So a fuzzy compensator is added to improve control performance. Finally, the proposed control system has 

been evaluated through computer simulation to demonstrate the improved results [16]–[18]. 

Another method to use autotune is used Artificial neural network (ANN) [13]. BP neural network self-

tuning PID controller combines BP neural network and the traditional PID control advantages, tuning PID three 

coefficients based on neural network in real-time online learning [2]. This controller has better robustness and 

adaptability than the traditional PID controller. 

Each autotunes method has a different performance and produces different results in different cases. 

Even though not in autotune cases, BSA and PSO proved to optimize complex optimization [19]. In the 

DDWMR PID control system, many variables must be considered in the optimization. Therefore, based on the 

previous research, this paper implements and compares offline autotune methods performance in the DDWMR 

control system using BSA and PSO. The chosen feedback gain is then tested in a different trajectory to calculate 

and analyze the performance metric. 

 

2. RESEARCH METHOD  

2.1. DDWMR Kinematic Models 

The model of DDWMR is a mathematic equation representing the relation between robot input and 

output of robot movement. The robot's input is the right and left wheels. In contrast, the output is robot velocity 

and position in translation and rotation spaces. Figure 1 and Figure 2 describe all robot kinematic variables. 

 

 
Figure 1. DDWMR Kinematics Variables from Top View 
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Figure 2. DDWMR Kinematics Variables from Side View 

 

The robot can do a translational movement if there is any movement from the right and left wheels. 

The value of translation velocity and angular velocity is affected by right and left wheels velocity. The robot 

will move in straight lines if each wheel moves at the same velocity. If there is any difference between the right 

and left wheel's velocity, the robot will turn left or right based on the difference, as shown in Equations (1) and 

(2). 

 𝑣 =
(𝑊𝑟 + 𝑊𝑙) ∗ 𝑟

2
 

 

(1) 

 𝜔 =
(𝑊𝑟 + 𝑊𝑙) ∗ 𝑟

𝐿
 

(2) 

 

 

 

From equation (1), we can project the translation velocity into x-Axis and y-Axis to find the velocity 

in one axis, as shown in Equations (3) and (4). 

 

 𝑣𝑥 = 𝑣 cos 𝜃 
(3) 

 

 𝑣𝑦 = 𝑣 sin 𝜃 (4) 

 

Utilizing Equations (3) and (4), in discrete, we can write the position in x-Axis, y-Axis, and angular 

heading using Equations (5), (6), and (7). 

 𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑥𝑑𝑡 
(5) 

 

 𝑦𝑛+1 = 𝑦𝑛 + 𝑣𝑦𝑑𝑡 
(6) 

 

 𝜃𝑛+1 = 𝜃𝑛 + 𝜔 𝑑𝑡 (7) 

 

Table 1 explains the symbol and unit for mentioned equations. 

 

Table 1. DDWMR Kinematic Variable and Symbols 
Symbol Parameter Unit 

𝑣 Translation Velocity m/s 

𝑣𝑥 Velocity in x Axis m/s 

𝑣𝑦 Velocity in y Axis m/s 

𝑊𝑟 Right Wheel Angular Velocity rad/s 

𝑊𝑙 Left Wheel Angular Velocity rad/s 

r Wheel radius m 

L Half the distance between wheels m 

𝜃 Robot angle calculated from the x Axis rad 

𝜔 Robot Angular velocity rad/s 

𝑥 Robot position in x Axis m 

𝑦 Robot position in y Axis m 

 

 

2.2. Particle Swarm Optimization 

PSO is one bio-inspired algorithm to search for the optimal solution in a given function. PSO can be 

used to find an optimal value in a continuous problem such as autotune. Even though PSO is a simple algorithm, 
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it has several hyperparameters that need to be tuned first. The objective of PSO is to minimize a function. The 

function can consist of one or more variables and an unknown global minimum. 

PSO imitates the works of birds searching for food, which we call a particle. Each particle did not 

know where the global minimum was. However, each particle knows the fitness value from the given fitness 

function and the position in Equation (8). 

 𝑃𝑖
𝑡 = [𝑥0,𝑖

𝑡  𝑥1,𝑖
𝑡  𝑥2,𝑖

𝑡  𝑥3,𝑖
𝑡  𝑥4,𝑖

𝑡 … 𝑥𝑛,𝑖
𝑡 ] 

(8) 

 

Where, 

n = particle-n 

i = number of variable 

t = time 

Each of the particles moves with a velocity and updates its position as shown in Equation (9) 

 

 𝑉𝑖
𝑡 = [𝑣0,𝑖

𝑡  𝑣1,𝑖
𝑡  𝑣2,𝑖

𝑡  𝑣3,𝑖
𝑡  𝑣4,𝑖

𝑡 … 𝑣𝑛,𝑖
𝑡 ] (9) 

 

Three parameters affect each particle's movement: inertia or velocity, cognitive or personal intuition, 

and social or group knowledge. Each particle tries to find the global minimum using intuition, changing its 

speed as in Equation (10), and updating its position (11). However, it is also affected by group knowledge. 

 

 𝑉𝑖
𝑡+1 = 𝑤𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡(𝑖)
𝑡 − 𝑃𝑖

𝑡) +  𝑐2𝑟2(𝑃𝑏𝑒𝑠𝑡𝐺𝑙𝑜𝑏𝑎𝑙(𝑖)
𝑡 − 𝑃𝑖

𝑡 
(10) 

 

 𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡+1 + 𝑉𝑖
𝑡+1 (11) 

 

The three parameters control the level of exploration and exploitation. Exploitation is the ability of 

particles to target the best solutions found so far. Exploration, on the other hand, is the ability of particles to 

evaluate the entire research space. Hyperparameter in Table 2 affects the exploration and exploitation ability. 

 

Table 2. Particle Swarm Optimization Parameter and Symbols 
Symbol Parameter Explanation 

𝑤 Inertia the ability of the swarm to change its direction 

r1 Cognitive acceleration Random personal acceleration weight at each iteration 

r2 Social acceleration Random group acceleration weight at each iteration 

𝑐1 Cognitive Hyperparameter the ability of the group to be influenced by the best personal solutions 

𝑐2 Social Hyperparameter the ability of the group to be influenced by the best global solutions 

 

Based on each PSO step, the overall algorithm works by following the procedure in Figure 3. The first 

step is an initialization of the parameter in Table 2. At first, particle position and velocity are randomly 

generated in each iteration. Each iteration will consist of a fitness function calculation and velocity update 

based on the fitness function calculation. The last is position update using the calculated velocity. 

 

 
Figure 3. Particle Swarm Optimization Flowchart 
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2.3.  Bird Swarm Algorithm 

The BSA used in this research is based on [19]. The birds' swarm algorithm is another bio-inspired 

algorithm that could solve an optimization problem. The BSA's biological fundamental is birds' social 

interaction when searching for food and behaviour when encountering a predator. 

The first thing birds can do is fly or on the ground eat for food. There are two roles when birds are not 

flying: foraging in their flock or vigilance. The purpose of foraging in the flock is to get more information. 

Whilst vigilance is to check for a predator. 

While flying, there are two roles in a bird's flock: the producer actively searching for food and the 

scrounger who only feeds from the found food. Individual birds can switch between producer and scrounger. 

Figure 4 shows the flow of how the BSA works. 

 

 
 

Figure 4. Bird Swarm Algorithm Flowchart 

 

When the birds are foraging, the mathematical model that represents it is Equation (12) 

 𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + (𝑝𝑖.𝑗 − 𝑥𝑖.𝑗
𝑡 ) × 𝐶 × 𝑟𝑎𝑛𝑑(0,1) + (𝑔𝑗 +  𝑥𝑖.𝑗

𝑡 ) × 𝑆 × 𝑟𝑎𝑛𝑑(0,1) (12) 

 

And for vigilance state shown in Equation (13) 

 𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + 𝐴1 (𝑚𝑒𝑎𝑛𝑗 − 𝑥𝑖.𝑗
𝑡 ) × 𝑟𝑎𝑛𝑑(0,1) + 𝐴2(𝑝𝑘.𝑗 −  𝑥𝑖.𝑗

𝑡 ) × 𝑟𝑎𝑛𝑑(−1,1) (13) 

 

When the bird is flying, if the bird is a producer, it can search for food with a model in Equation (14) 

 𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + 𝑟𝑎𝑛𝑑(0,1) × 𝑥𝑖.𝑗
𝑡  (14) 

 

While if the bird is a scrounger, the mathematic model is in Equation (15) 

 𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + (𝑥𝑘,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) × 𝐹𝐿 × 𝑟𝑎𝑛𝑑(0,1) (15) 

 

Seven parameters must be considered at initialization based on all bird swarm equations. The 

parameter is explained and mentioned in Table 3. 
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Table 3. Birdswarm Algorithm Parameter 
Symbol Parameter Value 

𝐶 Constant parameter 1 

S Constant parameter 1 

A1 Constant parameter 1 

𝐴2 Constant parameter 1 

FL Followed Coefficient Random*0.2 + 0.8 

𝑃 Probability of Foraging Random*0.4+0.5 

FQ Frequency of  bird flight behaviour 10 

 

2.4. Control System 

The Control system in this paper consists of a plant or the jetbot, converter, control, and trajectory 

generator. The jetbot is the plant we want to control with the right and left wheel's angular velocity input. A 

converter is a function to convert from robot translation velocity and angular velocity into robot right and left 

wheels velocity. Control is to generate a signal that will control the robot's position. The trajectory is a function 

to produce a continuous trajectory. Figure 5 shows the control system diagram explained before. 

 

 
Figure 5. Control System Diagram 

 

 

There is three error the system calculates that is translation velocity error, angular velocity error, and 

heading error. Those three inputs of the PI control system consist of proportional gain and integral gain. As 

such, there is six feedback gain in total in Figure 5. 

There are three errors processed in this control system: error position in x-Axis, y-Axis, and heading 

error calculated with Equations (16), (17) and (18). 

 

 𝑒𝑥 = 𝑥𝑟 − 𝑥 (16) 

 𝑒𝑦 = 𝑦𝑟 − 𝑦 (17) 

 
𝑒𝜃 =  𝑎𝑡𝑎𝑛2(𝑒𝑦, 𝑒𝑥) 

 
(18) 

From the calculated error, we can get the straight distance of the robot and the reference using 

Equation (19) 

 𝑑 =  √𝑒𝑦
2 + 𝑒𝑥

2 (19) 

 

Calculation of robot velocity error shown by Equation (20) and the velocity control signal in Equation 

(21) 

 𝑒𝑣 =  𝑑 cos 𝑒𝜃 (20) 

 𝑣 =  𝐾𝑝1 ∗ 𝑒𝑣 + 𝐾𝑖1  ∫ 𝑒𝑣𝑑𝑡 (21) 
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Equation (22) and Equation (23) is the mathematical equations to calculate the angular velocity.  

 𝑒𝑤 =  cos 𝑒𝜃 sin 𝑒𝜃 (22) 

 𝜔 = 𝐾𝑝2 ∗ 𝑒𝑤 + 𝐾𝑖2  ∫ 𝑒𝑤𝑑𝑡 +  𝐾𝑝3 ∗ 𝑒𝜃 + 𝐾𝑖3  ∫ 𝑒𝜃𝑑𝑡 (23) 

 

Equations (24) and (25) can change from translation and angular velocity into robot right and left 

wheels angular velocity. 

 
𝑊𝑟 =

(2𝑣 + 𝜔𝐿)

2𝑅
 

 
(24) 

 
𝑊𝑙 =

(2𝑣 − 𝜔𝐿)

2𝑅
 

 
(25) 

All the error is an important parameters to be considered. This paper uses IAE and ITAE in Equation 

(26) and Equation (27) as the performance metric. 

 𝐼𝐴𝐸 =  ∫|𝑒𝑥| + |𝑒𝑦| (24) 

 𝐼𝑇𝐴𝐸 =  ∫ 𝑡(|𝑒𝑥| + |𝑒𝑦|) (25) 

 

2.5.  Autotune 

Autotune in this paper is an offline autotune. Offline autotune means the gain calculated before being 

implemented into the robot. As such robot cannot update the gained feedback value when moving. 

The first process for autotuning using the bio-inspired algorithm is to define the reference trajectory 

and fitness function. This paper uses five different reference trajectories: circle, square CW, square CCW, 

lemniscate of Bernoulli, and point that form a square. The fitness function calculates the IAE and ITAE from 

the difference between robot position and the reference trajectory. 

The next step is to do a feedback gain search using PSO and BSA. The result of PSO and BSA 

optimization is the six feedback value for each iteration and the IAE and ITAE values. The result of each 

method is then compared and analyzed in Figure 6 before being implemented into the simulation. 

 

 
Figure 6. Autotune Process Flow Chart 
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3. RESULTS AND DISCUSSION  

This work does an offline autotune process using two optimization methods to tune six feedback gains 

in the DDWMR position control problem. Autotune is a real-world problem; as such, it is continuous, so this 

work use method that can handle continuous spaces. The chosen optimization methods are BSA and PSO. 

This section will explain three research results. The first one is the result and explanation of several 

autotune schemes. Second is the test of every feedback gained from the first result in a different kind of 

trajectory. The last is the robot position graph. 

This work has six parameters tuned with four schemes that combine two methods and two fitness 

functions, as shown in Table 4. It gives a different result of feedback gain, especially the integral gain. The 

quality of the autotune can be seen from the IAE and ITAE values. The smaller value of IAE and ITAE means 

better performance of feedback gain. 

Error correction mainly uses the proportional feedback gain. In this work, the maximum proportional 

value is 10. Proportional gain affects the robot input value in equation error. It multiplies it by the proportional 

gain, which means a more significant error correction. Although more significant proportional gain gives better 

error correction, it also means more work for the right and left motor and more significant acceleration. 

There is no saturation in the motor velocity model; the motor velocity is in continuous value. Some 

research provides a dynamic model of the actuator. However, Jetbot by Waveshare has no exact value of motor 

DC parameter. The proportional gain value will approach the maximum search value even if the search range 

increases because the motor velocity is not saturated. 

Unlike the proportional value, the integral value plays a steady-state correction in the tracking 

problem. The integral will calculate robot input value based on the accumulated error, the more significant the 

impact of integral control. In the tracking problem, integral control takes a vital role in correcting the robot 

position if the robot position is left behind the moving coordinate. 

The chosen integral value for Ki1 is essential. Given proportional gain near the value of 10, the robot 

is still left behind by the reference trajectory. As such, tuning an integral gain Ki1 is an excellent approach for 

making a reasonable DDWMR tracking control and minimizing the fitness function. 

Ki2 and Ki3 is an integral gain that affects the angular velocity of the robot with a different error input. 

The angular velocity integral feedback gain is more significant than the translation velocity feedback gain. It 

means there is more possibility of angular velocity left behind than translation velocity.  

The importance between translation velocity and angular velocity is difficult to determine. From the 

kinematic models, the angular velocity affects the robot's right and left wheel's distance. That information only 

gives us more wheel distance; the robot needs more work to turn. However, it does not give us more information 

to determine the feedback gain. Here are the needs for autotune for the user that does not have much knowledge 

of the plant. 

 

Table 4. PI Feedback Gain Autotune Result 
Method Fitness Function Best IAE Kp1 Kp2 Kp3 Ki1 Ki2 Ki3 

PSO IAE 41.19 10 9.855239 9.99951 3.550765 5.616164 9.839051 

BSA IAE 43.686203 10 10 10 2.790655 0.25397 4.378453 

PSO ITAE 137.6 9.947472 9.562999 9.993383 3.229908 8.456699 9.434133 

BSA ITAE 129.0633 9.992228 7.635334 9.956129 3.208382 6.839019 9.974985 

 

Table 4 shows the research using IAE and ITAE as the fitness function. IAE is the commonly used 

metric to determine the quality of tracking response. ITAE was used to emphasize the most updated error than 

the previous error. 

Table 5 shows the tracking performance of every feedback gain in Table 4 for five different 

trajectories. There is only a slight difference between the result of IAE and the ITAE as the fitness function in 

autotune. It means the importance of time is insignificant to calculate as the fitness function. 

The continuous trajectory gives a good and stable result. The only important point is that the more 

and more significant the turn will increase the IAE. It is a gap that is interesting to improve further. 

Unlike the continuous trajectory result, the point trajectory shows a significant increase in IAE. 

Increasing IAE in point trajectory affects the motor speed increase until the robot reaches the point. However, 

it is more challenging to do a break because the velocity is already high. The robot must turn in a more 

significant curve to compensate for the position error. This behaviour always happens on every square edge. 

The chosen feedback gain from the proposed offline autotune scheme is not appropriate to implement 

chosen feedback gain for tracking points with significant position differences. Integrator is not a good option 

for tracking a far separated position because it will significantly increase the control signal. 

 

 



                ISSN: 2089-3272 

IJEEI, Vol. 10, No. 3, September 2022:  644 – 654 

652 

Table 5. Feedback Gain Result in Different Trajectory 
Method (Fitness Function) Trajectory IAE ITAE 

PSO (IAE) Bernoulli 24.61 111.58 
 Circle 29.76 127.87 

 Square CCW 37.04 133.93 

 Square CW 35.19 132.84 
 Square Point 201.17 1079.59 

BSA (IAE) Bernoulli 24.49 111.01 

 Circle 29.64 127.25 
 Square CCW 36.90 133.18 

 Square CW 35.04 132.09 

 Square Point 201.24 1079.99 
PSO (ITAE) Bernoulli 24.61 111.58 

 Circle 29.76 127.87 

 Square CCW 37.04 133.93 
 Square CW 35.19 132.84 

 Square Point 200.76 1077.28 

BSA (ITAE) Bernoulli 24.63 111.48 
 Circle 29.77 127.47 

 Square CCW 37.52 134.88 

 Square CW 35.40 133.64 
 Square Point 198.41 1060.53 

 

Two different optimization methods were used in this research. The performance between the two 

methods can be seen in Figure 7 for the IAE fitness function and ITAE fitness function. Although PSO's initial 

result is more significant than BSA, the PSO algorithm gives smaller IAE and ITAE values than the BSA. PSO 

also takes fewer iterations to convergence than BSA. 

The number of iterations is not a parameter that determines good performance in the offline autotunes 

process. As such, we can set it aside. However, the importance of offline autotune is the IAE and ITAE value. 

We can see that the PSO algorithm gives a better result from two different fitness functions. 

 

 
(a) 

 
(b) 

Figure 7. (a) IAE Fitness Function Convergence Graph (b) ITAE Fitness Function Convergence 

 

Figure 8 shows the response of the tracking trajectory for curved reference. There is no sharp turn in 

a curved trajectory. Although the starting point and the start reference are separate for 0.2 meters in x-Axis and 

y-Axis, the control system can create infinite and circle symbols after several steps. 

 

 
(a) 

 
(b) 

Figure 8. The curved trajectory of robot tracking(dotted black) and reference (grey). (a) Infinite symbol (b) 
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As for the square trajectory in Figure 9, the reference result shows a slight deformation at first and at 

the corner. Response for the CW square trajectory is slightly different from the CCW and previous curved 

trajectory. The first response of the robot is to move straight backwards following the reference in the back. 

That behaviour happens because the heading error is small compared to the position error. As such, the robot 

tried to correct the position first. After the reference move in front, the robot starts to align the y axis and turn 

to the reference point. The response shows that the autotune and control method can handle continuous 

automatically. 

 

 
(a) 

 
(b) 

Figure 9. The square trajectory of robot tracking(dotted black) and reference (grey). (a) Square CCW (b) 

Square CW 

 

Significant deformation can be seen in the square point trajectory in Figure 10. Although the robot 

reaches the edge of the square with a small error, the robot trajectory shapes not form a square shape. When 

the robot reaches the square edge, the wheel's speed is too big to do a sudden break. The high speed happens 

because the integral feedback continuously increases the velocity until it reaches the destination. The 

accumulated gain from integral feedback still increases every time, making the response chaotic, the velocity 

increasing, and the error bigger every second.  

 

 
Figure 10. The square edge point only trajectory of robot tracking(dotted black) and reference (grey). 

 

Proposed methods can autotune for six parameters consisting of three proportional gains and three 

integral gains. The chosen gain value can make the robot track a continuous trajectory with a slight difference 

in each step. However, the proposed autotune scheme is unsuitable for tracking a point with a significant 

distance because of the big integral gain. 

 

4. CONCLUSION  

In this work, the autotune using BSA and PSO is implemented in the DDWMR PI control system and 

can make a robot follow four continuous trajectories without much trajectory deformation. The autotune found 

two proportional and integral gains for each x position feedback, y position feedback and theta feedback with 

IAE and ITAE as the minimized function. Although, in previous research, BSA has a better performance than 

PSO, the IAE and ITAE value of BSA and PSO autotune result in this work is not too different. BSA also has 

more parameters than PSO. 
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