
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 

Vol. 10, No. 2, June 2022, pp. 480~488 

ISSN: 2089-3272, DOI: 10.52549/ijeei.v10i2.3532  480 

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index 

An Extended Kalman Filter for Nonsmooth Attitude Control 

Design of Quadrotors using Quaternion Representation

Adha Cahyadi, Andreas P. Sandiwan, Samiadji Herdjunanto 

1Department of Electrical and Information Engineering, Universitas Gadjah Mada, Indonesia 

Article Info ABSTRACT 

Article history: 

Received Nov 24, 2021 

Revised May 24, 2022 

Accepted Jun 11, 2022 

This paper proposed Extended Kalman Filter specifically designed 

for nonlinear and nonsmooth control system applied in Autonomous 

Quadrotor Control such as sliding mode control. Many controllers 

focused on global stability usually consider exact parameters through 

measurements. Such assumptions are not always possible due to the 

unavailability of sensors or unmeasurable state in real-life condition. 

In this paper, we consider only the angular velocity is possible for 

measurement, i.e., only gyroscope measurement is available. This 

condition is known as omega-state-measurement (OSM). Without 

loss of generality, for theoretical simplification beside gyroscope 

measurement, we assume the orientation measurement represented in 

quaternion is also available. Additive random gaussian noise is 

included to the measurement model to be used in Kalman Filter. 

Finally the proposed Extended Kalman Filter implemented in a PD 

Sliding Mode controller is simulated using many scenarios to verify 

its effectiveness. The Kalman Filter works well in spite of model 

error and disturbance. 

Keywords: 

Sliding mode control 

Attitude control 

Extended kalman filter 

Quaternion representation 

Copyright © 2022 Institute of Advanced Engineering and Science. 

All rights reserved. 

Corresponding Author: 

Adha Cahyadi,  

Department of Electrical and Information Engineering, 

Universitas Gadjah Mada, 

Jl. Grafika No. 2, Depok, Sleman, Yogyakarta, Indonesia. 

Email: adha.cahyadi@ugm.ac.id 

1. INTRODUCTION

Attitude control is the process of controlling the orientation of a rigid body with respect to an inertial 

reference frame. The rigid bodies of interest are, for example, aircraft, helicopter, satellites, and robot arm. This 

problem has been an object of extensive research for decades. 

The first thing that can come into concern is the way the attitude or orientation is represented. There are 

three approaches to represent the attitude of a rigid body, i.e. Euler angles, rotation matrix, and quaternion [1]. 

Euler angle representation is popular because of it provides minimal representation of rotation with its 3 

elements. However, its weakness lies in the existence of singularities at several values of Euler angles [2]. 

Rotation matrix can represent rotation uniquely, but using rotation matrix usually requires complicated 

mathematics. Such inherent property means that control law based on rotation matrix is difficult to design. 

Rotation matrix also presents additional problem because it has 9 elements, which do not constitute minimal 

attitude representation.  Quaternion representation can be used to circumvent the drawbacks of the two preceding 

representations. A quaternion's 4 elements provide global minimal nonsingular representation [3]. Despite its 

advantage, quaternion is not without drawback. Quaternions double-cover the space of rotation, so one 

orientation has two corresponding antipodal quaternions. In several cases, if the control law is not designed 

carefully, the rigid body may have to go through a unnecessary large-angle rotation path instead of a small-angle 
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one, which is called unwinding. However, this unwinding phenomenon can be avoided by careful design process 

like the one presented in [4]. 

The first challenge in designing quaternion-based attitude control law is the nonlinear differential 

equations for dynamics and kinematics. There are many control methods that can be used in solving nonlinear 

control problem, such as linearization-based methods, integral control, feedback linearization, backstepping, and 

sliding mode control [5]. One of the effective methods is sliding mode control, which uses sliding variables. 

Sliding variables can simplify Lyapunov analysis by forming a hierarchy of simple reduced order systems [6]. In 

addition, it can be made robust against external disturbances and unknown dynamics [5]. 

For years, researchers have employed sliding mode control in designing quaternion-based attitude 

control law. In 1995, Lo and Chen proposed smoothing model-reference sliding mode control (SMRSMC) 

algorithm for spacecraft attitude tracking control [7]. The developed control law can successfully track time-

varying attitude set point and improves the undesirable transient response induced in conventional sliding-mode 

controller. Jan and Chiou in [8] developed a robust tracking control scheme using sliding mode control for 

spacecraft large angle maneuver within minimum time. Their published paper showed satisfactory result for 

constant set point. Unfortunately, the performance of their controller under changing set point was not evaluated. 

Yeh in [9] developed sliding mode attitude tracking controller and sliding-mode adaptive attitude tracking 

controller for spacecraft with thrusters. It was shown that the developed controllers were able to track changing 

set points and perform well under inertia matrix uncertainty as well as disturbance. Guo, Song, and Li in [10] 

presented two terminal sliding mode controllers that could achieve finite-time stability. In addition, it could 

avoid unwinding phenomenon is robust against bounded disturbance. Unfortunately, the developed control laws 

were complicated. Tiwari, Janardhanan, and Nabi in [11] presented a robust adaptive finite-time sliding mode 

attitude tracking control for rigid spacecraft. The simulation of their control law demonstrated the effectiveness 

of the developed control law under the presence of external disturbance, inertia uncertainties, and constrained 

control input. Despite its effectiveness, the control law was also complicated. Meanwhile, the weakness of [7] 

and [9] was their inability to avoid unwinding, as demonstrated by Lopez and Slotine in [4]. To address the 

weaknesses of previous studies, Lopez and Slotine in [4]  developed 3 control laws based on sliding mode 

scheme. One of them, namely nonlinear PD sliding control, is interesting to be studied further because it is able 

to avoid unwinding phenomenon, perform well under bounded disturbance, and much simpler than the control 

laws in [10] and [11]. 

In a realistic scenario, the quantities measured by sensors are always disturbed by random noise. Thus, 

it is reasonable to include a state estimator that is able to filter random noise into a control algorithm. Roughly 

speaking, existing state estimation studies can be divided into two groups. In the first group, the state estimation 

is the primary concern; although a particular study incorporates a control algorithm, the result of state estimation 

is not used by the control algorithm. In the second group, the state estimation result is used by the control 

algorithm. The second group represents the realistic scenario because the control algorithm must use result from 

state variable estimation, which filters out random noise that disturbs true state variable values during 

measurement process by sensors. The family of filtering algorithm that is very popular is the Kalman filter 

family, which includes Kalman Filter (for linear systems), and Extended Kalman Filter (EKF) as well as 

Unscented Kalman Filter (UKF) (for nonlinear systems). There are several studies in the automatic control field 

that present a coupled estimator-controller using Kalman filter family. Jafarboland, Sadati, and Momeni in [12] 

presented a robust tracking control scheme of a satellite for large rotational maneuvers. The estimator featured 

combined discrete and continuous EKF, while the controller employs sliding mode method with perturbation 

estimation. The estimator was proven to be capable of achieving small estimation error, while the controller was 

able to drive the state variable values close to the desired set points. Tarhan and Altug in [13] presented a 

coupled estimator-controller scheme with catadioptric camera. The attitude of the quadrotor is estimated using 

EKF, and the result of attitude estimation is incorporated into control law calculation. The experimental results 

showed that the coupled estimator-controller can yield bounded attitude error that is close to the set points. 

Kwon, Lee, and You in [14] presented a sliding mode attitude control for quadrotor that incorporated EKF for 

state estimation. Stability near the desired set points can be reached, but unfortunately, the study lacks the 

explanation for the stability of the control algorithm that is coupled with EKF. All of [12], [13], and [14] used 

Euler angle attitude representation, not quaternion. 

The main interest of this paper is the nonlinear PD sliding control algorithm in [4]. The reason why it is 

interesting is that it is simple and is capable of performing attitude tracking task under bounded disturbance, 

which has been demonstrated in the paper. However, the algorithm has not incorporated any state estimation 

method. Other previous studies of sliding mode attitude control already reviewed here have not incorporated any 

state estimation method as well. Thus, it is of interest to develop a sliding mode controller coupled with EKF 

estimator. The main contribution of this work is the improvement of nonlinear PD sliding controller from [4] by 

attaching a state estimator using EKF. The main reason for using EKF is that it has been the workhorse of 
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attitude determination for satellites [15], so it can be expected that EKF will work well for the problem presented 

in this paper. In addition, it also provides an ready-to-use algorithm for filtering noise from measurement. 

The remainder of this paper is arranged as follows. First, Section 2 explains the plant dynamics. Next, 

Section 3 explains the design of the control law that is used to achieve control objective. Section 4 explains the 

design and the numerical simulation result of the attitude estimator. Section 5 proceeds by coupling the estimator 

and the controller. The main result of this research is shown in Section 5. Section 6 ends this paper by a 

conclusion. 

 

2. PLANT DYNAMICS 

The plant is a rotating rigid body whose dynamics is described using quaternion representation. 

Quaternion is a standard representation that can be found in many textbooks in flight dynamics such as in [16]. A 

quaternion describes rotation in 3 dimensions similarly to a complex number describes rotation in 2 dimensions. 

It provides global nonsingular parameterization of the space of rotation at the cost of using 4 real numbers 

instead of 3 (like Euler angles) and double-covering the space of rotation. A quaternion q consists of scalar part 

q0 and vector part q that has 3 components, i.e. 

𝒒 = [
𝑞0

�⃗�
] (1) 

where 𝑞0 ∈ ℜ and  �⃗� ∈ ℜ3. 

The inverse of a quaternion q is the conjugate quaternion 𝒒 ∗= [
𝑞0

−�⃗�
]. Quaternions for representing 

rotation are constrained to have unit nowm, i.e. ||q|| = 1; this kind of quaternion is called unit quaternion. The 

product between two quaternions, denoted by multiplication operator ⊗, is defined as 

𝒑 ⊗ 𝒒 = [
𝑝0𝑞0 − �⃗�𝑇�⃗�

𝑝0�⃗� + 𝑞0�⃗� + �⃗� × �⃗�
]. (2) 

The quaternion attitude dynamics is written as 

.

,
0

2

1

τJωωωJ

ω
qq
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 (3) 

where 𝝎 ∈ ℜ
3
is the angular velocity with respect to body frame, J is a symmetric 3-by-3 inertia matrix, and 

𝝉 ∈ ℜ
3
 is the control input torque.  

 

3. CONTROL LAW DESIGN 

The control law design in this paper is based on [4]. However, in this paper, the external disturbance 

and unknown dynamics are not considered. First, the error quaternion qe is defined as 𝒒𝑒 ≡ 𝒒𝑑 ∗⊗ 𝒒  where qd* 

is the conjugate of the desired quaternion and q is the current quaternion at time t, q = q(t) (the explicit time 

dependence is omitted for the sake of brevity). Meanwhile, the angular velocity error is defined as 𝝎𝑒 ≡ 𝝎 −
𝝎𝑑, where 𝝎𝑑 is the desired angular velocity. The dynamics of the error quaternion is  

�̇�𝑒 =
1

2
𝒒𝑒 ⊗ [

0
𝝎

]. (4) 

The design of the control law begins with the sliding variable s, which is defined as 

𝒔 ≡ 𝝎𝑒 + 𝜆 𝑠𝑔𝑛+(𝑞𝑒0) �⃗�𝑒, (5) 

with 𝜆 > 0 and 

𝑠𝑔𝑛+ ≡ {
1, 𝑥 ≥ 0

−1, 𝑥 < 0
 (6) 

Let the manifold S be defined as 𝑆 ≡ {( 𝑞→
𝑒

, 𝝎𝑒): 𝒔(�⃗�𝑒 , 𝝎𝑒) = 𝟎}. It has been shown in [4] that, if the manifold S 

is made invariant via feedback, the error quaternion qe converges to identity quaternion exponentially. 

The nonlinear PD sliding control law proposed in [4] is 

𝝉 = 𝑱�̇�𝑑 + 𝝎 × 𝑱𝝎 − 𝜆𝑱 𝑠𝑔𝑛+(𝑞𝑒0)
𝑑�⃗⃗�𝑒

𝑑𝑡
− 𝑲𝑎𝑡𝑡𝒔, (7) 

Where Katt is a diagonal, positive definite 3-by-3 matrix. Without disbance and unknown dynamics, this 

controller yields asymptotic stability. As in [4], we take the Lyapunov function as 

𝑉 = 𝒔𝑇𝑱𝒔. (8) 

Differentiation with respect to time yields 
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  (9) 

Substituting equation (7) into (9) yields 
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�̇� = −2𝒔𝑇𝑲𝑎𝑡𝑡𝒔 = −2 ∑ 𝑘𝑖𝑠𝑖
23

𝑖=1 , (10) 

which mathematically proves asymptotic stability. 

The preceding mathematical analysis is supported with numerical simulation result. For this purpose, 

the set point is given via yaw (𝜓), pitch (𝜃), and roll (𝜑) (YPR) angle. The desired YPR values are time-varying, 

given by 𝜓𝑑(𝑡) = 𝜃𝑑(𝑡) = 𝜑𝑑(𝑡) = (𝜋 6⁄ ) 𝑐𝑜𝑠(0.5𝑡). These YPR values are then converted to yield 𝑞𝑑(𝑡). 

Figure 1 shows the attitude tracking result in quaternion representation. It can be seen that the output curve 

(blue) oervlaps with desired curve (red) after several seconds. 

 
Figure 1. Attitude tracking in quaternion representation. 

 

4. ATTITUDE ESTIMATOR 

Before coupling the attitude estimator with the controller, it is important to know the estimator's 

performance when it is decoupled from the controller. In other words, we will evaluate the performance of the 

estimator alone, and the control law is calculated using exact state variable values, not the estimated ones. After 

establishing the good attitude estimator in this section, that estimator will be coupled with the contro law in the 

next section. This section is divided into two subsections. The first subsection explains the derivation of the 

estimator algorithm, while the second subsection evaluates the performance of the estimator. 

 

4.1. Derivation of Estimator Algorithm 

The attitude estimator used in this paper is the Extended Kalman Filter (EKF). EKF is an extension of 

continuous-time Kalman Filter for nonlinear system. The nonlinear dynamic model and nonlinear measurement 

model are respectively expressed as 

�̇� = 𝒇(𝒙, 𝑡) + 𝑮𝒘,   𝐰~𝑁(0, 𝑄(𝑡)) (11) 

and 

𝒛 = 𝒉(𝒙, 𝑡) + 𝒗,   𝐯~𝑁(0, 𝑅(𝑡)) (12) 

where w and v are process and measurement noise, respectively. Following the Kalman Filter relation, w and v 

are assumed to be zero-mean random variables that are uncorrelated w.r.t. time where the covariance are Q(t) 

and R(t), respectively. The explicit time dependence for x, G, z, w, and v have been omitted for the sake of 

brevity. In our case, the process noise is assumed to be absent. The state variable is 𝒙 = [
𝒒
𝝎

], so there are 7 

elements in the vector x. The state dynamics f(x, t) is the closed-loop dynamics of the system, provided by 

equation (3) together with control law (7). 

There are two options for the state measurement function h(x, t). The first option is 

𝒉(𝒙, 𝑡) = [
𝟎4×4 𝟎4×3

𝟎3×3 𝑰3×3
] [

𝒒
𝝎

] ≜ 𝑯𝑂𝑆𝑀 [
𝒒
𝝎

], (13) 

where 𝟎𝑚×𝑛 denotes an m-by-n zero matrix and 𝑰𝑚×𝑚 denotes an m-by-m identity matrix. The first 

option implies that only the angular velocity is available for measurement. This represents the situation where 

only gyroscope measurement is available. This option will be called omega-state-measurement (OSM). The 

second option is 

𝒉(𝒙, 𝑡) = 𝑰7×7 [
𝒒
𝝎

] ≜ 𝑯𝐹𝑆𝑀 [
𝒒
𝝎

], (14) 

which means that all state variable is observable. This option represents the theoretical simplification of the 

situation where, in addition to gyroscope measurement, orientation measurement represented in quaternion is 
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also available. In the real world, orientation can be measured using, for example, accelerometer and 

magnetometer. This option will be called full-state-measurement (FSM). In this option, the measurement of q is 

directly disturbed by additive random gaussian noise. Using the available measurement matrix, the predicted 

state measurements are 

�̂� = 𝑯𝑂𝑆𝑀�̂� (15) 

for  the OSM option, and 

�̂� = 𝑯𝐹𝑆𝑀�̂� (16) 

for  the FSM option. The differential equation for the covariance matrix P is 

�̇� = 𝑭𝑷 + 𝑷𝑭𝑇 + 𝑮𝑸𝑮𝑇 − �̄�𝑹�̄�𝑇 (17) 

where F is the linearization of 𝒇(𝒙, 𝑡) near to �̂�. 
Using where H is the linearization of 𝒉(𝒙, 𝑡) near to �̂�,  the Kalman gain matrix �̄� is calculated as 

�̄� = 𝑷𝑯𝑹−1. (18) 

The Kalman gain matrix �̄� is divided into two parts, whose purpose is going to be clear soon. The first 

part �̄�1 consists of the 1st to 4th row of �̄�, while the second part �̄�2 consists of the 5th to 7th row of �̄�. Both 

�̄�1 and �̄�2 have 7 columns like �̄� does. 

 
Figure 2. Complete block diagram of proposed control system 

 

The differential equation for the state estimate of the closed-loop system is divided into three parts. The 

first part is calculating the estimate for quaternion, i.e. 

�̇̂� =
1

2
�̂� ⊗ [

0
�̂�

] + �̄�1(𝒛 − �̂�). (19) 

The second part is calculating the control law 𝝉. The control law calculation is using estimated �̂�, i.e. 

𝝉 = 𝑱�̇�𝑑 + �̂� × 𝑱�̂� − 𝜆𝑱 𝑠𝑔𝑛+(𝑞𝑒0) �̇⃗�𝑒 − 𝑲𝑎𝑡𝑡𝒔 (20) 

where the estimated value of the angular velocity is solved from 

�̇̂� = 𝑱−1(−�̂� × 𝑱�̂�) + 𝑱−1𝝉 + �̄�2(𝒛 − �̂�). (21) 

Finally, the F and H matrix in equation (17) is approximated by 

𝑭 ≈
𝜕𝒇(𝒙,𝑡)

𝜕𝒙
|

𝒙=�̂�
, 𝑯 ≈

𝜕𝒉(𝒙,𝑡)

𝜕𝒙
|

𝒙=�̂�
. (22) 

which results in a 7-by-7 square matrix, respectively. The complete system consisting the estimated state and the 

modified control law (20) is illustrated in Figure 2. It seen that the previously unrealistic control law can be 

successfully implemented using the proposed scenario. 

 

4.2. Numerical Simulation Result of Attitude Estimator 

The attitude estimator that has been derived is then tested in numerical simulation. Numerical 

simulation is conducted using MATLAB script with ode45 solver. Because the process noise is assumed to be 
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absent, the process noise covariance Q(t) is equal to zero. The measurement noise is generated using randn 

function that generates random numbers under normal distribution. The standard deviation for measurement 

noise 𝜎𝑣 is equal to 10-3, while the measurement noise covariance is 𝑅(𝑡) = 𝜎𝑣
2 = 10−6. The initial value of 

covariance matrix P is 𝑷0 = 10−8𝑰7×7. The set points are the same as the set points in the previous section, i.e. 

𝜓𝑑(𝑡) = 𝜃𝑑(𝑡) = 𝜑𝑑(𝑡) =
𝜋

6
𝑐𝑜𝑠(0.5𝑡). The control law is calculated using exact state variable values. The 

initial values of the estimated quaternion and angular velocity are also disturbed by random noise. Both OSM 

and FSM cases are simulated and their results are evaluated. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) Difference between estimated and exact quaternion, OSM case; (b) Difference between estimated 

and exact angular velocity, OSM case; (c) Difference between estimated and exact quaternion, FSM case; (d) 

Difference between estimated and exact angular velocity, FSM case. 

 

First, we evaluate the situation where only the angular velocity 𝝎 is available for measurement, or the 

OSM case. We do not show the output curve of the quaternion because it is the same as Figure 1. Figure a shows 

the difference between estimated and exact quaternion and Figure b the difference between estimated and exact 

angular velocity. It can be seen that although the estimation difference of 𝝎 converges toward zero, the 

estimation difference of q gets larger along with time. These results demonstrates that accurate attitude estimate 

cannot be achieved if only the angular velocity is available for measurement. 

After we have evaluated the situation where only 𝝎 is available for measurement, we now evaluate the 

situation where both the orientation, represented by q, and the angular velocity are available for the 

measurement. Again, we do not show the output curve of the quaternion because it is the same as Figure 1. 

Figure c shows the difference between estimated and exact quaternion and Figure c the difference between 

estimated and exact angular velocity. It can be seen that the estimation differences of 𝝎 and q stay very close to 

zero and do not diverge. These results show that the FSM option is more suitable for the coupling between 

attitude estimator and the controller, which will be discussed in the next section. In addition, the values of the 

EKF parameters, which are provided in the first paragraph of this section, will be used in the estimator-controller 

coupling. Those parameter values have been shown to be suitable for the noise filtering purpose because the 

results shown by Figure c and Figure d. 
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5. ESTIMATOR-CONTROLLER COUPLING 

This section is the core of this paper. After developing a good estimator in the previous section, we now 

proceed into coupling the estimator with the controller. This means that the control law is calculated using 

estimated state variable values. For the EKF algorithm, FSM option is used. Similar to the previous section, this 

section is divided into two subsections. The first subsection will explain the estimator-controller algorithm, while 

the second one will discuss the results of the estimator-controller algorithm. 

 

5.1. Estimator-Controller Algorithm 

The EKF algorithm is the same as mentioned in the previous section. Also similarly, the differential 

equation for the state estimate of the closed-loop system is divided into three parts. The first part is calculating 

the estimate for quaternion, i.e. 

�̇̂� =
1

2
�̂� ⊗ [

𝑜
�̂�

] + �̄�1(𝒛 − �̂�) (23) 

The second part is calculating the control law. Because the control law is calculated using estimated state 

variable values, i.e. �̂� and �̂�, to avoid confusion with the control law calculated using exact q and 𝝎, it will be 

denoted as 𝝉`. It is calculated as 

𝝉` = 𝑱�̇�𝑑 + �̂� × 𝑱�̂� − 𝜆 𝑠𝑔𝑛+(�̂�𝑒0) �⃗̂�
̇
𝑒 − 𝑲𝑎𝑡𝑡�̂� (24) 

It can be noted that the sliding variable is also altered into �̂�, i.e. 

�̂� = �̂�𝑒 + 𝜆 𝑠𝑔𝑛+(�̂�𝑒0) �⃗̂�
̇
𝑒, (25) 

where 𝝎𝑒 = �̂� − �̂�𝑑 and �̂�𝑒 = 𝒒𝑑 ∗⊗ �̂�. The third part is calculating the estimated value of the angular 

velocity, i.e.  

�̇̂� = 𝑱−1(−�̂� × 𝑱�̂�) + 𝑱−1𝝉` + �̄�2(𝒛 − �̂�). (26) 

Because we use the FSM option here, the measurement matrix is 𝑯𝐹𝑆𝑀 = 𝑰7×7. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Results with estimator-controller coupling: (a) Output and desired quaternion, (b) Difference between 

estimated and exact quaternion, (c) Difference between estimated and exact angular velocity, (d) Estimated and 

exact quaternion norms. 
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5.2. Evaluation of Estimator-Controller Coupling 

The EKF parameters for attitude estimation and simulation settings in MATLAB are the same as in the 

previous section. The set points are the same, i.e. 𝜓𝑑(𝑡) = 𝜃𝑑(𝑡) = 𝜑𝑑(𝑡) = (𝜋 6⁄ ) 𝑐𝑜𝑠(0.5𝑡). Figure a shows 

the output and desired quaternion. It is apparent that the output quaternion can converge to the desired 

quaternion quickly (the blue curves quickly overlap with the red curves). Next, Figure b shows that the estimated 

quaternion is close to the exact quaternion. Furthermore, Figure c shows that the estimated angular velocity is 

also close to the exact angular velocity. The norm of the estimated quaternion is also very close to 1, as shown in 

Figure d. The good results that occur in the estimator-controller coupling occur because the EKF has been 

designed properly, as described in the previous section. 

 

 

6. CONCLUSION 

This paper has demonstrated how to design a nonlinear PD sliding controller that is coupled with EKF 

estimator. The success of the estimator-controller coupling relies on the proper design of the EKF attitude 

estimator. Simulation results show that the correct design of the EKF attitude estimator will yield good 

performance when the result of the state estimation is used in calculation of the control law. 
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