
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 

Vol. 6, No. 1, March 2018, pp. 105~109 

ISSN: 2089-3272, DOI: 10.11591/ ijeei.v6i1.395      105 

  

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index 

Dynamic Integrated System for Detecting and Fixing 

Vulnerability Bugs  
 

 

R. Anitha*
1
, M.V.Srinath

2  

1Department of Computer Science, Sengamala Thayaar Educational Trust Women’s College, Sundarakkottai, 

Mannargudi, Tamilnadu, India 
2Sengamala Thayaar Educational Trust Women’s College, Sundarakkottai, Mannargudi, Tamilnadu, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 9, 2018 

Revised Jan 27, 2018 

Accepted Feb 7, 2018 

 

 Bugs are one of the important barriers in the field of software development . 

Concurrent and frequent bugs are non-deterministic in nature and in the time 

of vulnerability testing. It is difficult to detect the dynamic bugs with a high 
representation of vulnerability that causes the damage to the software 

products. Existing vulnerability testing methods relied on the conventional 

static testing techniques of finding and fixing the bugs but it does not show a 

high ratio of they handle or require specific hardware support. It does not 

include in the clustering approach. To overcome the limitations in the 
existing techniques, this proposed methods Modified Particle Swarm 

Optimization (MPSO), Expectation Maximization (EM) Clustering and 

Variable Neighborhood search. The primary input dataset is preprocessed to 

obtain the relevant and irrelevant data partition and optimized dataset was 

given as input to the Modified Particle Swarm Optimization (MPSO) 
technique 

Keyword: 

Bug rejection 

Clustering data 

EM  

Software quality 

Vulnerability testing 

Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

R. Anitha, 

Department of Computer Science, 

Sengamala Thayaar Educational Trust Women’s College, 

Sundarakkottai, Mannargudi, Tamilnadu, India. 

Email: veeanitha@yahoo.in 

 

 

1. INTRODUCTION  

Software Quality Assurance is used to ensure the quality of software in the field of software product 

development. It will improve the standard of the out coming Software Bugs are one of the important factors 

in STLC (Software Testing Life Cycle). The increase of bugs will reduce the software quality. So bug 

detection or prediction will be helpful to the software developers and testers. It also includes the number of 

bugs, non-trivial bugs, number of major bugs, number of critical bugs, number of high priority bugs. Using 

the information the vulnerable part of the software can be identified. The identification will improve the 

software quality assurance. The fundamental idea is to gather insights portraying a program's runtime 

conduct over numerous executions. Clustering analysis concentrates on purely numerical data only. The 

typical clustering algorithms include the k-means, EM algorithm, and their variants. The bug rejection using 

to software testing maintained. The data mining is used to the clustering techno logies. They result in two 

algorithm execution on the software quality assurances testing and vulnerability detection on the work.  

 

 

2. PROPOSED METHOD 

The proposed methodology was the combination of three algorithms such as Modified Particle 

Swarm Optimization (MPSO), Expectation Maximization (EM) Clustering and Variable Neighborhood 

search. The input dataset is preprocessed to prepare the datasets to cluster the irrelevant data removed from 



                ISSN: 2089-3272 

IJEEI, Vol. 6, No. 1, March 2018 :  105 – 109 

106 

the dataset, then the entropy values are calculated to get the maximum vulnerability level of test cases. The 

preprocessed dataset is split up into several subsets. Feature selection is used as next step to reduce the 

execution time of the data. Modified Particle Swarm Optimization (MPSO) is used to predict the bugs in 

eeffective way. Feature reduced data is split up into several clusters. For clustering Expectation 

Maximization (EM) clustering is used to cluster the bugs in repeated manner. Variable Neighborhood Search 

algorithm is used to find the sensitive data in the dataset. This sensitive data will make the software as more 

vulnerable. Vulnerability detection will definitely improve the software quality assurance. 

 

ALGORITHM 1 MPSO  

Preliminaries and Assumptions 

FEATURE SELECTION (MODIFIED PARTICLE SWARM OPTIMIZATION) 

E entropy 

Step1:fori=0: Ado 

   ∑          
   
     

Step 3:end for 

Step 4:forj=0: A.size-1do 

          ∑     
     
     

Step 6:end for 

Step 7:Ig information gain 

Step 8:Ba best attributes 

Step 9:forj=0: A.size-1do 

 Step 10:         

 if         then 

          

         

 Step 11:end if 

Step 12: end for 

 

The MPSO performs the head clustering and calculate the entropy values from the input datasets 

that is equally proportional to the sum of input vulnerability test case datasets. It include the size of values in 

entropy detection found in the first method, then the feature selection can be processed in the next step by 

using the EM technique. 

 

Expectation Maximization Clustering 

Nocnumber of cluster 

Chscluster heads 

Ttotal 

Hphead probability 

fori=0: Nocdo 

                          

 forj=0: Ado 

           

end for 

             

end for 

Npnode probability 

Edeuclidean distance 

Mmaximization 

Shselected head 

fori=0: Noddo 

forj=0: Ado 

           

end for 

             

 forj=0: Nocdo 

       √∑ (             )
 

 
    



IJEEI ISSN: 2089-3272  

 

Dynamic Integrated System for Detecting and Fixing Vulnerability Bugs (R. Anitha) 

107 

    (  )   (    )        

if       then 

         

           

  end if 

 end for 

end for 

 

The number of holo-entropy and entropy of each vulnerability cluster heads was given as input into 

the EM to reduce the dynamic bugs by doing the iteration process with constrained threshold value, then it 

chooses the cluster data size and data clustering in maximum values. The maximum values of vulnerability 

test cases moves into the maximum queue. 

 

Step 4: Vulnerability filtering in dataset in maximum queue. 

Variable Neighborhood Search 

Ttemp 

fori=0: Noddo 

forj=0: Noddo 

      √∑ (             )
 

 
    

if       then 

          

          

  end if 

end for 

end for 

 

Search neighborhood vulnerability a value to maximum vulnerability test cases with threshold 

vulnerability value used by the system and returns the maximum and data minimum values to predict to the 

final daataset.  

 

 

3. RESULT AND DISCUSSION 

The software quality assurance checking on MPSO and EM algorithm is designed for reliable and 

effectivw bg predictions. It had been used to a number of clustering data. Figure 1 expresses the bug 

detection details with filteration reports. 

 

 

 
 

Figure 1. Bugs data filteration 



                ISSN: 2089-3272 

IJEEI, Vol. 6, No. 1, March 2018 :  105 – 109 

108 

This result is testing with vulnerability detection from a cluster in software quality assurances. Bug -

free software is having high quality. It also includes the number of bugs, non -trivial bugs, number of major 

bugs, number of critical bugs, number of high priority bugs in Figure 2. Using this information the vulnerable 

part of the software can be identified. This identification will improve the software quality assurance. The 

fundamental idea is to gather insights portraying a program's runtime conduct over numerous executions.  

 

 

 
 

Figure 2. Bug detection reports  

 

 

The method used Modified Particle Swarm Optimization (MPSO), Expectation Maximization (EM) 

Clustering and Variable Neighborhood search for vulnerability test cases. At preprocessing irrelevant data are 

removed from the dataset and moved into the EM mechanism. Then preprocessed dataset was split up into 

several subsets. Therein data cluster to the process will be done by the EM and vulnerability filter was 

increased drastically by this proposed work whiose details are explained in Figure 3. The quality assurances 

in volatility detection in the execution of this process had given the maximum output ranges when comparing 

to existing techniques. 

 

 

 
 

Figure 3. Vulnerability testing results using proposed method 

 

 

The process was improved to vulnerability detection because of three step process by this proposed  

method includes clustering of each test case heads and then entropy and holo -entropy values were moved to 

found the software quality check test in bug error correction .the chart explain to the improvement to the 

high-level process. First software data upload to the bug and clustering data then software quality assurances 

data detection.  



IJEEI ISSN: 2089-3272  

 

Dynamic Integrated System for Detecting and Fixing Vulnerability Bugs (R. Anitha) 

109 

Finally, many solutions have been introduced to help fixing the dynamic vulnerability bugs. These 

all three dynamic methods that integrate dynamic bug detection and fixing comparing with static methods 

that generate that shows bugs again offline. This model have been simulated using Java 8 with dynamic test 

cases with different parameters shown the better bug detection and fixing and also controls both atomicity 

violations and order violations.  

 

 

4. CONCLUSION 

The proposed technique was shown the success rates in vulnerability bug rejection in software 

quality assurance environments by applying different of testing parameters. The process was tested with 

threshold values and vulnerability constraints at each stage. The combination of three algorithms is integrated 

such as Modified Particle Swarm Optimization (MPSO), Expectation Maximization (EM) Clustered and 

Variable Neighborhood search. It was preprocessing the irrelevant data and vulnerability test case validation. 

Then preprocessed dataset is split up into several subsets. Feature selection is used as next step to reduce the 

execution time of the data. The vulnerability test was detected with different parameters set and achieved the 

maximum bug reduction, that shows this proposed method for vulnerability testing experiments was executed 

in the software quality assurances test beds. In future this system will be tested in software product based 

vulnerability environments. 

 

 

REFERENCES  
[1] Liu, Wangshu, Shulong Liu, Qing Gu, Jiaqiang Chen, Xiang Chen, and Daoxu Chen, "Empirical Studies of a Two-

Stage Data Preprocessing Approach for Software Fault Prediction," IEEE Transactions on Reliability, vol. 65, no. 

1, pp38-53,2016. 

[2] Jafar Al-Kofahi, and Lisong Guo”Static detection of configuration-dependent bugs in configurable software” , 
Proceeding of ICSE '15 Proceedings of the 37th International Conference on Software Engineering, vol.2,pp 795-

796,2015. 

[3] Arun Reungsinkonkarn,“Bug Detection Using Particle Swarm Optimization with Search Space Reduction”  In 2015 

6th IEEE International Conference on Intelligent Systems, Modelling and Simulation (ISMS),pp. 53-57, 2015 

[4] Sokratis Tsakiltsidis, “On Automatic Detection of Performance Bugs”, IEEE International Symposium on Software 
Reliability Engineering Workshops (ISSREW), pp.132-139, 2016. 

[5] B. Caglayan, A. T. Misirli, A. B. Bener, and A. Miranskyy, “Predicting defective modules in different test phases,” 

Software Quality Journal, vol. 23, no. 2, pp. 205–227, 2015 

[6] B. Lucia, L. Ceze, and K. Strauss, “Color Safe: Architectural sup- port for debug and with passion avoiding multi-

variable atomicity violation,” In Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 222–233. 
[7] E. Weyuker, T. Ostrand, and R. Bell, “Comparing the effectiveness of several modeling methods for fault 

prediction,” Empirical Softw. Eng., vol. 15, no. 3, pp. 277–295, 2010. 

[8] Prakash, G., Saurav, N., & Kethu, V. R, “An Effective Undesired Content Filtration and Predictions Framework in 

Online Social Network”, International Journal of Advances in Signal and Image Sciences, 2016; 2(2): 1-8. 

[9] Olanrewaju, R. F., & Azman, A. W., “Intelligent Cooperative Adaptive Weight Ranking Policy via dynamic aging 
based on NB and J48 classifiers”, Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 5, 

no.4, pp.357-365,2017 

[10] Sulthana, R., & Ramasamy, S., “Context Based Classification of Reviews Using Association Rule Mining, Fuzzy 

Logics and Ontology”, Bulletin of Electrical Engineering and Informatics (BEEI), vol.6, no.3,pp.250-255, 2017. 

[11] Rao, R. R., & Makkithaya, K., “Learning from a Class Imbalanced Public Health Dataset: a Cost -based 
Comparison of Classifier Performance”, International Journal of Electrical and Computer Engineering 

(IJECE), vol. 7, no.4, pp. 2215-2222, 2017. 


