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This article investigates a day ahead optimal power flow considering the 

intermittent nature of renewable energy sources that involved with weather 

conditions. The article integrates the machine learning into power system 

operation to predict precisely day ahead meteorological data (wind speed, 
temperature and solar irradiance) that influence directly on the calculations of 

generated power of wind turbines and solar photovoltaic generators. 

Consequently, the power generation schedulers can make appropriate 

decisions for the next 24 hours. The proposed research uses conventional IEEE 
-30-bus as a test system running in Johor province that selected as a test 

location. algorithm designed in Matlab is utilized to accomplish the day ahead 

optimal power flow. The obtained results show that the true and predicted 

values of meteorological data are similar significantly and thus, these predicted 
values demonstrate the feasibility of the presented prediction in performing the 

day ahead optimal power flow. Economically, the obtained results reveal that 

the predicted fuel cost considering wind turbines and solar photovoltaic 

generators is reduced to 645.34 USD/h as compared to 802.28 USD/h of the 
fuel cost without considering renewable energy sources. Environmentally, 

CO2 emission is reduced to 340.9 kg/h as compared to 419.37 kg/h of the 

conventional system. To validate the competency of the whale optimization, 

the OPF for the conventional system is investigated by other 2 metaheuristic 
optimization techniques to attain statistical metrics for comparative analysis. 
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1. INTRODUCTION

Globally, the mounting consumption of electric energy, the essential reduction of greenhouse gas

emissions particularly CO2, the requirement of deregulated electricity market along with the competitive prices 

of green energy have produced the unstoppable evolution of renewable energy sources (RES) in the latest years 

[1-6].  The rising growth of RES deployment has been empowered via cutting- edge technology of wind 

turbines and photovoltaic (PV) generation system that leads to diminishing the cost of electricity production 

[7-10]. 

However, the hybridization of generation systems has led to key challenges in different aspects of power 

systems including stability, system planning, operation planning, online operation and real time monitoring 

mailto:haidertomah@yahoo.com
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[11-13]. As the intermittent nature of RES that comes from the variability of meteorological conditions (solar 

irradiance, temperature and wind speed), the power prediction of RES is a vital challenge for power system 

operators. The generation schedulers should take rapid correct decisions to guarantee a secure operation under 

any contingency condition, for instance, during period of low power delivered by (RES) [14-16]. In this regard, 

the optimal power flow (OPF) is a significant monitoring and assessment tool for power generation schedulers 

to meet secure operation criteria. The main objective of OPF is to compute the optimal values of decision 

variables of power systems for economic operation, in conjunction with achieving all equality and inequality 

constraints [17-19]. Hence, the accurate power forecasting has become indispensable in managing the hybrid 

power systems efficiently and to avoid all prospective hazardous outcomes that come from service outages 

economically, technically and even environmentally in abnormal situations. 

In this regard, numerous solution methods involved with (OPF) problem have been investigated in the 

literature along with different scenarios to engage wind turbines and PV generation in the mathematical 

modelling of OPF [20-25]. To address the uncertainties that introduced by (RES), researchers have used 

Weibull`s probability distribution functions (PDFs) and   lognormal PDF or Beta PDF to forecast the stochastic 

conduct of wind speed and solar irradiance respectively in mathematical models of OPF. Biswas et. al. [23] 

have used an adaptive differential evolution technique to solve OPF in power system merging wind turbines 

and PV generators along with conventional fossil fuel generators. Awad et.al. [26] have developed an advanced 

differential evolution algorithm to address OPF problem considering renewable generators. Morshed et.al.[27] 

have proposed a master-slave parallel epsilon variable multi objective genetic algorithm to solve OPF for a 

hybrid power system in the presence of electric vehicles. Roy et.al. [28] have employed Gbest guided artificial 

bee colony optimization algorithm to solve OPF in power system including wind turbines. However, the 

abovementioned researches have investigated the (OPF) in very short-term forecasting (minute, 5minutes or 

10minutes). The short-term forecasting is a vital aspect in operation planning, as it provides planners with 

essential forecasts for longer terms (days or weeks) in advance to set the most secure values of decision 

variables to overcome the contingencies particularly in the presence of RES.   

In terms of prediction, machine learning has played a significant role recently [29-30]. The key objective 

of machine learning is to introduce most efficient computerized   models based on learning from historical data 

and accomplish rapid predictions for decision-making procedures. Therefore, the contributions that 

characterizes this article are as follows: 

1. To engage machine learning in power system applications that involved with prediction of power of

renewable energy sources.

2. To investigate the day ahead optimal power flow considering the contribution of renewable sources

such as PV and wind turbines.

3. To apply whale optimization algorithm as one of meta heuristic optimization techniques in optimal

power flow.

     This article is outlined as follows. Section 2 presents the problem formulation of OPF. Section 3 discusses 

methodology of the proposed research entirely. Simulation results are presented and discussed in Section 4. 

Finally, this article recognizes the gaps that should be addressed in future research in the Conclusion section. 

2. PROBLEM FORMULATION

The mathematical model of (OPF) can be demonstrated as follows [17-19]:

      Min 𝐹(𝑥,𝑤)  (1) 

 Subject to: 𝐺(𝑥, 𝑤) = 0 (2) 

 𝐻(𝑥,𝑤) ≤ 0 (3) 

where F represents the objective function that should be minimized; 𝑥 is a vector of decision variables which 

includes active power outputs of fossil fuel units (Pg) excepting the slack bus generation (in this study, bus 1 

represents slack), generator voltages including wind turbines and PVs (Vg), tap settings of transformers (T) as 

well as (Qc) is the shunt VAR compensators: 

𝑥 = [Pg2. . . PgN, Vg2. . . VgN , T1. . . TR , Qc1. . . QcM]    (4) 

N, R and M represent the numbers of fossil fuel units, regulating transformers and VAR compensators, 

respectively. 𝑤 represents the vector of dependent variables consisting of slack bus power (Pg1), voltages at 

load bus (Vd), reactive power outputs of the generator (Qg), and capacities of transmission line (S): 
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𝑤 = [Pg1, Vd1. . . VD, Qg1. .. QgN, , S1. . . STR] (5) 

 D and TR indicate the numbers of load buses and transmission lines.  

2.1. Operational constraints 

From mathematical perspective, the problem of (OPF) is constrained by equality and inequality 

constraints as illustrated in (6) and (7). 

𝑃𝑖 −  𝑉𝑖 ∑ 𝑉𝑗
𝐵𝑆
𝑗=1 ( 𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗   + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗    ) = 0 (6) 

𝑄𝑖 −  𝑉𝑖 ∑ 𝑉𝑗
𝐵𝑆
𝑗=1 ( 𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗  − 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗    ) = 0 (7) 

where; I = 1, . . ., BS; BS represent the number of busses; Pi and Qi are active and reactive powers injected at 

bus I; θij represents the voltage angle between I and j signified; Gij and Bij   are the real and imaginary parts of 

bus admittance matrix correlating to ith row and jth column, respectively. In terms of inequality constraints, 

there are number of such constraints engaged with the problem of OPF including voltage magnitudes and their 

boundary limits at generator and load buses, lower and upper output limits of active and reactive power at the 

generator, boundary limits of regulating transformers, boundary limits of shunt compensators: and branch flow 

boundaries. 

𝑉𝑑𝑖
𝑚𝑖𝑛     ≤    𝑉𝑑𝑖   ≤    𝑉𝑑𝑖

𝑚𝑎𝑥  i=1,….,D  (8) 

𝑉𝑔𝑖
𝑚𝑖𝑛     ≤    𝑉𝑔𝑖   ≤    𝑉𝑔𝑖

𝑚𝑎𝑥  i=1,….,N (9) 

𝑄𝑐𝑖
𝑚𝑖𝑛     ≤    𝑄𝑐𝑖   ≤    𝑄𝑐𝑖

𝑚𝑎𝑥  i=1,….,M  (10) 

𝑄𝑔𝑖
𝑚𝑖𝑛     ≤    𝑄𝑔𝑖   ≤    𝑄𝑔𝑖

𝑚𝑎𝑥  i=1,….,N (11) 

𝑃𝑔𝑖
𝑚𝑖𝑛     ≤    𝑃𝑔𝑖   ≤    𝑃𝑔𝑖

𝑚𝑎𝑥  i=1,….,N (12) 

𝑇𝑖
𝑚𝑖𝑛     ≤    𝑇𝑖   ≤    𝑇𝑖

𝑚𝑎𝑥  i=1,….,R (13) 

𝑆𝑖
𝑚𝑖𝑛     ≤    𝑆𝑖   ≤    𝑆𝑖

𝑚𝑎𝑥  i=1,….,TR (14) 

D,N,M are  the load buses, numbers of fossil fuel units and and VAR compensators, respectively. The 

entire fuel cost (FC) of fossil fuel generating units represents the main objective function in OPF. 

Mathematically, the cost function can be characterized by quadratic function as below: 

𝑚𝑖𝑛  𝐹𝐶 =   𝑚𝑖𝑛 ∑ ( 𝑎𝑖 𝑃𝑔𝑖
2 + 𝑏𝑖𝑃𝑔𝑖  + 𝑐𝑖      )

𝑁
𝑖=1 (15) 

where ai , bi and ci are the cost coefficients of the ith fossil fuel unit;  Pgi represents the  active power output of 

unit ith. Table 1 illustrates coefficients of fuel cost function of fossil fuel units and lower and upper generation 

limits [17-19]. 

Table 1. Data of fuel cost function of fossil fuel units 

Bus No. 
a  b  c  

Lower limit Upper limit 

(USD/MW2 h) (USD/MW h) (USD/h)     (MW)      (MW) 

1 0.00375 2 0 50 200 

2 0.0175 1.75 0 20 80 

5 0.0625 1 0 15 50 

8 0.0083 3.25 0 10 35 

11 0.025 3 0 10 30 

13 0.025 3 0 12 40 

From the environmental perspective, the engagement of PV and wind turbines in the amended proposed 

system contributes to reducing of fossil fuel consumption and thus, CO2 emission which are released by fossil 

fuel generating units is declined significantly. Mathematically, the entire amount of CO2 emission can be 

characterized as below: 

𝐸𝑀 =   ∑ ( 𝑑𝑖𝑃𝑔𝑖
2  + 𝑒𝑖𝑃𝑔𝑖  + 𝑓𝑖  )

𝑁
𝑖=1 (16) 

 where di  , ei  and  fi are the emission coefficients of the ith fossil fuel unit. Table 2 illustrates coefficients of 

emission for every unit.  
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Table 2. Data of emission function of fossil fuel units 

Bus No. 
d  e  f  

(kg/MW2 h) (kg/MW h) (kg/h) 

1 0.0126 -1.1000 22.983 

2 0.0200 -0.1000 25.313 

5 0.0270 -0.0100 25.505 

8 0.0291 -0.0050 24.900 

11 0.0290 -0.0040 24.700 

13 0.0271 -0.0055 25.300 

2.2. Test network 

In the proposed study, IEEE 30-bus system has been used to investigate a day ahead OPF for the entire 

active load of 283.4 MW. As illustrated in Fig.1, this system includes 6 fossil fuel generators, 4 transformers, 

41 transmission lines in addition to 9 shunt compensators. The boundaries of the transformer tap values and 

the shunt compensators are in the rage of 0.9 to 1.1 p.u and 0-5 MVAr, correspondingly. The voltage boundaries 

of generating units and load buses are set at 0.95 to 1.1 p.u and 0.95 to 1.05 respectively [31]. To demonstrate 

the influence of integrating RES on the fuel cost, the above-mentioned system has been amended by engaging 

wind turbines and PV system. At bus 10, 30 wind turbines have been connected with 1 MW rated power of 

each, while the rated wind speed, cut-in wind speed, cut-out wind are 9 m/s, 2.5 m/s and 30 m/s, respectively. 

The rated power of PV system which connected at bus 14 is 30 MW.  

Figure 1 . IEEE 30-bus system as the test network. 

3. DESIGN of THE RESEARCH FRAMEWORK and OPTIMAL POWER FLOW ALGORITHM

The overall framework of the proposed research can be summarized into two stages as shown in Fig .2.
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3.1. Stage 1: Prediction 

In this stage, regression learner toolbox is utilized to predict hourly meteorological data (wind speed, 

temperature, and solar irradiance) for day-ahead 24-hour profile. In the proposed research, the designated 

location of the study case is Johor, which is a Malaysian province located in the south with geographical 

coordinate’s latitude of 1.4854° N and longitude of 103.7618° E. The historical hourly meteorological data of 

the 1st of January in Johor for 7 years (24h x7=168)   from 2014 to 2020 has been engaged in the proposed 

research to predict meteorological data of the 1st of January (24h ) in year 2021 [32]. The prediction process 

can be described entirely in the following steps :  

• Assemble and prepare hourly meteorological data (wind speed, solar irradiance, and temperature) of

Johor province from years 2014 to2020.

• Engage data to regression learner in Matlab software and start processing.

• define predictors (input) & response (output) in the regression models. It is worth to mention that in

the proposed study, the designated 5 predictors are hour, day, month, time (day or night), and year;

whereas the designated response are wind speed, temperature, and solar irradiance separately.

• Train regression models on the testing of (historical) data to illustrate the efficiency of each model.

• Assess and compare the models’ performances using the abovementioned measures (MSE, RMSE,

MAPE and R-squared).

• Identify the best model to predict response for new data (meteorological data for the 1st of January

2021). 

Figure 2. Formulation of proposed research framework. 

3.2. Stage 2: Optimizing power flow 

In this stage, the predicted meteorological data are used to calculate the power of renewable energy 

sources PV & Wind Turbines for day ahead as shown in the following.  

3.2.1. Calculation the generated power of PV 

The hourly power supplied by PV system can be calculated as follows [33]: 

Optimize power flow for day ahead with & without PV & Wind Turbines 

using whale optimization algorithm considering all operational constraints  

Obtain and Compare results of fuel cost with & without PV & Wind 

Turbines 

Engage data to 

regression learner 

in Matlab software 

define predictors & 

responses  

Train regression models on the testing 

data

Assess & compare the models performances 

using measures in subsection 4.1 

Identify the best model to predict 

response for new data (2021)  

Using predicted meteorological data to calculate power of PV & Wind Turbines for day 

ahead  

Assemble meteorological 

data (wind speed –solar 

irradiance-temperature) 

of Johor province (2014-

2020) 

Stage 

1

Stage 

2
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𝑃𝑝𝑣(𝑡) = 𝑃𝑉𝑟𝑎𝑡𝑒𝑑  × (
G (t)

Gref 
) × [1 + 𝐾𝑇(𝑇𝐶(𝑡) − 𝑇𝑟𝑒𝑓)] (17) 

where Ppv(t) represents hourly output power from the PV system ;  PVrated  is the rated power at reference 

conditions, G(t) indicates the hourly (predicted ) solar irradiance (W/m2 ) ; Gref  indicates solar radiation at 

reference conditions (Gref =1000 W/m2  ) ; Tref  is  cell temperature at reference conditions (Tref =25 °C) and KT 

is temperature coefficient of the maximum power KT =  - 3.7 x 103 (1/°C).  Tc represents the hourly temperature 

(°C) of cell calculated as follows: 

 𝑇𝐶(𝑡) = 𝑇𝑎𝑚𝑏(𝑡) + (0.0256 × 𝐺(𝑡)) (18) 

where Tamb is the hourly (predicted) ambient temperature (oC). 

3.2.2. Calculation the generated power of wind turbines 

The hourly power generated by wind turbine is computed by expression in (19): 

𝑃𝑤(𝑡) =

{

 0  𝑉(𝑡) <  𝑉𝑐𝑢𝑡−𝑖𝑛,      𝑉(𝑡) >  𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

𝑉(𝑡)3 (
𝑃𝑟

𝑉𝑟
3−𝑉𝑐𝑢𝑡−𝑖𝑛

3 ) − 𝑃𝑟 (
𝑉𝑐𝑢𝑡−𝑖𝑛
3

𝑉𝑟
3−𝑉𝑐𝑢𝑡−𝑖𝑛

3 )  𝑉𝑐𝑢𝑡−𝑖𝑛   <  𝑉(𝑡)  <   𝑉𝑟𝑎𝑡𝑒𝑑

𝑃𝑟  𝑉𝑟𝑎𝑡𝑒𝑑   ≤  𝑉(𝑡)  ≤   𝑉𝑐𝑢𝑡−0𝑢𝑡
(19) 

where Pr is the rated power of turbine; V(t) is the hourly (forecasted) wind speed(m/sec), and Vcut-in, Vrated and  

Vcut-out   indicate cut in wind speed, rated wind speed and cut out wind speed respectively [34].  It is worth to 

mention that the wind speed in this study has been calculated at 50 m height to attain the most effective wind 

speed in Johor. 

3.2.3. Whale Optimization Algorithm 

Whale Optimization Algorithm (WOA) is a metaheuristic algorithm inspired by the whale hunting 

practice [35,36]. This is tracking an approach called bubble-net feeding strategy in which humpback whales 

pursuit petite fishes nearby the surface by creating bubble net increases along a circle path to surround the 

quarry as shown in Fig.3. 

Figure 3. Concept of whale’s bubble net for hunting victims. 

3.2.4. Mathematical modelling  

The mathematical model of  WOA is described in three stages which are: 

• Encircling prey

• Bubble-net assaulting strategy (exploitation stage)

• Search for prey (exploration phase)

a. Encircling Prey Stage

In this phase, whales can distinguish the place of quarry and enclose them. As the position of the optimal 

design in the search space is not known a priori, the WOA algorithm supposes that the present best contestant 

solution is the target quarry or almost the optimum. After the best search agent is described, the remaining 

search agents will attempt to update their positions towards the best search agent. Mathematically, this conduct 

is determined by:  

 𝐷 =  |𝐶. 𝑋∗(𝑡) –  𝑋 (𝑡)| (20) 
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 𝑋 = (𝑡 +  1) =  𝑋∗(𝑡) −  𝐴 . 𝐷 (21) 

where D indicates the absolute value of distance between best position of whales and the victim; t indicates 

present iteration; A and C indicate coefficient vectors; 𝑋∗ indicates position vector of the best solution; X 

indicates the position vector.  

 𝐴 = 2𝑎 • 𝑟 –  𝑎 (22) 

 𝐶 = 2 •  𝑟 (23) 

where a  is linearly  diminished from 2 to 0 through the number of iteration in both investigation and 

exploitation stages; and r is an arbitrary vector in [0,1]. 

b. Bubble-net assaulting strategy (exploitation stage)

Two approaches are utilized to describe the air bubble net conduct of humpback whales as presented 

below:  

i. Shrinking circling system:

Equation (21) describes this approach. The parameter A is diminished by reducing the parameter a. 

Basically, the parameter A is randomized in the interval of [ −a, a], while the parameter a is diminished from 

2 to 0 throughout iterations. The values of A are determined in [−1,1], the new position of a search agent can 

be designated between the first position of the agent and the position of the present best agent as shown in 

Fig4(a) shows this behavior. 

ii. Spiral updating position:

This approach is shown in Fig.4(b); which depends on determining   the distance between the whale 

situated at (X, Y) and prey situated at (X ∗, Y ∗). Mathematically, the spiral path between the position of 

whale and victim can be modelled by (24): 

 𝑋 ( 𝑡 +  1 ) = 𝐷′. 𝑒𝑏𝑙 . 𝑐𝑜𝑠( 2 𝜋𝑙 ) +  𝑋∗( 𝑡 ) (24) 

Where  D'  demonstrates the separation of the ith whale to the prey (best solution), b is a constant for 

characterizing the state of the logarithmic spiral , l is a random number in [−1,1]. Mathematically, to model the 

whale`s hunting conducts the probability p is used to predict which approach that be taken by the whale to 

surround the victim, it can be expressed by below:  

𝑋(𝑡 + 1) = {
 𝑋∗( 𝑡 ) − 𝐴. 𝐷  𝑝 < 0.5

 𝐷′. 𝑒𝑏𝑙 . 𝑐𝑜𝑠( 2 𝜋𝑙 ) +  𝑋∗( 𝑡 )  𝑝 ≥ 0.5

(25) 

(26) 

(a)                                                                             (b) 

Figure 4. Concept of bubble-net assaulting strategy: (a) Shrinking encircling mechanism, (b) Spiral updating 

position. 

c. Search for prey (exploration phase)

Whales pursue randomly as per the position of each other. Thus, A in (21) is utilized with the random 

values more than 1 or under −1 to make search agent to move far from a reference whale. The position of 

search agent has been updated in the investigation stage as per a randomly picked search agent rather than the 

best search agent discovered in this way. This scheme and |A| > 1 highlight investigation and tolerate the WOA 

calculation to perform a global search. The mathematical model is expressed as follows: 
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𝐷 =  |𝐶. 𝑋𝑟𝑎𝑛𝑑 –  𝑋 | (27) 

        𝑋 = (𝑡 +  1) =  𝑋𝑟𝑎𝑛𝑑 −  𝐴 . 𝐷 (28) 

Where Xrand is a random position vector (a random whale) chosen from the current population 

3.2.5. Optimizing power flow by Whale Optimization Algorithm 

In the proposed research, (WOA) is employed to optimize power flow considering all operational 

constraints. (WOA) is implemented in two scenarios, first, without renewable energy resources (conventional 

OPF) and second, with the presence of renewable energy resources considering predicted meteorological data. 

The entire procedure of optimization process can be described as follows: 

• Prepare the essential data that associated with the power system including configuration, transmission

lines, transformers, shunt compensators, load, and generation units.

• Decide the decision variables and their upper and lower boundaries. Similarly, deciding the dependent

variables and their boundaries as well as to decide the objective function that (WOA) will optimize.

In the proposed study, the objective function is the entire fuel cost of fossil fuel generating units.

• Decide the parameters of WOA including the size of population, dimensions (number of decision

variables) and the highest number of iterations. Then initialize a random population of search agents.

• Start simulation for searching each agent and calculate the associated values of the objective function

of FC.

• Check the current iteration number whether it is maximum or not to stop simulation.

• Attain the optimal (minimum) value of the objective function of FC.

• Repeat all abovementioned steps with the presence of PV and wind turbines considering predicted

meteorological data for each hour. Fig.5 illustrates the entire algorithmic steps of WOA to accomplish

the optimal power flow.

Figure 5. Algorithmic steps of Whale Optimization Algorithm. 

4. SIMULATION RESULTS

The proposed investigation is implemented by using Matlab software on a computer with AMD Athlon 

Silver 3050U@ 2.30 GHz and RAM 8.00 GB. The optimization parameters are size of population which is set 

at 50 and maximum number of iterations which is set at 100. 

4.1. Prediction results   

As explained in subsection 3.1, the purpose of training data with different models is to identify the best 

model to predict new data. Indeed, the regression learner toolbox in Matlab software has provided researchers 

with distinctive opportunities to engage (train) different models in order to optimize the most meaningful 

relationship (model) between independent and dependent variables then use such model to predict future results 

(response) for new data. Mathematically, regression analysis can be described as a number of statistical actions 
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to create a relationship between independent variables (input or predictors) and dependent variables (output or 

response), the Schematic of utilization of regression learner in the proposed study is shown in Fig 6.   

 Figure 6. Schematic of regression learner in the proposed study 

In machine learning, there are wide range of regression types (models) that involved with engineering 

applications. The most commonly types used are Decision Tree (DT), Support Vector Machines (SVM), 

Gaussian Process Regression (GPR) and Ensemble Trees (EN). Based on the simulation results in the proposed 

research, GPR model can be considered the best model to express the relationship between the predictors and 

responses. As shown in Fig7, there is a remarkable convergence between the true and predicted temperature 

for the 1st of January in Johor for 7 years (24h x7=168)   from 2014 to 2020. On the other hand, the values of 

predicted temperature obtained by using other models are different significantly from the true data for 7 years. 

Regression Learner 

Day 

Month 

Hour 

Year 

Time (day or night) 

Wind speed  

Temperature  

Solar radiation 

Predictors 
Responses 

Training different models 

and identify the most 

feasible one   

1st of January in Johor 2014-2020 

24h x7=168 
1st of January in Johor 2014-2020 

24h x7=168 

a)Temperature prediction using Matern 5/2 Gaussian
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b) Temperature prediction using SVM

c) Temperature prediction using Decision Tree

d) Temperature prediction using Ensemble Trees

Figure 7. True and predicted temperature in Johor for 1st of January in Johor for 7 years (24h 

x7=168)   using different models 
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Hence, in the proposed study GPR is employed to predict the values of temperature for the 1st of 

January(24h)  in Johor for 2021. Table 3 illustrates the numerical results of regression for all predicted 

meteorological data obtained by GPR model .In terms of evaluating the performance of each model, machine 

learning utilizes a number of measures to accomplish that including the Mean Square Error (MSE), Root-

Mean-Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R-

squared) [37-40].As illustrated in Fig.8 there is a significant convergence  between the values of the true and 

predicted data by GPR model.  

Table 3. The regression results for all meteorological data. 
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RMSE 0.16 0.05 21.9 
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MSE 0.027 0.002 479 
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(c) 

Figure 8. True and predicted meteorological data of Johor for the 1st of January 2021: 

(a)Wind speed, (b)Temperature, (c) Solar irradiance. 

4.2 Optimal power flow results 

To demonstrate the competency of the WOA, the OPF for the conventional system is investigated by 

other 2 metaheuristic optimization techniques. These techniques are ant lion optimizer (ALO) [41], water cycle 

algorithm (WCA) [ 42]. Every optimization technique was run 40 times in order to obtain the statistical metrics 

which are shown in Table 2. For all employed techniques, it is worth to mention that the population size and 

the maximum number of iterations are 50 and 100 respectively. The obtained results in Table 4, particularly 

the standard deviation reveal evidently that the WOA delivers robust and steady solutions as compared with 

other techniques.  

Table 4. Statistical metrics of the fuel cost for the conventional system by using different techniques. 
Technique Min Max Average Standard deviation 

WOA 802.23 802.76 802.49 0.03 

ALO 802.34 803.41 802.54 0.23 

WCA 802.34 803.87 802.63 0.51 

Moreover, the convergence features of all methods are shown in Fig 9. Unquestionably, the WOA 

achieves steady optimal value  with 35 iterations while ALO and WCA need 40 , 43 iterations respectively to 

reach a stable optimal value.  

Figure 9. Comparison of the convergence features 

The optimal power flow is implemented on the conventional and amended (in the presence of PV and 

wind turbines) IEEE 30-bus networks. Table 5 illustrates the simulation results of day ahead (24h) optimal 

power flow for conventional and amended IEEE 30 bus. It is obviously that the hourly fuel cost and hourly 

CO2 emission of the conventional OPF are decreased considerably due to the engagement of the RES in the 
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amended system. Thus, in the longer time frame such as month or year there will be a noticeable reduction in 

the fuel cost and CO2 emission of day ahead OPF.  

Table 5. The simulation results of day-ahead optimal power flow for conventional and amended IEEE 30 bus 

Bus 
Conve

ntional 
1 2 3 4 5 6 7 8 9 10 11 12 

V₁ 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 

V₂ 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 

V₅ 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

V₈ 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

V₁₀ 1.0468 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

V₁₁ 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 

V₁₃ 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 

V₁₄ 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

P₁ 175.29 156.15 150.94 155.62 154.73 151.18 151.93 151.40 154.21 152.57 147.11 148.11 144.46 

P₂ 45.12 43.57 37.56 44.08 36.93 39.13 41.15 41.73 44.31 42.54 38.72 40.53 41.13 

P₅ 22.31 19.68 18.93 19.59 22.32 18.12 17.96 19.13 19.14 18.82 17.24 19.47 19.06 

P₈ 25.46 10 17.53 10 14.87 17.16 14.32 16.34 10.76 12.61 20.41 10 10 

P₁₀ (Wind turbines 

Bus) 
0 12.2 12.4 12.4 12.4 11.74 11.73 11.74 11.74 11.75 13.01 18.87 19.73 

P₁₁ 12.31 10.16 13.83 10 10 13.77 14.04 10 10 10.74 11.32 10 10 

P₁₃ 12 40 40 40 40 40 40 40 40 40 40 40 40 

P₁₄  (PV Bus) 0 0.1 0.12 0.15 0.2 0.3 0.4 1.15 1.62 2.6 3.4 4.32 6.77 

Generation(Mh/h)  292.50 291.85 291.32 291.84 291.45 291.41 291.53 291.49 291.78 291.64 291.22 291.30 291.16 

Losses(MW/h) 9.10 8.45 7.92 8.44 8.05 8.01 8.13 8.09 8.38 8.24 7.82 7.90 7.76 

Predicted Fuel 

Cost(USD/h) 
802.28 663.78 665.93 663.64 664.91 664.95 664.12 660.75 658.64 655.63 655.43 652.67 645.34 

CO2 Emission 

(kg/h) 
419.37 376.97 361.18 376.14 369.33 362.85 365.41 365.01 372.57 366.49 352.37 349.88 340.93 

Table 5. The simulation results of day -ahead   optimal power flow for conventional and amended IEEE 30 

bus (continued). 
Bus 13 14 15 16 17 18 19 20 21 22 23 24 

V₁ 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 

V₂ 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 

V₅ 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

V₈ 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

V₁₀ 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

V₁₁ 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 

V₁₃ 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 

V₁₄ 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

P₁ 145.68 146.6 144.61 149.99 152.58 152.66 155.10 158.29 159.10 153.45 153.85 153.32 

P₂ 37.56 42.44 38.94 42.65 41.57 40.63 43.88 44.44 43.18 41.38 41.93 41.99 

P₅ 18.03 18.67 18.57 19.24 18.72 18.63 18.78 20.10 21.02 19.46 18.49 19.01 

P₈ 11.49 10 16.79 10 10.11 11.72 12.38 10 10.06 18.66 16.56 18.78 

P₁₀ (Wind 

turbines Bus) 
19.73 19.74 18.85 16.7 13.05 11.77 10.45 8.9 8.44 8.5 8.44 8.44 

P₁₁ 14.28 10 10 10 13.14 14.50 10.80 10 10 10 12.30 10 

P₁₃ 40 40 40 40 40 40 40 40 40 40 40 40 

P₁₄  (PV Bus) 4.34 3.85 3.27 2.89 2.43 1.67 0.43 0.3 0.21 0.14 0.095 0.07 

Generation(Mh/h)  291.1 291.3 291.03 291.47 291.61 291.57 291.82 292.03 292.01 291.59 291.66 291.61 

Losses(MW/h) 7.70 7.88 7.63 8.07 8.21 8.17 8.42 8.63 8.61 8.19 8.26 8.21 

Predicted Fuel 

Cost(USD/h) 
654.99 654.76 657.27 656.09 656.96 659.75 662.61 662.72 663.10 664.05 664.34 664.30 

CO2 Emission 

(kg/h) 
341.69 348.04 342.79 357.95 364.91 365.66 375.53 384.90 386.23 372.77 373.09 373.04 

The contribution of RES plays a vital role in the reduction of forecasted fuel cost throughout day ahead 

as illustrated in Fig. 10 For instance, at 12pm, the maximum predicted power of PV and wind turbines are 6.77 

MW and 19.73 MW correspondingly; whereas the predicted fuel cost is a least value of 645.34 USD/h. 

Furthermore, the contribution of RES has reduced the power losses according to the generated power. Fig.11 

illustrates the predicted variation of power losses in term of predicted power of RES. Generally, as shown the 

predicted losses are declined significantly when the predicted power of RES increases. It is obviously the 

predicted and actual fuel costs are similar considerably, hence the proposed prediction is reliable adequately to 
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accomplish the day ahead OPF in power applications.  

Figure 10 The influence of RES contribution on reduction of fuel cost day ahead. 

Fig. 11. The influence of RES contribution on power losses day ahead. 

 In terms of the environmental performance, as shown in Fig.12 the contributions of wind turbines and 

PV in the amended system decrease remarkably the forecasted CO2 emission as compared to the conventional 

system. The lowest forecasted amount of emission of 340.9 (kg/h) occurs at 12 pm which witnesses the highest 

powers produced by PV and wind turbines as illustrated in Fig.10. 
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 Fig.12 Forecasted CO2 emission of the day ahead OPF 
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5. CONCLUSION

The proposed research has demonstrated that the efficient forecast process of meteorological data is a key 

aspect for power system operators in order to make the most appropriate decisions technically, economically 

and environmentally. Indeed, the forecast process acquires an enormous attention particularly in the 

competitive environment of electricity market. In this article, the day ahead optimal power flow has been 

presented considering the contribution of renewable energy sources that led to minimizing the fuel cost and 

CO2 emission. IEEE 30 bus system was used as a test system running in Johor province. The proposed 

investigation included two stages; first, the machine learning tool has been employed to forecast the day ahead 

24-hour meteorological data of Johor whereas second, the predicted meteorological data is employed to 

compute the power of renewable energy sources in order to perform the optimal power flow on the above-

mentioned test system by using WOA. This article was an attempt to pave the way to the integration between 

the machine learning and power engineering. Nevertheless, there are other crucial areas need further 

investigation including but not limited to engagement of storage system technologies and electric vehicles in 

the optimal power flow for short term operation. 
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