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1. INTRODUCTION

Globally, the mounting consumption of electric energy, the essential reduction of greenhouse gas
emissions particularly CO;, the requirement of deregulated electricity market along with the competitive prices
of green energy have produced the unstoppable evolution of renewable energy sources (RES) in the latest years
[1-6]. The rising growth of RES deployment has been empowered via cutting- edge technology of wind
turbines and photovoltaic (PV) generation system that leads to diminishing the cost of electricity production
[7-10].

However, the hybridization of generation systems has led to key challenges in different aspects of power
systems including stability, system planning, operation planning, online operation and real time monitoring
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[11-13]. As the intermittent nature of RES that comes from the variability of meteorological conditions (solar
irradiance, temperature and wind speed), the power prediction of RES is a vital challenge for power system
operators. The generation schedulers should take rapid correct decisions to guarantee a secure operation under
any contingency condition, for instance, during period of low power delivered by (RES) [14-16]. In this regard,
the optimal power flow (OPF) is a significant monitoring and assessment tool for power generation schedulers
to meet secure operation criteria. The main objective of OPF is to compute the optimal values of decision
variables of power systems for economic operation, in conjunction with achieving all equality and inequality
constraints [17-19]. Hence, the accurate power forecasting has become indispensable in managing the hybrid
power systems efficiently and to avoid all prospective hazardous outcomes that come from service outages
economically, technically and even environmentally in abnormal situations.

In this regard, numerous solution methods involved with (OPF) problem have been investigated in the
literature along with different scenarios to engage wind turbines and PV generation in the mathematical
modelling of OPF [20-25]. To address the uncertainties that introduced by (RES), researchers have used
Weibull's probability distribution functions (PDFs) and lognormal PDF or Beta PDF to forecast the stochastic
conduct of wind speed and solar irradiance respectively in mathematical models of OPF. Biswas et. al. [23]
have used an adaptive differential evolution technique to solve OPF in power system merging wind turbines
and PV generators along with conventional fossil fuel generators. Awad et.al. [26] have developed an advanced
differential evolution algorithm to address OPF problem considering renewable generators. Morshed et.al.[27]
have proposed a master-slave parallel epsilon variable multi objective genetic algorithm to solve OPF for a
hybrid power system in the presence of electric vehicles. Roy et.al. [28] have employed Gbest guided artificial
bee colony optimization algorithm to solve OPF in power system including wind turbines. However, the
abovementioned researches have investigated the (OPF) in very short-term forecasting (minute, 5minutes or
10minutes). The short-term forecasting is a vital aspect in operation planning, as it provides planners with
essential forecasts for longer terms (days or weeks) in advance to set the most secure values of decision
variables to overcome the contingencies particularly in the presence of RES.

In terms of prediction, machine learning has played a significant role recently [29-30]. The key objective
of machine learning is to introduce most efficient computerized models based on learning from historical data
and accomplish rapid predictions for decision-making procedures. Therefore, the contributions that
characterizes this article are as follows:

1. To engage machine learning in power system applications that involved with prediction of power of
renewable energy sources.

2. To investigate the day ahead optimal power flow considering the contribution of renewable sources
such as PV and wind turbines.

3. To apply whale optimization algorithm as one of meta heuristic optimization techniques in optimal
power flow.

This article is outlined as follows. Section 2 presents the problem formulation of OPF. Section 3 discusses
methodology of the proposed research entirely. Simulation results are presented and discussed in Section 4.
Finally, this article recognizes the gaps that should be addressed in future research in the Conclusion section.

2. PROBLEM FORMULATION
The mathematical model of (OPF) can be demonstrated as follows [17-19]:

Min F (x, w) 1)
Subject to: G(x,w) =0 )
H(x,w)<0 3)

where F represents the objective function that should be minimized; x is a vector of decision variables which
includes active power outputs of fossil fuel units (Pg) excepting the slack bus generation (in this study, bus 1
represents slack), generator voltages including wind turbines and PVs (Vg), tap settings of transformers (T) as
well as (Qc) is the shunt VAR compensators:

x =[Pg2. .. Pgn, Vg2. .. Vgn, T1. .. Tr, QCi1. . . Qcm] 4)
N, R and M represent the numbers of fossil fuel units, regulating transformers and VAR compensators,

respectively. w represents the vector of dependent variables consisting of slack bus power (Pgi), voltages at
load bus (V4), reactive power outputs of the generator (Qg), and capacities of transmission line (S):
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w = [Pgs, Vari. . . Vb, QQ1. .. QQn, , S1. . . Str] (5)
D and TR indicate the numbers of load buses and transmission lines.
2.1. Operational constraints

From mathematical perspective, the problem of (OPF) is constrained by equality and inequality
constraints as illustrated in (6) and (7).

Pi - Vl ]B;gll/j(GijCOSQij + BijsinQij ) =0 (6)
Qi — V; X%2,V; (Gijcos;; — Byjsin;; ) =0 O
where; 1 =1, .. ., BS; BS represent the number of busses; P; and Q; are active and reactive powers injected at

bus 1; 6; represents the voltage angle between | and j signified; G;; and Bj; are the real and imaginary parts of
bus admittance matrix correlating to ith row and jth column, respectively. In terms of inequality constraints,
there are number of such constraints engaged with the problem of OPF including voltage magnitudes and their
boundary limits at generator and load buses, lower and upper output limits of active and reactive power at the
generator, boundary limits of regulating transformers, boundary limits of shunt compensators: and branch flow
boundaries.

ypin < vy, < vmex i=1,...D (8)
Vgt < Vg < Vg™ =L...N ©
Qcmin < Q¢ < Qe i=1,...M (10)
Qgm™ < Qg; < Qg™ i=1,....N (11)
Pg""™ < Pgi < Pg"™ i=l..N 12
T < T, < Tmex i=1,...R (13)
smin <5, < smax i=1,...,TR (14)

D,N,M are the load buses, numbers of fossil fuel units and and VAR compensators, respectively. The
entire fuel cost (FC) of fossil fuel generating units represents the main objective function in OPF.
Mathematically, the cost function can be characterized by quadratic function as below:

min FC = minYN,(a; Pg;®> + b;Pg; +¢; ) (15)

where a; , bj and ¢; are the cost coefficients of the it fossil fuel unit; Pg; represents the active power output of
unit ith. Table 1 illustrates coefficients of fuel cost function of fossil fuel units and lower and upper generation
limits [17-19].

Table 1. Data of fuel cost function of fossil fuel units

a b Lower limit Upper limit
Bus No. c
(USD/MW? h) (USD/MW h)  (USD/h) (MW) (MW)
1 0.00375 2 0 50 200
2 0.0175 1.75 0 20 80
5 0.0625 1 0 15 50
8 0.0083 3.25 0 10 35
11 0.025 3 0 10 30
13 0.025 3 0 12 40

From the environmental perspective, the engagement of PV and wind turbines in the amended proposed
system contributes to reducing of fossil fuel consumption and thus, CO; emission which are released by fossil
fuel generating units is declined significantly. Mathematically, the entire amount of CO; emission can be
characterized as below:

EM = ¥Y.,(d;Pg® +ePg; +fi) (16)

where d; , e and f; are the emission coefficients of the i fossil fuel unit. Table 2 illustrates coefficients of
emission for every unit.
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Table 2. Data of emission function of fossil fuel units

Bus No. d € f

(kg/MW? h) (kg/MW h) (kg/h)
1 0.0126 -1.1000 22.983
2 0.0200 -0.1000 25.313
5 0.0270 -0.0100 25.505
8 0.0291 -0.0050 24.900
11 0.0290 -0.0040 24.700
13 0.0271 -0.0055 25.300

2.2. Test network

In the proposed study, IEEE 30-bus system has been used to investigate a day ahead OPF for the entire
active load of 283.4 MW. As illustrated in Fig.1, this system includes 6 fossil fuel generators, 4 transformers,
41 transmission lines in addition to 9 shunt compensators. The boundaries of the transformer tap values and
the shunt compensators are in the rage of 0.9 to 1.1 p.u and 0-5 MV A, correspondingly. The voltage boundaries
of generating units and load buses are set at 0.95 to 1.1 p.u and 0.95 to 1.05 respectively [31]. To demonstrate
the influence of integrating RES on the fuel cost, the above-mentioned system has been amended by engaging
wind turbines and PV system. At bus 10, 30 wind turbines have been connected with 1 MW rated power of
each, while the rated wind speed, cut-in wind speed, cut-out wind are 9 m/s, 2.5 m/s and 30 m/s, respectively.
The rated power of PV system which connected at bus 14 is 30 MW.

—
Be={li-35) MW
Ve={l95-11) pa

4
G

=1

T

= $§" > &I
= . |
& T B S — @

= . é | m
q . - u
N -

2
17 i
10
"
Pe={10-30) MW
Ve={193-L1) pu

i

] -—‘-

15
Va1l

0

Ve{I95-L)pa

Fa0 20 MW

Pe={12-40) MW
Ve={095-11) pu

Figure 1 . IEEE 30-bus system as the test network.

3. DESIGN of THE RESEARCH FRAMEWORK and OPTIMAL POWER FLOW ALGORITHM
The overall framework of the proposed research can be summarized into two stages as shown in Fig .2.
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3.1. Stage 1: Prediction

In this stage, regression learner toolbox is utilized to predict hourly meteorological data (wind speed,
temperature, and solar irradiance) for day-ahead 24-hour profile. In the proposed research, the designated
location of the study case is Johor, which is a Malaysian province located in the south with geographical
coordinate’s latitude of 1.4854° N and longitude of 103.7618° E. The historical hourly meteorological data of
the 1% of January in Johor for 7 years (24h x7=168) from 2014 to 2020 has been engaged in the proposed
research to predict meteorological data of the 1% of January (24h ) in year 2021 [32]. The prediction process
can be described entirely in the following steps :

e Assemble and prepare hourly meteorological data (wind speed, solar irradiance, and temperature) of
Johor province from years 2014 t02020.

o Engage data to regression learner in Matlab software and start processing.

o define predictors (input) & response (output) in the regression models. It is worth to mention that in
the proposed study, the designated 5 predictors are hour, day, month, time (day or night), and year;
whereas the designated response are wind speed, temperature, and solar irradiance separately.

e Train regression models on the testing of (historical) data to illustrate the efficiency of each model.

e  Assess and compare the models’ performances using the abovementioned measures (MSE, RMSE,
MAPE and R-squared).

e Identify the best model to predict response for new data (meteorological data for the 1% of January
2021).
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I regression learner

in Matlab software

of Johor province (2014-
2020)

irradiance-temperature)
\ [ Train regression models on the testing ] I
- v I

Identify the best model to predict { Assess & compare the models performances ]

response for new data (2021)

using measures in subsection 4.1

\

~ L] ] L] ] L] L] ] L] ] L] ] L] ] L] [} /
’ | L] | L] | | L] | L] | L] | L] | L] \
[ Using predicted meteorological data to calculate power of PV & Wind Turbines for day ]
ahead

Optimize power flow for day ahead with & without PV & Wind Turbines
using whale optimization algorithm considering all operational constraints

2

[ Obtain and Compare results of fuel cost with & without PV & Wind ]

{ \

| v |

I

I I

: I
l

Ve e . L _________~

Figure 2. Formulation of proposed research framework.

3.2.  Stage 2: Optimizing power flow

In this stage, the predicted meteorological data are used to calculate the power of renewable energy
sources PV & Wind Turbines for day ahead as shown in the following.

3.2.1. Calculation the generated power of PV
The hourly power supplied by PV system can be calculated as follows [33]:
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va(t) = PVrated X (((;;r_(etz) X [1 + KT(TC(t) - Tref)] (17)
where P, (t) represents hourly output power from the PV system ; PV,,.q is the rated power at reference
conditions, G(t) indicates the hourly (predicted ) solar irradiance (W/m?) ; Gy indicates solar radiation at
reference conditions (Gres =1000 W/m? ) ; Tt is cell temperature at reference conditions (Trer =25 °C) and Kt
is temperature coefficient of the maximum power Ky = - 3.7 x 10% (1/°C). Tc represents the hourly temperature
(°C) of cell calculated as follows:

Te() = Tamp (t) + (0.0256 X G(t)) (18)
where Tamp is the hourly (predicted) ambient temperature (°C).

3.2.2. Calculation the generated power of wind turbines
The hourly power generated by wind turbine is computed by expression in (19):

0 V(t) < cht—in, V(t) > cht—out
3 Pr Vc3ut—in
Pw(t) = V()Y |—3—)— P |55 Veut—in < V() < Vrgtea
VE—Veut-in VE—Veut-in
k Pr Vrated < V(t) < cht—Out

(19)

where P is the rated power of turbine; V(t) is the hourly (forecasted) wind speed(m/sec), and Veyt-in, Vrated and
Vatout indicate cut in wind speed, rated wind speed and cut out wind speed respectively [34]. It is worth to
mention that the wind speed in this study has been calculated at 50 m height to attain the most effective wind
speed in Johor.

3.2.3.  Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is a metaheuristic algorithm inspired by the whale hunting
practice [35,36]. This is tracking an approach called bubble-net feeding strategy in which humpback whales
pursuit petite fishes nearby the surface by creating bubble net increases along a circle path to surround the
quarry as shown in Fig.3.

Figure 3. Concept of whale’s bubble net for hunting victims.

3.2.4. Mathematical modelling
The mathematical model of WOA is described in three stages which are:
e Encircling prey
e Bubble-net assaulting strategy (exploitation stage)
e  Search for prey (exploration phase)

a. Encircling Prey Stage
In this phase, whales can distinguish the place of quarry and enclose them. As the position of the optimal
design in the search space is not known a priori, the WOA algorithm supposes that the present best contestant
solution is the target quarry or almost the optimum. After the best search agent is described, the remaining
search agents will attempt to update their positions towards the best search agent. Mathematically, this conduct
is determined by:
D= |C.X*(t)- X (V)] (20)
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X=0t+1)=X@{t)—A.D (21)

where D indicates the absolute value of distance between best position of whales and the victim; t indicates
present iteration; A and C indicate coefficient vectors; X* indicates position vector of the best solution; X
indicates the position vector.
A=2aer-a (22)
C=2er (23)
where a is linearly diminished from 2 to 0 through the number of iteration in both investigation and
exploitation stages; and r is an arbitrary vector in [0,1].

b. Bubble-net assaulting strategy (exploitation stage)

Two approaches are utilized to describe the air bubble net conduct of humpback whales as presented
below:

i. Shrinking circling system:

Equation (21) describes this approach. The parameter A is diminished by reducing the parameter a.
Basically, the parameter A is randomized in the interval of [ —a, a], while the parameter a is diminished from
2 to 0 throughout iterations. The values of A are determined in [—1,1], the new position of a search agent can
be designated between the first position of the agent and the position of the present best agent as shown in
Fig4(a) shows this behavior.

ii. Spiral updating position:

This approach is shown in Fig.4(b); which depends on determining the distance between the whale
situated at (X, Y) and prey situated at (X *, Y *). Mathematically, the spiral path between the position of
whale and victim can be modelled by (24):

X(t+ 1)=D"e".cos(2ml)+ X*(t) (24)

Where D' demonstrates the separation of the i whale to the prey (best solution), b is a constant for
characterizing the state of the logarithmic spiral , | is a random number in [—1,1]. Mathematically, to model the
whale’s hunting conducts the probability p is used to predict which approach that be taken by the whale to
surround the victim, it can be expressed by below:

X*(t)—A.D p <05 (25)
Xt+1)=
D'.eb cos(2ml)+ X*(t) p=>0.5 (26)
(X-AXY) %y xy « ¥
O- O X )
:
T =1 $80)
- 4
(REAXPH( ) - O ¢ .myjm —O- ()P
. T toe
\ l,: S AFl
QO ) & -
(XH-AXT*AY) (X5T*AY) (X T*-AY) Bl
(@) (b)
Figure 4. Concept of bubble-net assaulting strategy: (a) Shrinking encircling mechanism, (b) Spiral updating

position.

c. Search for prey (exploration phase)

Whales pursue randomly as per the position of each other. Thus, A in (21) is utilized with the random
values more than 1 or under —1 to make search agent to move far from a reference whale. The position of
search agent has been updated in the investigation stage as per a randomly picked search agent rather than the
best search agent discovered in this way. This scheme and |A| > 1 highlight investigation and tolerate the WOA
calculation to perform a global search. The mathematical model is expressed as follows:

Influence of Renewable Energy Sources on Day Ahead Optimal Power Flow... (Haider Jouma Touma et al)
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D= |C-Xrand - Xl (27)
X=0t+1)= Xpqna— A.D (28)

Where Xrang is @ random position vector (a random whale) chosen from the current population

3.2.5. Optimizing power flow by Whale Optimization Algorithm
In the proposed research, (WOA) is employed to optimize power flow considering all operational
constraints. (WOA) is implemented in two scenarios, first, without renewable energy resources (conventional
OPF) and second, with the presence of renewable energy resources considering predicted meteorological data.
The entire procedure of optimization process can be described as follows:
e  Prepare the essential data that associated with the power system including configuration, transmission
lines, transformers, shunt compensators, load, and generation units.
e Decide the decision variables and their upper and lower boundaries. Similarly, deciding the dependent
variables and their boundaries as well as to decide the objective function that (WOA) will optimize.
In the proposed study, the objective function is the entire fuel cost of fossil fuel generating units.
e Decide the parameters of WOA including the size of population, dimensions (number of decision
variables) and the highest number of iterations. Then initialize a random population of search agents.
e  Start simulation for searching each agent and calculate the associated values of the objective function
of FC.
e  Check the current iteration number whether it is maximum or not to stop simulation.
e  Attain the optimal (minimum) value of the objective function of FC.
e Repeat all abovementioned steps with the presence of PV and wind turbines considering predicted
meteorological data for each hour. Fig.5 illustrates the entire algorithmic steps of WOA to accomplish
the optimal power flow.

Start
Tnitialize the positions of whales population 3i (i= 1,2, n) within lower and upper limits [ initialize values of
decision variables Pg; .. Pay]
Calculate the fitness of each search agent X*=the best search agent

For each search agent updatea, A, C, I, and P (while iter < maximum number of iterations)

No Yes
P<0.5
Update the position of No Yes
Al
the current search agent
by (23) Select a random search agent (Xwma) Update Update the position of the
the position of the current search agent by (27) current search agent by (20)
No
iter=iter+1 iter = maximum

iteration number

Yes

Calculate the objective function FC based on optimal search agent X*

Figure 5. Algorithmic steps of Whale Optimization Algorithm.

4. SIMULATION RESULTS

The proposed investigation is implemented by using Matlab software on a computer with AMD Athlon
Silver 3050U@ 2.30 GHz and RAM 8.00 GB. The optimization parameters are size of population which is set
at 50 and maximum number of iterations which is set at 100.
4.1. Prediction results

As explained in subsection 3.1, the purpose of training data with different models is to identify the best
model to predict new data. Indeed, the regression learner toolbox in Matlab software has provided researchers
with distinctive opportunities to engage (train) different models in order to optimize the most meaningful
relationship (model) between independent and dependent variables then use such model to predict future results
(response) for new data. Mathematically, regression analysis can be described as a number of statistical actions
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to create a relationship between independent variables (input or predictors) and dependent variables (output or
response), the Schematic of utilization of regression learner in the proposed study is shown in Fig 6.

Hour

Wind speed

|

ay —
. Regression Learner Temperature Responses
Predictors Month g peratu P

|
!

Time (day or night)
Training different models

M) ond identify the most  Solar radiation

feasible one
Y —
[ —
1% of January in Johor 2014-2020 1% of January in Johor 2014-2020
24h x7=168 24h x7=168

Figure 6. Schematic of regression learner in the proposed study

In machine learning, there are wide range of regression types (models) that involved with engineering
applications. The most commonly types used are Decision Tree (DT), Support Vector Machines (SVM),
Gaussian Process Regression (GPR) and Ensemble Trees (EN). Based on the simulation results in the proposed
research, GPR model can be considered the best model to express the relationship between the predictors and
responses. As shown in Fig7, there is a remarkable convergence between the true and predicted temperature
for the 1% of January in Johor for 7 years (24h x7=168) from 2014 to 2020. On the other hand, the values of
predicted temperature obtained by using other models are different significantly from the true data for 7 years.
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X7=168) using different models
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Hence, in the proposed study GPR is employed to predict the values of temperature for the 1st of
January(24h) in Johor for 2021. Table 3 illustrates the numerical results of regression for all predicted
meteorological data obtained by GPR model .In terms of evaluating the performance of each model, machine
learning utilizes a number of measures to accomplish that including the Mean Square Error (MSE), Root-
Mean-Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R-
squared) [37-40].As illustrated in Fig.8 there is a significant convergence between the values of the true and
predicted data by GPR model.

Table 3. The regression results for all meteorological data.

Meteorological data

Regression results

Wind speed Temperature Solar irradiance
Model Matern 5/2 Gaussian Process Matern 5/2 Gaussian Process Matern 5/2 Gaussian Process
Regression Regression Regression
RMSE 0.16 0.05 21.9
R-Squared 0.99 0.99 0.99
MSE 0.027 0.002 479
MAE 0.099 0.03 11.58
Training time 92.6 6.5 309
Kernel Function Matern 5/2 Matern 5/2 Matern 5/2

e=actual data ===predicted data
7.88 848 773
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Figure 8. True and predicted meteorological data of Johor for the 1% of January 2021:
(a)Wind speed, (b) Temperature, (c) Solar irradiance.

4.2 Optimal power flow results

To demonstrate the competency of the WOA, the OPF for the conventional system is investigated by
other 2 metaheuristic optimization techniques. These techniques are ant lion optimizer (ALO) [41], water cycle
algorithm (WCA) [ 42]. Every optimization technique was run 40 times in order to obtain the statistical metrics
which are shown in Table 2. For all employed techniques, it is worth to mention that the population size and
the maximum number of iterations are 50 and 100 respectively. The obtained results in Table 4, particularly
the standard deviation reveal evidently that the WOA delivers robust and steady solutions as compared with
other techniques.

Table 4. Statistical metrics of the fuel cost for the conventional system by using different techniques.

Technique Min Max Average Standard deviation
WOA 802.23 802.76 802.49 0.03
ALO 802.34 803.41 802.54 0.23
WCA 802.34 803.87 802.63 0.51

Moreover, the convergence features of all methods are shown in Fig 9. Unquestionably, the WOA
achieves steady optimal value with 35 iterations while ALO and WCA need 40 , 43 iterations respectively to
reach a stable optimal value.

830
— WOA

—ALO

820 \—~ WCA

815 \
810 S——""
803.99

800

825

COE ($/kWh)

0 20 60 80 100

40 Iteration

Figure 9. Comparison of the convergence features

The optimal power flow is implemented on the conventional and amended (in the presence of PV and
wind turbines) IEEE 30-bus networks. Table 5 illustrates the simulation results of day ahead (24h) optimal
power flow for conventional and amended IEEE 30 bus. It is obviously that the hourly fuel cost and hourly
CO; emission of the conventional OPF are decreased considerably due to the engagement of the RES in the
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amended system. Thus, in the longer time frame such as month or year there will be a noticeable reduction in
the fuel cost and CO, emission of day ahead OPF.
Table 5. The simulation results of day-ahead optimal power flow for conventional and amended IEEE 30 bus

Bus ri?onr\\/:I 1 2 3 4 5 6 7 8 9 10 11 12
Vi 106 106 1.06 106 106 106 106 106 106 106 106 106 1.06
Va 104 104 1.04 104 104 104 104 104 104 104 104 104 1.04
Vs 101 101 101 101 101 101 101 101 101 101 101 101 1.01
Vs 101 101 101 101 101 101 101 101 101 101 101 101 1.01
Vio 10468  1.02 1.02 102 102 102 102 102 102 102 102 102 1.02
Vi 108 108 1.08 108 108 108 108 108 108 108 108 108 1.08
Vis 107 107 1.07 107 107 107 107 107 107 107 107 107 1.07
Via 102 102 1.02 102 102 102 102 102 102 102 102 102 1.02
P, 17529 15615 15094 15562 154.73 151.18 15193 151.40 15421 15257 147.11 14811 144.46
P 4512 4357 3756 4408 3693 39.13 4115 4173 4431 4254 3872 4053 4113
Ps 2231 1968 1893 1959 2232 1812 17.96 19.13 19.14 1882 17.24 1947 19.06
Ps 25.46 10 17.53 10 1487 17.16 1432 1634 1076 1261 2041 10 10
Pro (W‘é‘ﬁst)“rbmes 0 122 12.4 124 124 1174 1173 1174 1174 1175 1301 1887 1973
P 1231 1016 1383 10 10 1377 1404 10 10 1074 1132 10 10
Pus 12 40 40 40 40 40 40 40 40 40 40 40 40
Pu (PV Bus) 0 0.1 0.12 0.15 02 03 04 115 162 26 34 432 677
Generation(Mh/h) 29250 291.85 29132  291.84 291.45 291.41 29153 29149 291.78 291.64 291.22 291.30 291.16
Losses(MW/h) 910 845 7.92 844 805 801 813 809 838 824 78 790 7.76
Predicted Fuel = o) o5 66378 66593  663.64 664.91 664.95 664.12 660.75 658.64 655.63 65543 652.67 645.34
Cost(USD/h)
COEmission 41937 37697 36118  376.14 369.33 362.85 36541 365.01 37257 36649 352.37 349.88 340.93
o) . . . . . . . . . . . . .

Table 5. The simulation results of day -ahead optimal power flow for conventional and amended IEEE 30
bus (continued).

Bus 13 14 15 16 17 18 19 20 21 22 23 24
Vi 106 106 1.06 1.06 106 106 106 106 106 106 106 106
Va 104 104 1.04 1.04 104 104 104 104 104 104 104 104
Vs 101 101 1.01 1.01 101 101 101 101 101 101 101 101
Vs 101 101 1.01 1.01 101 101 101 101 101 101 101 101
Vio 102 102 1.02 1.02 102 102 102 102 102 102 102 102
Vi 108  1.08 1.08 1.08 108 108 108 108 108 108 108 108
Vis 107 107 1.07 1.07 107 107 107 107 107 107 107 107
Vis 102 102 1.02 1.02 102 102 102 102 102 102 102 102
P, 14568 1466 14461 149.99 15258 152.66 15510 15829 159.10 15345 153.85 153.32
P 3756 4244 3894 4265 4157 4063 4388 4444 4318 4138 4193  41.99
Ps 1803 1867 1857 1924 1872 1863 1878 2010 21.02 1946 1849  19.01
Ps 1149 10 16.79 10 1011 1172 12.38 10 10.06 1866 1656 1878
Po(Wind 1975 1974 1885 167 1305 1177 1045 89 844 85 844 844
turbines Bus)
P 1428 10 10 10 1314 1450  10.80 10 10 10 1230 10
Pis 40 40 40 40 40 40 40 40 40 40 40 40
Pu (PVBus) 434 385 3.27 2.89 243 167 043 03 021 014 0095 007
Generation(Mh/h) 2911 291.3  291.03 29147 291.61 29157 291.82 29203 292.01 29159 291.66 291.61
Losses(MW/h)  7.70  7.88 7.63 8.07 821 817 842 863 861 819 826 821
Predicted Fuel - oo/ o9 g5476  657.27 65609 656.96 659.75 662.61 66272 66310 664.05 664.34 664.30
Cost(USD/h)
COZ(ES);SS"’” 34169 348.04 34279  357.95 36491 36566 375.53 38490 386.23 37277 373.09 373.04

The contribution of RES plays a vital role in the reduction of forecasted fuel cost throughout day ahead
as illustrated in Fig. 10 For instance, at 12pm, the maximum predicted power of PV and wind turbines are 6.77
MW and 19.73 MW correspondingly; whereas the predicted fuel cost is a least value of 645.34 USD/h.
Furthermore, the contribution of RES has reduced the power losses according to the generated power. Fig.11
illustrates the predicted variation of power losses in term of predicted power of RES. Generally, as shown the
predicted losses are declined significantly when the predicted power of RES increases. It is obviously the
predicted and actual fuel costs are similar considerably, hence the proposed prediction is reliable adequately to
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accomplish the day ahead OPF in power applications.
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Figure 10 The influence of RES contribution on reduction of fuel cost day ahead.
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Fig. 11. The influence of RES contribution on power losses day ahead.

In terms of the environmental performance, as shown in Fig.12 the contributions of wind turbines and
PV in the amended system decrease remarkably the forecasted CO, emission as compared to the conventional
system. The lowest forecasted amount of emission of 340.9 (kg/h) occurs at 12 pm which witnesses the highest
powers produced by PV and wind turbines as illustrated in Fig.10.
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Fig.12 Forecasted CO2 emission of the day ahead OPF
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5. CONCLUSION

The proposed research has demonstrated that the efficient forecast process of meteorological data is a key
aspect for power system operators in order to make the most appropriate decisions technically, economically
and environmentally. Indeed, the forecast process acquires an enormous attention particularly in the
competitive environment of electricity market. In this article, the day ahead optimal power flow has been
presented considering the contribution of renewable energy sources that led to minimizing the fuel cost and
CO2 emission. IEEE 30 bus system was used as a test system running in Johor province. The proposed
investigation included two stages; first, the machine learning tool has been employed to forecast the day ahead
24-hour meteorological data of Johor whereas second, the predicted meteorological data is employed to
compute the power of renewable energy sources in order to perform the optimal power flow on the above-
mentioned test system by using WOA.. This article was an attempt to pave the way to the integration between
the machine learning and power engineering. Nevertheless, there are other crucial areas need further
investigation including but not limited to engagement of storage system technologies and electric vehicles in
the optimal power flow for short term operation.
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