Indonesian Journal of Electrical Engineering and Informatics (1JEEI)
Vol. 10, No. 4, December 2022, pp. 930~944
ISSN: 2089-3272, DOI: 10.52549/ijeei.v10i4.4247 a 930

Cryptanalysis the SHA-256 Hash Function Using Rainbow
Tables

Olga Manankova?!, Mubarak Yakubova?, Alimjan Baikenov®
13Department of Telecommunications and Space Engineering, Faculty of Telecommunications and Innovation Technologies, Almaty
University of Power Engineering and Telecommunications name after Gumarbek Daukeev, Almaty, Kazakhstan
2Department of Information Technology, Faculty of Information Systems and Cybersecurity, Almaty University of Power Engineering
and Telecommunications name after Gumarbek Daukeev, Almaty, Kazakhstan

Article Info ABSTRACT
. . The research of the strength of a hashed message is of great importance in
Avrticle history: modern authentication systems. The hashing process is inextricably linked
Received Oct 21, 2022 with the password system, since passwords are usually stored in the system
Revised Dec 3. 2022 not in clear text, b_ut as hashes. The SHA-25§ hash function was cho_sen to
Accented Dec ’20 2022 model the attack with rainbow tables. An algorithm for constructing a rainbow
P ! table for the SHA-256 hash function in the Java language is proposed. The
conditions under which the use of rainbow tables will be effective are

Keywords: determined. This article aims to practically show the process of generating a
password and rainbow tables to organize an attack on the SHA-256 hash

Hash function function. As research shows, rainbow tables can reveal a three-character

Attack password in 3 seconds. As the password bit increases, the decryption time

Rainbow tables increases in direct proportion.

SHA-256

Java Copyright © 2022 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Olga Manankova

Department of Telecommunications and Space Engineering, Faculty of Telecommunications and
Innovation Technologies, Almaty University of Power Engineering and Telecommunications name after
Gumarbek Daukeev, Almaty, Kazakhstan

Email: olga.manank@gmail.com

1. INTRODUCTION

The value of data increases every day. Data is a key factor both in scientific research and in the field
of public administration. The development of IT technologies has led to the generation of a large amount of
personal data, which has become the basis for the development of machine learning and big data processing
technologies. This growing demand entails renewed interest in data privacy methods and processes. When a
user needs to log in securely, he enters a password and his password is compared with the password stored in
the system database. To be more precise, it is not the passwords themselves that are compared, since passwords
are not stored in plain text, but their encrypted form is compared. This encrypted form will be the password
hash. If the hashes match, then we can assume that the user has authenticated and can log in.

Hash functions are one of the first ways to ensure the protection of personal data through the user
authentication process [1], [2]. However, the fact that most computer systems use a username and password
for protection, often the same for different systems, as well as short passwords using only numbers and letters,
often only numbers in the form of the user's date of birth, the problem of vulnerabilities of cryptographic
systems remains open. [3], [4]. In addition, Hash functions themselves also have vulnerabilities that are
exploited by an attacker. Among the common hash attacks, there are attacks by brute force or brute force and
by dictionary. In contrast to such attacks, hash disclosure using rainbow tables significantly speeds up the
hacking process [5], [6].

Rainbow tables are tables containing precomputed values of known hashes for a particular
cryptosystem. If the cryptographic security of the system is violated by an unauthorized subject using a rainbow
table, the attacker receives comprehensive information about the encryption scheme used [7]-[9]. That is, if for
some reason access to the password hash tables is obtained, then with the help of rainbow tables, you can easily
restore all the encrypted passwords that it contains. This can happen in case of password leaks, low password

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

http://aues.kz/ru/institute/one?institute_id=3
http://aues.kz/ru/institute/one?institute_id=2
http://aues.kz/ru/institute/one?institute_id=3

1JEEI ISSN: 2089-3272 a 931

database security, the use of outdated hashing methods such as MD5 and SHA1 [10], or access to the password
database by phishing those users who have access to the password database. For example, frequent traffic leaks
in the IP telephony network occur due to the use of outdated hash functions [11], which do not provide strong
protection and as a result lead to loss or theft of traffic, in addition to attacks on personal data [12]-[16]. The
use of rainbow tables in practice is not limited to attacks, they can also be used as a mechanism for cryptanalysis
of telecommunication systems or recovery of a forgotten password.

Cryptanalysis allows using an attack on the hashing mechanism to assess the degree of its resistance
to disclosure. When an attacker steals a password hash, he can quickly determine whether the passwords have
been over-salted or they have been hashed N times. Next, using the rainbow table, the attacker searches for the
100 most popular passwords. When coincidences are detected, the work goes in the opposite direction. After
that, the hacker receives the decrypted password. But the time spent on this process will determine the stability
of the system. Since the precomputed rainbow table contains hashes of all open characters in the password, it
can take up large amounts of memory on the hard disk. Therefore, to implement cryptanalysis using rainbow
tables, it is necessary to take into account the fact that the amount of allocated memory will depend on the time
of password disclosure and the durability of the system [17]-[19].

To reveal the forgotten password, the administrator, having access to the password hash table and the
rainbow table, can restore the encrypted password and provide the user with the plaintext of his password. In
this case, the presence of a hash vulnerability makes it possible not to lose user data [20]-[22].

The security sector is developing very quickly and modern methods and procedures of attacks are
used, but rainbow attacks remain a threat to organizations to this day. This is especially true for those
organizations that do not use adequate password protection or save on security. It is recommended to use good
knowledge of your cryptographic system as measures to increase the level of system security. In addition, use
a modern Salting technique, which is based on the principle of adding an additional random value to each
hashed password, which allows you to create new password hash values that will participate in authentication.
To date, many modern password authentication systems include salt, which reduces the risk of successful
attacks on rainbow tables [23].

Also, one of the modern directions of development of the IT sector is the introduction of cloud
services. In this area, ensuring the security of the end user comes to the fore, since the system needs to guarantee
not only uninterrupted access to cloud services, but also the confidentiality of the transmitted data. At the same
time, it is proposed to use a secure hashing algorithm [24]-[26].

The article proposes to investigate the resistance of the modern sha-256 hash function to the
vulnerability of rainbow tables. From the analysis of publications, it is clear that previously outdated hashes
were more often subjected to cryptanalysis, or modern hashes were often investigated by brute force and
dictionary attacks less using rainbow tables. The relevance of the study lies in the fact that with the use of
rainbow tables, the process of searching and comparing hashes becomes easier, since all the values in the
rainbow table should already be calculated in advance. At the same time, it is not necessary to know the exact
password, if the hashes match, then the user will authenticate. The exception is salted hashes, since for their
disclosure it is necessary to know the salting algorithm and how many times they are hashed. But most often
these practical settings are neglected by admins, which increases the risk of password hacking using rainbow
tables.

The implementation of the rainbow attack on a modern hash function is written in Java and consists
of two separate programs. Rainbow tables are files stored on a hard disk. Therefore, one program will generate
rainbow tables based on user-defined parameters, and the second will process rainbow tables to provide a quick
hash search.

2. METHOD

A rainbow table is a special variant of lookup tables for inverting cryptographic hash functions, using
a reasonable compromise mechanism between table lookup time and memory footprint [23]. Rainbow tables
are primarily used to crack passwords that have been converted using a hard-to-reverse hash function.

In simple terms, a certain table is created in advance with matching chains in which the hash and
password alternate. Moreover, in this table, all possible variants of passwords of a given length range and a
given alphabet are sorted out (for example, passwords consisting of Latin capital letters from 1 to 5 characters
long). An example of such a chain is shown below [23]:

aaaaaa— 281DAF40 — sgfnyd — 920ECF10— kiebgt
o R H R 1 (1)
here H is the hash function (eg SHA-1 or SHA-2) and R is the reduction function. In fact, this is just
the generation of another key from the set of all possible ones in order to continue the chain. A rainbow table

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

932 a ISSN: 2089-3272

consists of many such chains, with different reduction functions applied at each iteration (i.e., R1, R2,R3...Rn
where n is the length of the chain). Each chain starts with a random possible password, then is subjected to a
hash function and a reduction function. A simplified rainbow table is shown in Figure 1.

porTTT— Ho el Rl gy H o meeeee, R2 ey H o meeeeel R
mklpedla ::} a.n:--ikl:l .::p' secret |=,"} Elkpmwn::} jimbo =g vﬂdﬂ:‘u |;*} rootroot &
FURRTRTR o I R eeneneanes [I [+ SRR © L T ——
ahulzfgh |=:} lunﬁg |=,"} bernie |=:} kn:nlscn |={‘.‘:- zurich :ep>! Britpy (=g myname
...... ey H el R iy il R i, H il R i,

Epasawd :} u:Ih:n'l-i :} culture =::- reE:eg |=:} crypto =:} Ltikd =:} linux23

...

Figure 1. Diagram of a rainbow table with a chain length of three [27]

The main idea of the rainbow table is that intermediate passwords in the chain are discarded and only
the first and last elements of the chains are written to the table. Creating tables takes time and memory, but
they allow you to recover the original password very quickly (compared to conventional methods).

To recover the password, this hash value is reduced and looked up in the table. If no match is found,
then the hash function and reduction function are applied again. This operation continues until a match is found.
After finding a match, the chain containing it is restored to find the discarded value, which will be the desired
password.

The construction of the rainbow table occurs in stages:

1. The working alphabet is fixed, that is, the set Q of all possible keys is given.

2. An element g from the set Q is fixed and the value h of the hash function on it is calculated.

3. Using some function R, a key belonging to the set Q is generated from the hash: g=R(h). If the
number of elements in the chain is less than the specified one, go to step 2.

These operations will be repeated until a chain of length t keys is obtained. This sequence is not placed
entirely in memory, only the first and last elements of it are written. This is the time-memory tradeoff - let's
say we generate a chain of 2000 keys, and only the first and last elements are recorded, we get huge savings,
but on the other hand, the cryptanalysis time increases [28].

Next, we generate a certain number of chains, which are conveniently represented as a table with two
columns (two-dimensional array), the first of which contains the initial key of the chain, and the second - the
final one. After the chains are generated, you can already search for a key in them.

3. RESULTS AND DISCUSSION

To demonstrate the use of rainbow tables, a simple example can be given: suppose a password is
generated consisting of two decimal digits in the range from 1 to 4. The SHA-256 hash algorithm is used to
hash the password.

Password hash: 73475ch40a568e8da8a045ced110137e159f890ac4da883b6b17dc651b3a8049.

Suppose we know exactly the key length (2), the alphabet (1, 2, 3, 4) and the hashing algorithm. This
means that the rainbow table will be small, and it will not be difficult to guess the password.

It is worth saying that a real rainbow table that stores all possible passwords up to 6 characters long
(and this includes all printable characters) stores about 2 million values and consists of chains of about 1000
iterations in length. It can take up to 10 hours to look up a password against such a table if it is performed on
a medium power machine, for example, based on a Core i3 processor. And this example was simplified as
much as possible in order to simplify "manual” calculations.

The number of all possible passwords under these conditions is 16. It is worth noting that ideally this
table should consist of a much larger number of chains and iterations in them (even with such a small number
of possible passwords), however, for simplicity, our table will consist of 4 chains with a length of 3 iterations
(thus, there will be 4 passwords in each of the chains). Although in this scenario it is obvious that the last
elements of the chains will not receive their hashes. Each of them will have its own reduction function - R1,

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

1JEEI ISSN: 2089-3272 a 933

R2, R3, respectively. Here we need to remember that the only requirement for the reduction function is to
return values from the same alphabet as the passwords.

To calculate the SHA256 function, the Internet resource [29] was used.

Examples of some hash functions:

22 - 785f 3ec7 eb32 f30b 90cd Ofcf 3657 d388 b5ff 4297 f2f9 716f f66e 9b69 c05d dd09;

12 - 6b51 d431 df5d 7f14 1cbe cecc f79e df3d d861 c3b4 069f Ob11 661a 3eef acbb a918

Chain iterations involving functions R and H:

1) 32 --- e29¢9c180c6279b0b02abd6a1801c7c04082cf486ec027aal3515e4f3884bb6b --- 34 ---
86€50149658661312a9e0b35558d84f6c6d3da797f552a9657fe0558ca40cdef 41
3d914f9348c9cc0ff8a79716700b9fcd4d2f3e711608004eb8f138bcha7f14d9 --- 12;

2) 14 --- 8527a891e224136950ff32ca212b45bc93f69fbb801c3blebedac52775f99e61 --- 42 ---
73475ch40a568e8da8a045ced110137e159f890ac4da883b6b17dc651b3a8049 22
785f3ec7eb32f30b90cd0fcf3657d388b5ff4297f2f9716ff66e9b69c05ddd09 --- 21;

3) 24 --- ¢2356069e9d1e79ca924378153cfhbfb4d4416b1f99d41a2940bfdb66c5319db --- 23 ---
535fa30d7e25dd8a49f1536779734ec8286108d115da5045d77f3b4185d8f790 31
eble33e8a81b697h75855af6bfcdbchf7chbde9f94962ceaecled8af21f5a50f --- 33;

4) 11 --- 4fc82b26aech47d2868c4efbe3581732a3e7chccbc2efb32062c08170a05eeb8 --- 13 ---
3fdba35f04dc8c462986c992bcf875546257113072a909¢162f7e470e581e278 43
44cb730c420480a0477b505ae68af508fh90f96cf0ec54c6ad16949dd427f13a --- 44;

Chains have been created. Further, we will assume that their first and last elements have been written
to memory. That is:

32---12;
14 --- 21;
24 --- 35;
11 --- 44.

After that, the attack begins, which in essence is a search for a hash from this table and the password
corresponding to it.

The search is carried out as follows: first, the last column with hashes is checked for a match with the
required hash. If no match is found, the penultimate column is checked, and so on. When the desired hash has
been found in a certain column of a certain chain, the entire chain will be restored, and thus, the password
preceding this hash in the chain is the one being sought.

We start checking the last column of hashes:

3d91419348c9cc0ff8a79716700b9fcd4d2f3e711608004eb8f138bcha7f14d9;

785f3ec7eb32f30b90cd0fcf3657d388b5ff4297f2f9716ff66e9b69c05ddd09;
eble33e8a81b697h75855af6bfcdbchf7chbde9f94962ceaecled8af21f5a50f;
44ch730c420480a0477b505ae68af508fh90f96cf0ec54c6ad16949dd427f13a.

None of them match our hash:

73475cbh40a568e8da8a045ced110137e159f890ac4da883b6h17dc651b3a8049.

Therefore, we are looking in the penultimate column:

86€50149658661312a9e0b35558d84f6c6d3da797f552a9657fe0558ca40cdef

73475ch40a568e8da8a045ced110137e159f890ac4da883b6b17dc651h3a8049
535fa30d7e25dd8a49f1536779734ec8286108d115da5045d77f3b4185d8f790
3fdba35f04dc8c462986c992bcf875546257113072a909¢162f7e470e581e278

The desired hash is found, Therefore, we restore the desired chain:

14 --- 8527a891e224136950ff32ca212b45bc93f69fbb801c3blebedac52775f99e61 --- 42 ---
73475ch40a568e8da8a045ced110137e159f890ac4da883b6b17dc651b3a8049 22
785f3ec7eb32f30b90cd0fcf3657d388h5ff4297f2f9716ff66e9b69c05ddd09 --- 21;

Answer: the required password is 42.

It may seem that all these manipulations with searching for a hash by columns and restoring the chain
in which the hash was found are superfluous, because there are only 4 chains and it is so perfectly clear in them
which hashes correspond to which passwords. However, do not forget that this is the most simplified example,
and the computer will have to deal with tens of thousands, millions or even billions of passwords.

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

934 a ISSN: 2089-3272

3.1 Java attack algorithm

The rainbow table generation algorithm (one program) and the hash search algorithm for this table
(the second program) will be implemented in Java. The table will consist of all possible 3-character
combinations of the 36-character input alphabet, consisting of lowercase Latin letters and numbers.

If you count how many possible combinations you get, then you get a total of 363 = 46656. The table
will consist of 16 columns: 8 columns with passwords and 8 with their corresponding hashes.

The general algorithm is;

Generation of all possible (moreover, non-repeating) combinations of 3 characters of the input
alphabet and their entry into a dynamic array;

Writing the first 5832 values from the array to the first column in Excel (these will be the initial
elements of the chains) and parallel writing the corresponding hashes to the adjacent column.

Recording all other passwords in accordance with the reduction function (each column with passwords
has its own reduction function).

Search for the required hash in the generated table.

The basis is the code for the SHA-256 hash function is shown in Figure 2 (hereinafter, parts of the
code are shown without mentioning the connected libraries). The code is implemented using a ready-made
library of methods in Java - Apache Common Codec [30].

class SHA256 extends Main{
public static String shaApache(String st) |
String sha256Hex = DigestUtils.sha256Hex(st);
return sha256Hex;
)
public class Main {
public static void main(String[] args) throws IOException {
String a = SHA256.shaApache("DFGBKIDBF");
String b SHA256.shaApache ("abl");
System.out.println(a);

System.out.println(b);

Figure 2. Java description of the code for the SHA-256 hash function
The result of the generate hash function is shown in Figure 3.
in
"C:\Program Files\Java\jdkl.B.ﬂ_lBl\hin\java" e

d3b874a5alase096c5623dd61thad2009d50aadad14719£b7963aadce043ctel
cashbalTcH3de2fBadscle0f56bbalbaci2c0fdcebclb4bd44d1365724110Te

Process finished with exit code 0

Figure 3. The result of the hash function

The next step is to generate all possible passwords. Please note that the generator will work first, and
only then the received passwords will be distributed over the table.

Generator of a random non-repeating sequence of a string of 3 characters, and this sequence includes
all possible combinations of three characters with an input alphabet of 36 characters (lowercase Latin letters
and numbers) is shown in Figure 4:

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

1JEEI ISSN: 2089-3272 a 935

public class RandomGen extends Main {

String AB2 = "0123456789%9abcdefghijklmnopgrstuvwxyz"”;

SecureRandom rnd = new SecureRandom();

public String randomString() {

StringBuilder sb = new StringBuilder(3);

(int 1 = 0; 1 < 3; i++)
sb.append(AB.charAt(rnd.nextInt(AB.length())));
n sb.toString();

}

public static ArrayList<String> random_first(ArrayList<String> random_pass) {
RandomGen rand = new RandomGen();
String randd = rand.randomString();
random_pass.add(randd) ;
int countl = @, count2 = 0;
for (int 1 = @; 1 < 600000; i++) {
String rand2 = rand.randomString();
(int j = random_pass.size(); j > 0; j--) {
(!rand2.equals(random_pass.get(j - 1))) {

countl++;

(countl == 1) ntinue;

(countl == 0) {
random_pass.add(rand2) ;
count2++;

}

countl = 0O;

it (count2 == 46656) {
break;

}
// System.out.println((i+1)+". "+random_pass.get(i));

(int 1 = O; i < random_pass.size(); i++) {

System.out.println((i + 1) + + random_pass.get(i));

rn random_pass;

Figure 4. Java description of the code for the SHA-256 hash function
Call the functions of this class in Main as shown in the Figure 5. The result of the generator is ahown
in the Figure 6.

public class Main {
public static void main(String[] args) throws IOException {
ArrayList<String> random_pass = new Arraylist<String>();

RandomGen. random_first(random_pass);

~~

St

Figure 5. Java description of the code for the class main

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

936 a ISSN: 2089-3272

Run kain
’_ 4033 .kbad
4034 .cka
4035.a=d
gﬁ 4036.a25
4037 .8£0
E 4038.5aa
@ 4035.965
4040.18e
— L 4041.caa
4042 . 671
» 4043 .5ab
4044 . bat
ke 4045.de=5

Figure 6. The result of the generator

A sequence of 46656 words with all checks for “non-repeatability” was generated in about 3 minutes.
It is worth saying that in real conditions, rainbow tables contain not only millions, but billions of possible
passwords. | assume that, for example, 4-character passwords with the same 36-character input alphabet (which
is 364 = 1679616) will be under the same conditions for about an hour.

Next comes the function to write the first elements of the chains with their hashes in adjacent columns
(Figure 7):

public class Excel extends Main {

public static ArraylList<String> writeIntoExcel(String file, Arraylist<String> random_pass)
throws FileNotFoundException, IOException {
Workbook book = new XSSFWorkbook();
Sheet sheet = book.createSheet("Passwords");
Row rowl = sheet.createRow(0);
Cell celll; Cell cell2;
(int i = @; i < 5832; i++) {
rowl = sheet.createRow(i);
celll = rowl.createCell(0);
cell2 = rowl.createCell(l);
celll.setCellValue(random_pass.get(i));
cell2.setCellValueSHA256.shaApache (random_pass.get(i)));

book.write(new FileQutputStream(file));
book.close();

random_pass;

Figure 7. Java description of the code of function for writing the first elements of the chains with
their hashes in adjacent columns

Call to Main.java for write the first elements of the chains with their hashes in adjacent columns in
Excel file is shown in Figure 8.

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

1JEEI

ISSN: 2089-3272

937

public class Main {

public static void main(String[] args) throws IOException {

(]

ArraylList<String> random_pass = new Arraylist<String>();

RandomGen.random_first(random_pass);

Excel excel = new Excel();

Excel.writeIntoExcel("whkw.x1lsx", random_pass});

Figure 8. Java description of the code to generate Excel file

Result of generating Excel file is shown in Figure 9.

1 [ox
vgs
6u2
ni3
Y58
kpq
sar
xgb
21r
hln
35v
bem

(Y= - = I, I I TS I N

e e e
W NP o

apr
qpl
dyy
fkd
b2c
lj7
hg2
vwe
i6e7
vkq
dfo
6oe
1eh
9rq
x56
gah
cay
182

WO RN RN NN NN R e e e
DWW N W R W NP O WD N A

A

B C D E F G H J
aOc?chde{8f97f37be_l53752cc8 1915465b62aeb81b70a5d348f6d34bf82a279
d851758243fddc536fec42bbddcbefbdee9747d59a44efc636bdfd8cae38f208
fe5c48e671a6453721c612430c820chc5c3a9a7488ca2dbh94ef0411f223897a9
8329666d4b3b005bdaa8986ddab89f4872f98123b6b8701705e49dfeed4ad9360
d7d48a53c7e8264493aad509eb4580f8a4499de0bbd02bf0ed97140bbf25fh81
346502a5820109051cbd39ealab6f2bb8f797df9f12a41cc72932848891f8218
bdb8ec313eb09bed6a2527fcacdaf190c85chf925d86353ccf517413f1c0a645
8ab4aecl6c5e61444b0d59c22d6c838b753f972bfh2111e13e5a63c892157c002
92cc28f7c804deaf0dbcbeealabfd9dal9037e0dc24b56d2906f7f8ec6915461
f270e9c2d15ce51225a677d46205d31548b7490098bb44b4d5ead30d6fo9f2a2
578bcdfdd0a792b0e4085424d67e3f82646107ca27fh841e74cffaebch81fc07
e353bd48113b89c5ad46ca9d20e8e8b275df97b32d60b9f476dal1e858838036d
02b3dce98c61897231fdcf1a0594d6c2e159ff8a812386001c769706727efh3e
6c8b7e528dcef7b5fcedc28adfadbafe33c73d2bafc84b2560ccdba02f818c0d
Afd4e8cbcc0ab10836674138e62833802befalb2c0ce1819309fa8b472545ac8
829d19a083ac91f336272deaf9f0176439385c2b71328311557665beff66369f
5527f7356a87cec5d061767332hafodd52a8d98ad469704be27e6eb403ab92e7
d37dc39322780b7458aa1648931462a17eeafdeldaabc51377262e8cfa578b16
ff023264bc3726ba2bc5e3351d861ff763f2fb1cd95525¢51b170d2e0eb3372f
d1c1f90211549d3c07414234450edb0631ec934f4a485fce3edad7b8e06f01fd
ab45347a70687fec1f582b9174e4dblea224fe9c84909ef6240e9e6fcf0afbcc
1e9960d25935faa856398b72a50693d5cf30a3f5dchOefaabadad536ee9d0d1c
doff4e514f14b91fb55e834d7f69d664b71f8df58ab5a0016793d3b13180a56a
722fee06a93b6cd53¢c05¢95449613d90ac1996b0071b62d005ch9ec9afdcce2d
8b917d849cafdb2838fe7379bbbofecd83fff7074438c%ac5319f7d2adb9cef9
7f1f160df53ae21f3158224f10f9e1a24df5ccedcecdOeabe7e9dcOb8f5f7419
868ba58d0081c758a322bec68c567037abe2f8222f2e95a7acd082f97ebd91ad
aclab4a66c7f113bb66c250f581c5dd41f84c4fe4f0399ebbceb09fofchbd97as
6e5ed49aebca719385144d1bb100f804151022dafc12dac0eS5fecehdf5d5acfe

fd?hedd91720936165fd3c6815f05hc59cdfh7h?96aa7heN7af6fAcd?bh70d1
Passwords ()

Figure 9. Recording result

For each subsequent column of passwords it is necessary to apply the reduction function. Let each of
the reduction functions take an even bit of the hash as input, which increases each time (for example, the first
reduction function takes the Oth bit of the password hash from the previous column as input, the second
reduction function takes the 2nd, etc.). The code for these functions is also generate in the Excel.java file

(Figure 10)

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

938

a

ISSN: 2089-3272

int column_pass=9, column_hash=18, byte_in_hash=8, get cell=1;

String random_pass2 =
for (int k=0; k<6; k++){
for (int i = @; i < 5832; i++) {

Cell cell5 = sheet.getRow(i).createCell(column_pass);

Cell cellf = sheet.getRow(i).createCell(column_hash);

for (int j = 5832; j < random_pass.size(); j++) {
if ((SHA256.shalpache{random_pass.get(j)).toCharArray())[byte_in_hash] ==(sheet.getRow(i).getCell(get_cel
1).getStringCellValue().toCharArray())[byte_in_hash]) {
cell5.setCellValue(random_pass.get(j));
cellf.setCellValue(SHA256.shaApache (random_pass.get(j)));

random_pass.remove(j);

break;

¥

column_pass = column_pass+9;
column_hash = column_hash+3;
byte_in_hash = byte_in_hash+2;
get_cell = get_cell+H;

for (int i = 5832; i < 5832*2; is++) {

celll = sheet.getRow(i-5832).createCell(63);
cell? = sheet.getRow(i-5832).createCell(64);

celll.setCellValue(random_pass.get(i));
cell?. setCellValue(SHA256.shafpache (random_pass.get(i)));

Figure 10. Java description of the code of the reduction function

The result of calculating the reduction function for each password is shown in the Figure 11.

8 c D E F G H

dadi 37814 f014ee347f5779b7bd2599d28d6847b1d446cd
233b7dca38da60d01658d89d34b199¢ 701a31213654292192cf1edaa20fac6et
6ffbaefaafi664bd4739f51a6c7883a2cIce74e9227a6aff728d0d57ad56f234
1938b74f37c0c5e825092d2b42909aebdba6d6fdf88bRaSAf5e53973d91 70682
0df0b19139740bebf1facB3f0cBad68dc95f002736b4559dadbd019a3Bc 27381
186d8c57ff88e2bb3aadcdel1e9fafd3c50f8c1a2fc5c729¢1fb6B0cBfbba3a0
£91d710238fb69cef7c56a95522a4d352ealca’035a364e 7Tdbdd684279352395
ad595aa7d1a41e50866b82385eeb188b9cBbe96161916a6c6b6ab0fcbedbdBBa
54b2bd37067a9b5871c1d92deel7a452dcd9cf5c913b35c117a381070a28ec 31
115e1bbac45ffca66d2: 745b37767af b94d76f1939295e376
26e362a384156cd5¢41122374774e9615bdBaaBbac196¢ed008698c579ec5edd
e6cf72700588fefBb7aaadIaffdd7fdd4e0274fad33e0801ac 29495 2dfc0c2c
353418043819¢1175a229952¢09¢2232a24¢423a392bdaf116cad54d9d9676¢
3f0ab32163a96c682f3dcd9c6ae16fIbad30ccbbf3400983582ccedf7d729c4f
d388bSea5dcBa®13bd5c27251995d2ef6fcff9961f16b061c713{7995a3b2f0
240f5280625fb9bbbdedbad3f1c316cbbSh24b33ade5e981028f9a2233f3c7e3
f2291a4bc750850cd3fc02a0abba 7704155699 752e39ee411cb5721c55b4b5a
19f44a5ed21f0adf100b9f5a2ef371a7e3b0ca502e136d02f32aB2c968eb54ad
Oc2e7ac3dc9adf2c9058223947a466a6a2115%2e9d9%e2c6597e8b7d334ae907
4ab720dfbd2c356f134e682fc2107209ba?4ed0a67b56964024c8fce3IB6IBO
26629417b414af92a7d7d7d62adb7a1845a49d6e5ff1e2dShd4cdad537511014
B0bfa79b04cbcabe0f34086e4f3c9915fafc11000bd154b77845afd9627a32b7
aef0839575127e7bb3eb0c7c574ebcBd9a7163d9a4bcal1fbfced360a82ecidb
Sce6b6bbbbed501be6fb299129b71e681 ce3cda208b61adae40B3acdeIdbbal’s
#1296af9d0f23dd4b618e7828f16b25ee07e2db3dce8dadeadeaeBbfadcibddf
5262db29fab2elcc7a20818f6dca285b13897¢12d3c6bB1629d6453dbB342e
OcaBab85eblc31c58031927dcfa70f610b5ae094 7aeadd5dB4512b0cfefc2000
af5652d95e6f28405c0! 2371f25d0c5ed21 abdfbflfadacbad
730e039bead48334867194d202b42c13081a4989bdb23ec3bfOd1dc981a4a772

173093240034 17c0271202002355chabed41333d550RI419Rd61 2526041046
Passwords ®

K L M N o P a
d50e37a7f0dd9e8dc745c0711f170f92ddc9c 7e3e0a839f3123cBcbbdd77515d
2df0c22741332a366868567d8579299¢72308265e39588db1130ea0f4a44662d
6db36b7b774f78004c 11bb4644841751e140bdI73b0780946766191449a2a441
1aa0adaad6fa2599aec584a516ed9975c170b2a88c5706928f85b3e0cBTedc 22
036f7e74fae78121ad50fb3f85c 7adce550c4ecBba38fIc5d1c4Bf3c4558a166
15f5f328e6d: fad9e 14 11 ced59279b3704
c4f617879772913aae686baB002fbe3aecIac3BOf2d9bd2974939d4e2c59d069
a4f0ceIeB56890e34e0e9893c03009246a5d60216295880257706e 1feedado84
59b52418de039389005bce58385¢cae1d9241abd663e87647727abc8802e85¢3b
110e65575cdfdaBdabB8094b7b1ale61b266d0bc539df 7cSe440bebel77db4249
26b2261820b06e7eaffe16233694e81bb695e71fa5c80c 7bb43225d9a036a9f
each543376b8bffa545f3237c0c079dd57ebee69abbi196f9293987e6a67cbdf
3ab1933d13372754da925a24¢c1b24b91dd1719adadfOb2027e4411b53ee0038a
39e83fcd1e957bf18bbac94a645591e7dc0f89fd5f57087b719999dc40b54de6
d4eedf58e5860574ca9Be3bd839391e7a356328ddbd6afecefc2381df5{5b41b
eca6df621f43e073ab2d9d2c9ba2cab0f5251131dc2dd958d3fb56c91f681afe
f860446018849f74abbacIfdc555ec8cBcBas6fdde193c153c9ffb63b62%eab
17aadef8b1390bb41879cc76f9ec1 1alcadb73acBlc23e377b34aa950751cf04
0ea26c04dc 28426¢(b36d f8id65f2331aff07c76b581a26a
4f3c9diBeb7bedeb?75a0522c1618b3392a4112290557fdbYad%eB749a9e 7655
22f081c153633b489¢5¢5916b0fa1df95a6280175db2230fd0c9e1e163cbd9cd
BaeBab25ef1630978c5165835da3041a534325800efa59766a585bc739cbb011
a1096458716a0e16e49516ca5dbi6f6f1c45cdBf33eeb3dafIbdcbabeas5ab18
52c5db33540119¢37b111ce?662167abdBe33751dd157ff4dBe28c20a19fe750
e04e3ba78ab679e59b1928a89ef7350dae 2695654fc0c08bdeed7783db7e03d7
524b2d27ale7fbc3al614fabble2dcad68462352feebBbi633deaccibBaaBaf3
0c74567aeaaede2 1 29e46d29b5che 7c498372a0c 7c 72 7fe1a972e2a2c 1f84ada
a6a0635b948db903dc1434fd17da06e 1b5d1bc46a0800efb0ff03ddb3b5814el
7a777a911c678293820a921c0caef753d4d7310b6e40d17a147056806d4b04f
1aa95cd79213290df09a3133chfechiaRR44041ADcah 14178091 R3bhc9cifalc

Figure 11. Recording result

1cb
hiy
k2y
1gy
822
fwg
9
ifr
6c0
i
al

qt8

stf

T u
d30a30910964d7357e:
f3fd2b7f8d3bdcb68Sce
ddbc9392a79d2a2e40t
dfaef59faadicefadSae
BB6LA014cI057790b78
fef84d4fe031b25a9bde
faf5ec7d3al13ec3bbsi
Bcfab2b218bab3b2a%4
d5b37b77e90920d02d!
d20e27ff8adbcea7bdl
81b73ee329c1eBce39f
fac7628c4a06a10a7f5.
f6h5d9a0bdobbc080ad
B6e5980b5e66951 chdf
dbe0f46214785f52d49
fBac67aa143577ad1d3
f76e1687703cb0132bb
Bda774bc102118c94fe
B24e3ea2al00d596(73
d5367585b24758f025a
60fedccad3TaddefBa
fdel9celedlc3c7face!
Bd0e9bc2c1889bJac8l
B0c8ddaBBIS529f23720
B74bf1b57082ba2f989
fedac03704673559dd0b
df70ecb8897e0926a70
d4adDabc5a1993cB08:
8c7d0a50340739¢dd57
dfaaeSf3fd9d4265371

The whole process - generating all possible combinations and writing these combinations with hashes
to a table - took about 5 minutes. Again, the table only contains 46,000 passwords (and weighs in at around 2.3

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

1JEEI ISSN: 2089-3272 a 939

MB). Real tables (again, for 8-character passwords with a 72-character input alphabet) can weigh about 20GB,
and take hours to generate (depending on the speed of the algorithm and the power of the equipment).
Moreover, most often a complete “database” is not one such table, but several. As a result, the code for

generating the rainbow table is shown in Figures 12-15.

import java.io.IOException;
import java.util.Arraylist;
public class Main {
public static void main(String[] args) throws IOException {
ArraylList<String> random_pass = new Arraylist<String>();

RandomGen.random_first(random_pass);

Excel excel = new Excel();

Excel.writeIntoExcel (random_pass);

(W}

-

Figure 12. Java description of the code Main.java

import org.apache.commons.codec.digest.Digestltils;
class SHA256 extends Main{
public static String shaApache(5tring st) {
String sha256Hex = DigestUtils.sha256Hex(st);
return sha256Hex;

[

Figure 13. Java description of the code SHA256.java

import java.security.SecureRandom;

import java.util.Arraylist;

public class RandomGen extends Main {

String AB = “©1234567389%abcdefghijklmnopqrstuvwxyz";

SecureRandom rnd = new SecureRandom();

public String randomString() {
StringBuilder sb = new StringBuilder(3);
(int 1 = 0; i < 3; i++)
sb.append(AB.charAt(rnd.nextInt(AB.length())));

sb.toString();

Figure 14. Java description of the code RandomGen.java

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

940 a

ISSN: 2089-3272

public static Arraylist<String> random_first(ArrayList<String>
RandomGen rand = new RandomGen();

String randd = rand.randomString(

random_pass.add(randd);

int countl = @, count2 = @;

(int 1 = @; i < 60002Q; i++) {

tring rand2 = rand.randomString();

(int j = random_pass.size(); § > @; j--)

(!rand2.equals(random_pass.get(j - 1))) {

}
countl++;

(countl == 1)

(countl == 9) {

random_pass.add(rand2);

count2++;
%
J
countl = 9;
(count2 == 46656) {
break;
1
J
(int 1 = @; i < random_pass.size(); i++) {

System.out.println{(i + 1) +

random_pass;

+ random_pass.get(i));

random_pass) {

Figure 15. Java description of the continuous of the code RandomGen.java

Java description of the generating Excel file is shown in Figure 16.
The password and hash table is ready. It remains only to search for it. Let's just scan each of the hash
columns, starting with the last one, to see if the hash we entered is among these hashes. And the password

corresponding to it is in the cell on the left.

To implement the search, we create a new project and copy the resulting Excel file with the generated
rainbow table into it. The code for matching the hash we entered and the hashes from this table is shown in
Figure 17. Result of the finding password is shown in Figure 18.

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

1JEEI

ISSN: 2089-3272 a 941

import java.io.FileMotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.Arraylist;

import org.apache.poi.xssf.usermodel.XSSFhorkbook;

import org.apache.poi.ss.usermodel.*;

public

class Excel extends Main {

public static ArrayList<String> writeIntoExcel(ArraylList<String> random_pass) throws FileNotFoundExcept

ion, IOException {

Workbook book = new XSSFhorkbook():
Sheet sheet = book.createSheet("Passwords™);
Row rowl = sheet.createRow(@);
Cell celll; Cell cell2;
for (int 1 = @; i < 5832; i++) {
rowl = sheet.createRow(i);
celll = rowl.createCell(d);
cell? = rowl.createCell(1);
celll.setCellvalue(random_pass.get(i));
cell2.setCellValue(SHA256. shaApache(random_pass.get(i)));
//sheet.autoSizeColumn(1);
¥
int column_pass=2, column_hash=18, byte in_hash=8, get_cell-=1;
String random_pass2 = "";
for (int k=8; k<6; k++){
for (int 1 = @; 1 < 5832; i++) {
Cell cells = sheet.getRow(i).createCell{column_pass);
Cell cells = sheet.getRow(i).createCell{column_hash);

for (int j = 5832; j < random_pass.size(); j++) {

it ((SHA256.shaApache(random_pass.get(j)).toChardrray())[byte_in_hash] ==(sheet.getRow(i).getCell(get_cel
1).getStringCellValue().toChartrray())[byte_in_hash]) {

cells.setCellValue(random_pass.get(j));
cellg.setCellvalue (SHA256. shafpache(random_pass.get()));
//sheet.autoSizeColumn(column_hash);
random_pass.remove(j);

break;

f—

column_pass = column_pass+8;
column_hash = column_hash+g;
byte_in_hash = byte_in_hash+2;
get cell = get cell+9;

for (int i = 5832; i < 5832%2; i++) {
celll = sheet.getRow(i-5832).createCell(63);
cell? = sheet.getRow(i-5832).createCell(64);
celll.setCellValue(random pass.get(i));
cell?.setCellValue(SHA256. shaApache (random_pass.get(i)));
H
book.write(new FileQutputStream(whiw.x1sx™));
book.close();

return random_pass;

Figure 16. Java description of the generating Excel file

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

942 a ISSN: 2089-3272

import java.io.FileImputStream;

import java.io.FileNotFoundException;

import java.io.IOExcepticn;

import java.util.Scanner;

import org.apache.poi.xssf.usermodel.XS5FSheet;
import corg.apache.pol.xssf.usermodel.xssFWorkbook;

import org.apache.poi.ss.usermodel.®;

public class Main {

public static veid main{string args[])} throws IOException {
System.out.print("Enter Hash: "};
scanner in = new Scanner(system.in);
string hashl = in.nextLime(};

system.cut.print{"Probably, you password : ");
string pass = readFromExcel(hashl);

L

public static String readFromExcel{String hash} throws FileNotFeoundException, IOException

ey

XSSFwWorkbook book = new XSSFWorkbooki{new FileInputStream("wiw.x1sx")};
¥55Fsheet sheet - book.getsheet("Passwords");

int column=g4, ccountl-8;
for (int i-0; ic<g; i++)
for {(int j=@; j<5832; j++)

cell celll = sheet.getRow(j).getcell(column;

Cell cell2? = sheet.getRow(j).getcell(column-1});

if ((celli.getstringCellvalue(}.equals(hash)}}

{
System.out.printlnfcell2.getstringCellvalue());
countls+;
break;

if (countl > &){break;}
column = column-3;

h
book . close();

return hash;

Figure 17. Java description of the code of finding password
"C:\Program Files\Java\jdkl.8.0 181\bin\java"
Eter hash 2 39a883fodlad57hbfl18bbac94a645591a7do0f89Fd5f57087b719999dc40b54das

Pasepord @ lgd

Process finished with exit code 0

Figure 18. Search result

The search took only 3 seconds.

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

1JEEI ISSN: 2089-3272 a 943

4. CONCLUSION

Considering all that was said earlier about the speed of generating rainbow tables and their sizes, as
well as the fact that rainbow tables are effective against ordinary hashes and useless against salty ones, many
consider them a bad and outdated hacking tool. However, we think that this is not entirely true and rainbow
tables can still be useful. The paper proposes an implementation in the Java language, which allows them to be
implemented in different network applications. If you use a powerful enough computer and a large amount of
free hard disk space, you can pre-calculate hashes for passwords that contain more than 8 characters, which
will speed up the process of decrypting passwords.

When conducting a preliminary analysis of the attacked system and the presence of vulnerabilities in
hashing mechanisms, using rainbow tables will be more effective against dictionary search or brute force.

To attack the system, sometimes it is necessary to learn only one password, which also allows you to
speed up the process of decrypting the password. This is especially important when using rainbow tables as a
password recovery tool. In this case, security will be ensured by the work of the system administrator.

A cryptanalysis of the modern SHA-256 hash function showed that an attack using a rainbow table
allows you to recover a password that has 3 characters in 3 seconds. This proves the fact that modern hashes
also have vulnerabilities and need protection. In the future, you can investigate how the hash size affects the
volume of the rainbow tab, as well as how the use of a character-letter password combination affects the speed
of disclosure.

ACKNOWLEDGEMENTS

This research has been/was/is funded by the Science Committee of the Ministry of Education and
Science of the Republic of Kazakhstan AP14871745 «Development of a method for improving the security
of a telecommunications network based on IP-PBX Asterisk».

REFERENCES

[1] A. Habeeb, “Introduction to Secure Hash Algorithms”. [Online]. Available:
https://www.researchgate.net/publication/
325581582_Introduction_to_Secure_Hash_Algorithms.doi:10.13140/RG.2.2.11090.25288.

[2] T.Bhorkar, “A Survey of Password Attacks and Safe Hashing Algorithms,” Int. Res. J.of Eng. and Tech., vol. 4, no.
12, pp.1554-1556, 2017.

[3] D. Smith-Tonel, R. Perlner, “Rainbow Band Separation is better than we thought, ” Cryptology ePr. Arch., 2020,
Art. no. 2020/702. [Online]. Available: https://eprint.iacr.org/2020/702.

[4] K. Theoharoulis, C. Manifavas, I. Papaefstathiou, “HighEnd Reconfigurable Systems for Fast Windows” Password
Cracking,” in 17th IEEE Symp. on Field Programmable Custom Comp. Machines, 2009, pp.287-290,
d0i:10.1109/fccm.2009.48

[5] P.Patel, P. Goswami, A. Mishra, S. Khan, A. Choudhary, “Brute force, dictionary and rainbow table attack on hashed
passwords,” Int.J. of Creative Res. Thoughts, vol. 9, no. 4, Apr. 2021, pp.1899-1905. [Online]. Available:
https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf.

[6] D.M.A. Cortez, A. M. Sison, R.P. Medina, “Cryptanalysis of the Modified SHA256, Proceedings of the 2020 4th
High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big
Data and Artificial Intelligence. doi:10.1145/3409501.3409513.

[7]1 B. Shavers, J. Bair, “Cryptography and Encryption. Hiding behind the Keyboard,” Syngress, ch.6, Mart. 2016, pp.
133-151, d0i:10.1016/b978-0-12-803340-1.00006-9.

[8] J.Blakstad, R. Walso Nergard, M. G. Jaatun, “All in a day's work: Password cracking for the rest of us,” in Norwegian
Symp. on Inf. Sec., pp.69-83, 2009.

[91 L.zZhang, C. Tan, F. Yu, “An Improved Rainbow Table Attack for Long Passwords,” Procedia Comp. Sci., vol. 107,
Apr. 2017. pp. 47-52, doi:10.1016/j.procs.2017.03.054.

[10] X. Wang, Y. L. Yin, H. Yu, “Finding Collisions in the Full SHA-1,” in 25th Annual Int. Cryptology Conf., Santa
Barbara, California, USA, Aug. 14-18, pp. 17-36, 2005.

[11] S. Verma, R. Choubey, R. Soni, “An Efficient Developed New Symmetric Key Cryptography Algorithm for
Information Security,” Int. J. of Emerging Tech.and Adv. Eng., vol. 2, no. 7, pp.18-21, Jul. 2012.

[12] G. Avoine, A. Bourgeois, X. Carpent. (2015). Analysis of Rainbow Tables with Fingerprints. [Online].
Auvailable: doi:10.1007/978-3-319-19962-7_21.

[13] K.C.Redmon, “COD3 CR4CK3D: Means and Methods to Compromise Common Hash Algorithms,” Jul. 2006.
[Online]. Available: http://uninfo.mecon.gov.ar/htmls/boletinSl/images/Hash_Algorithms_KRedmon.pdf.

[14] S.V. Konshin, M.Z.Yakubova, T.N. Nishanbayev, O.A. Manankova, ‘“Research and development of an IP network
model based on PBX asterisk on the opnet modeler simulation package,” in Int. Conf. on Inf. Sci. and Commun.
Tech., Oct. 2020, Art. no. 20486746, doi: 10.1109/1CISCT50599.2020.9351405.

[15] O.A. Manankova, B.M. Yakubov, T.G. Serikov, M.Z. Yakubova, A.K. Mukasheva, “Analysis and research of the
security of a wireless telecommunications network based on the IP PBX Asterisk in an Opnet environment,” J.of
Theoretical and App.Inf. Tech., vol. 99, no.14, pp. 3617-3630, 2021.

Cryptanalysis the SHA-256 Hash Function Using Rainbow Tables (Olga Manankova et al)

https://www.researchgate.net/publication/
https://eprint.iacr.org/2020/702
https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf
http://uninfo.mecon.gov.ar/htmls/boletinSI/images/Hash_Algorithms_KRedmon.pdf
https://www.scopus.com/authid/detail.uri?authorId=57191035207
https://www.scopus.com/authid/detail.uri?authorId=57215926358
https://www.scopus.com/authid/detail.uri?authorId=57193077376
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://elibrary.ru/contents.asp?id=46922240
https://elibrary.ru/contents.asp?id=46922240

944

a ISSN: 2089-3272

[16]

[17]
(18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

T.G. Serikov, M.Z. Yakubova, A.D Mekhtiev, A.V.Yurchenko, A.D. Alkina, “The analysis and modeling of
efficiency of the developed telecommunication networks on the basis of IP PBX asterisk now,” in 11th Int.Forum on
Strategic Tech., 2017, pp. 510-515, Art. no. 7884168.

A. Joshi, M. Wazid, R.H. Goudar, “An Efficient Cryptographic Scheme for Text Message Protection Against Brute
Force and Cryptanalytic Attacks,” Procedia Comp. Sci., vol. 48, pp. 360-366, 2015.

S. Tayal, N. Gupta, P. Gupta, D. Goyal, M. Goyal, “A Review paper on Network Security and Cryptography,” Adv.
in Computat. Sci.and Tech., vol.10, no. 5, pp. 763-770, 2017.

A. K. Kendhe, A. Himani, "A Survey Report on Various Cryptanalysis Techniques,” International Journal of Soft
Computing and Engineering (IJSCE), vol. 3, no. 2, 2013, pp. 287-293.

T. Saravanan, S.V. Kumar, “A Review Paper on Cryptography-Science of Secure Communication,” Int. J. of Comp.
Sci. Trends and Tech., vol. 6, no 4, 2018.

A. M. Qadir, N. Varol, “A Review Paper on Cryptography,” in 7th Int. Symp. on Digit. Forensics and Sec., Barcelos,
Portugal, 2019, pp. 1-6, doi: 10.1109/ISDFS.2019.8757514.

Th. Velmurugan, S. Karthiga, “Security based Approach of SHA 384 and SHA 512 Algorithms in Cloud
Environment,” J. of Comp. Sci., vol. 16, no. 10, 2020, pp. 1439-1450, doi: 10.3844/jcssp.2020.1439.1450.

S. Park, K. Kim, "An Approach to Defense Dictionary Attack with Message Digest Using Image Salt," Proceedings
of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM), 2019,
pp. 769-777.

P. Semwal, M. K. Sharma, “Comparative study of different cryptographic algorithms for data security in cloud
computing,” in IEEE 3rd Int. Conf. on Adv. in Comp., Commun. & Automat., pp.1-7, Sept. 2017. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8344738/ (ascessed 12.09.2022).

M. Ansar, 1. A. Shokat, M. Fatima, K. Nazir, “Security of Information in Cloud Computing: A Systematic Review,”
American Scientific Res. J. for Eng., Tech., and Sci., vol. 48, no.1l, pp. 90-103, 2018. [Online]. Available:
http://www.asrjetsjou (ascessed 12.09.2022).

C. Yang, Q. Huang, Z. Li, K. Liu, F. Hu, “Big Data and cloud computing: innovation opportunities and challenges,”
Int.J. of Digit. Earth, vol. 10, no. 1, pp.13-53, 2017.

Rainbow table. [Online]. Available: https://ru.wikipedia.org/wiki/Rainbow table (ascessed 12.09.2022).

Security online community. Antichatt FAQ - Rainbow Tables. [Online]. Available:
https://forum.antichat.ru/threads/37964 /(ascessed 12.09.2022).

SHA-256 hash calculator. [Online]. Available: https://www.xorbin.com/tools/sha256-hash-calculator (ascessed
12.09.2022).

SHA-256 usage example in Java. [Online]. Available: https://devcolibri.com/sha256-npumep-ucnosnb3oBanus-B-java
/ (ascessed 12.09.2022).

BIOGRAPHIES OF AUTHORS

Olga Alexandrovna Manankova #{Ed is a PhD student at the Almaty University of
Power Engineering and Telecommunications after Gumarbek Daukeyev (AUPET). After
receiving a master's degree in 2010, she began working at AUPET as a teacher. During this
time, under her supervision, more than 25 bachelors graduated, students became winners of
the Republican competitions of research and development in the field of IT. Currently works
at AUPET as a senior lecturer and is engaged in research in the field of radio engineering,
electronics and telecommunications in accordance with the topic of the Ph.D. thesis "Research
and creation of information security transmitted over an open communication channel using
PBX Asterisk". She can be contacted at email: olga.manank@gmail.com.

Mubarak Zakhidovna Yakubova EJE8 Doctor of Technical Sciences, Academician,
Professor of the Department of Information Technology. She was the first specialist in the
USSR who worked in the field of automation of information systems and libraries. During
her career, she published more than 250 scientific papers, 50 articles, 3 monographs, 15
textbooks in Kazakh, Russian and English. In 2001, for selfless work and contribution to the
education and upbringing of students. Now he is actively working with doctoral students in
the field of optimizing multiservice networks. She can be contacted at email:
m.yakubova@aues.kz.

Alimjan Sergeevich Baikenov is a Candidate of Engineering Sciences, Professor at
the Department of Telecommunications and Innovation Technologies. He had overall
experience of 41 years. He is familiar with software’s like MATLAB, Multisim, Packet
Tracer, EVE NG, Wireshark. 2019 received the Title "Kurmetti baylanysshy", awarded in
2018 Medal "Bilim beru salasyn uzdigi". Now he is actively working with doctoral students
in the field of Multi-channel communication, Teletraffic theory, system modeling, wireless
networks and systems (5G), fiber optic systems, Internet of things (10T), artificial intelligence
(Al), Information security in 5G and loT. Expert IAAR NU "Independent Agency for
Accreditation and Rating"”. He can be contacted at email: a.baikenov@aues.kz

IJEEI, Vol. 10, No. 4, December 2022: 930 — 944

https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://www.scopus.com/authid/detail.uri?authorId=57222276746#disabled
https://ieeexplore.ieee.org/abstract/document/8344738/
http://www.asrjetsjou/
http://aues.kz/ru/institute/one?institute_id=2
mailto:a.baikenov@aues.kz
https://orcid.org/0000-0003-0137-1252
https://scholar.google.ru/citations?hl=ru&user=EbbSm6wAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222276746
https://scholar.google.ru/citations?user=LJyKjZAAAAAJ&hl=ru
https://www.scopus.com/authid/detail.uri?authorId=57215926358
https://orcid.org/0000-0002-6490-3159
https://www.scopus.com/authid/detail.uri?authorId=57221594376

