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 Partial discharge (PD) measurements either through electrical or acoustic 

emission approaches can be subjected to noises that arise from different 

sources. In this study, the examination on the denoising methods for 

electrical and acoustic emission PD signal is carried out. The PD was 

produced through needle-plane electrodes configuration. Once the voltage 

reached to 30 kV, the electrical and acoustic emission PD signals were 

recorded and additive white Gaussian noise (AWGN) was introduced. These 

signals were then denoised using moving average (MA), finite impulse 

response (FIR) low/high-pass filters, and discrete wavelet transform (DWT) 

methods. The denoising methods were evaluated through ratio to noise level 

(RNL), normalized root mean square error (NRMSE) and normalized 

correlation coefficient (NCC). In addition, the computation times for all 

denoising methods were also recorded. Based on RNL, NRMSE and NCC 

indexes, the performances of the denoising methods were analyzed through 

normalization based on the coefficient of variation (𝐶𝑣). Based on the current 

study, it is found that DWT performs well to denoise the electrical PD signal 

based on the RNL and NRMSE 𝐶𝑣 index while MA has a good denoising 

NCC and computation time 𝐶𝑣 index for acoustic emission PD signal. 
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1. INTRODUCTION 

Partial discharge (PD) evaluation is one of the most common non-destructive techniques to evaluate 

the condition of insulation system in high voltage equipment [1, 2]. Generally, PD can be detected through 

electrical approach whereby concurrently it can produce acoustic emission waves that travel through the oil 

and paper insulations as well as within the experimental or in-service transformer tank [3]. Electrical PD 

measurement is able to provide the direct information on the condition of the insulation. However, it can be 

subjected to noises arise from the electrical system. Acoustic emission PD has several advantages which 

include the ease of use and immunity to electrical noises from the system [4]. Nevertheless, acoustic emission 

PD still can be subjected to nearby mechanical noises. Broadband noise and noise spectrum are 2 forms of 

noises that might be present during the PD measurement. White noise or measurement-related noise is an 
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example of broadband noise. Environmental noise, which include narrowband, periodic pulse-shaped and 

radio transmissions noises can contribute to the occurrence of discrete spectral interference (DSI) [5-8]. 

Electrical and acoustic emission PD signals can be denoised whereby the degree of error level, 

retained shape and correlation can be examined [9, 10]. Wavelet filtering and cross-correlation are among the 

common denoising methods that can be used to process the electrical and acoustic emission PD signals [11]. 

Moving average (MA) is able to reduce between 10% and 50% interference in acoustic emission PD signal 

[12]. The acoustic emission PD signal detection process can be accelerated using MA and the analysis can be 

carried in time domain [13-15]. Principle component analysis (PCA) denoised electrical PD through 

reduction of the number of energy levels that is associated with each of the decomposition levels. PCA 

standardizes the input data by subtraction of the mean for each of the dimensions to obtain a centred 

observation by zero mean and unity variance [16, 17].Previous study implements discrete wavelet transform 

(DWT) with Daubechies finite-length or mother wavelet of 20 to denoise acoustic emission PD signal [18]. 

Low-pass filter (LPF) and high-pass filter (HPF) are categorized under finite-duration impulse response 

(FIR), which are able to cut-off frequency that influences the acoustic emission PD signal between 16 kHz 

and 700 kHz [19]. LPF and HPF are also part of DWT that are used to perform decomposition of electrical 

PD signal at high level on the tree structure that involves filtering and down-sampling functions [20].  

Several studies examine the performance of denoising methods for electrical and acoustic emission 

PD signals based on signal-to-noise ratio (SNR) [5], [21-23]. There are only few studies that utilize ratio to 

noise level (RNL), normalized correlation coefficient (NCC) and normalized root mean square error 

(NRMSE) to evaluate the performance of denoising methods for electrical and acoustic emission PD signals. 

It is found that the both RNL and NCC are suitable to evaluate the denoising methods for electrical and 

acoustic emission PD signals [24, 25]. NMRSE is also able to evaluate the denoising method for electrical 

PD signal [26-28].   

The motivation of this paper is to examine the denoising methods for electrical and acoustic 

emission PD signals. The contribution of this study is the identification of suitable denoising method for 

electrical and acoustic emission PD signals based on MA, FIR LPF/HPF and DWT. The denoising methods 

are evaluated through RNL, NCC and NRMSE. The performances of denoising methods are evaluated 

through coefficient of variation (𝐶𝑣) and computation time.  

 

2. MATERIALS AND METHODS  

2.1. Experiment Setup 

The PD measurement was carried out as per IEC 60270 and 61294 [29, 30]. A copper needle-plane 

electrode configuration with a needle tip radius of 3 µm was utilized to initiate the PD in a 0.025 m³ steel test 

tank filled with 22 l mineral oil (MO) as shown in Figure 1. The gap distance between electrode tip and plane 

was set at 50 mm ± 1 mm. The plane electrode is 50 mm in diameter with a 3 mm edge radius. The 

coordinate of x, y, and z-axes for the electrodes were set at 0.07, 0.08, and 0.18 m respectively. 

 

 
Figure 1. Experimental setup for PD detection. 

  

2.2. Oil Preparation 

The uninhibited mineral oil was chosen for this study. The physiochemical properties of MO can be 

seen in Table 1 [31]. The MO was filtered via a membrane filter with a pore size of 0.2 μm. Next, the oil was 

dried in an air circulation oven for 48 hours at 85°C. 
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Table 1. Physiochemical properties of MO 
Property Unit Test method Typical value 

Density @ 20°C g/ml ISO 12185 0.881 

Viscosity @ 40°C cSt ISO 3104 10.4 
Flash point °C ISO 2179 145 

Pour point °C ISO 3106 -60 

Interfacial tension mN/m ISO 6295 50 
Acidity Mg KOH/g IEC 6201-1 0.005 

Water content ppm IEC 60814 20 

Appearance - ASTM D4176 Clear & Bright 

 

 

2.3. Partial Discharge Measurement 

The electrical and acoustic emission PD signals were measured through Picoscope 4824. The 

electrical PD signal was measured using an impedance matching circuit (IMC) with a broad 50 Ω input and 

output impedances. The PD measurement was carried out once the PD inception voltage (PDIV) was 

achieved. The PD measurement was performed in the range after 30 seconds and 1 minute to ensure stable 

measurement was obtained [32, 33]. Both electrical and acoustic emission PD signals were acquired 

simultaneously during the test for the duration of 2.5 ms [34]. The acoustic emission PD signal was acquired 

through an AE sensor with the frequency ranges from 20 kHz to 180 kHz and 40 dB signal gain pre-

amplifier. The voltage was raised at 1 kV/step until 30 kV after the AE sensor was positioned on the test 

tank's surface. The acoustic emission PD signal was measured as per IEEE Std C57.127-2007 [35].  The 

sensor coordinates were determined based on the 3-dimensional axes designated as x, y and z [36]. A 

reference point of (0, 0, 0) was used to define the pre-determined for AE sensor coordinates. 

 

2.4. Denoising Methods 

The denoising process was performed once the measured electrical and acoustic emission PD 

signals were obtained as shown in Figure 2 [37]. A single dimensional additive white Gaussian noise 

(AWGN) with 0 dB was applied to the measured electrical and acoustic emission PD signals based on 

Equation (1) where x is the measured signal with AWGN, m is the measured signal, g is the white Gaussian 

noise and i = (1, 2…N-1) [7], [22]. 

 

                 𝑥(𝑖) =  𝑚(𝑖) +  𝑔(𝑖)                                                                               (1) 

 

 

 
Figure 2. Flow chart for electrical and acoustic emission PD signals denoising methods 

 

An example of AWGN that is included to the electrical and acoustic emission PD signals can be 

seen in Figures 3 (a) and (b), respectively.  In total, 75 random electrical and acoustic emission PD signals 

with AWGN are examined. 
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                                                     (a)                                                                   (b)  

Figure 3. Measured signal with and without AWGN for (a) electrical and (b) acoustic emission PD signals 

 

 

2.4.1. Moving Average 

The MA superimpose layer window size was defined once it was initialized to zero. At this point, 

the computation time started to record. Next, random generator for MA was initialized to evaluate its 

effectiveness to filter the additional noise. The range of window size analyzed in this study was between 1 

and 50. Next, the MA started to denoise the measured signal with AWGN whereby the superimpose layer of 

a specific length was moved across the measured data with AWGN point while the average was determined 

and the computation time stop as seen in Equation (2) where i = (1, 2…n), x is the measured signal with 

AWGN of electrical and acoustic emission PD signals measurement data and z is number of superimpose 

layer [13, 14].        

                      

𝑦(𝑖) =   
1

𝑧
(𝑥(𝑖) + 𝑥(𝑖 − 1) + ⋯ + 𝑥(𝑖 − (−1)))                (2)          

 

2.4.2. Finite Impulse Response Filter  

The FIR filter advantage is the characteristic of a versatile linear phase filter, which plays a crucial 

role to maintain the waveform integrity of the original signals [38-40]. FIR type of either LPF or HPF was 

selected to denoise electrical and acoustic emission PD signals with AWGN as seen in Equation (3) where N 

is the filter order with coefficient number of N+1. 

 

                 𝐻(𝑧) =  ∑ ℎ(𝑛)𝑧−𝑛𝑁
𝑛=0 , 𝑛 =  0, 1, … , 𝑁                                               (3) 

 

The Nyquist and cut-off frequency were normalized whereby 1 corresponded to half the sampling 

rate. The frequency of the measured signal could be up to 4 kHz, which corresponded to a Nyquist frequency 

of 2 kHz. The noise floor and cut-off frequency were adjusted between 0 and 1. The cut-off frequencies for 

LPF and HPF were set to 0.15/Π and 0.25/Π [41]. In total, 4 types of the FIR windows were examined known 

as Chebyshev, Blackman, Hanning, and Hamming. For LPF, FIR Blackman was chosen as the window type 

in this study [42]. Blackman has a better NCC as compared to Chebyshev, Hanning, and Hamming. The 

Blackman's computation time was 0.06 s faster than Hanning's and 0.06 s slower than Hamming's. For HPF, 

the Chebyshev window was selected since Chebyshev had better RNL as compared to Blackman, Hanning, 

and Hamming. Next, FIR were examined with an interval of 2 up to 100 order numbers.  

 

2.4.3. Discrete Wavelet Transform  

The time and scale were used to analyze the electrical and acoustic emission PD signals in DWT. 

The effective frequency of the mother wavelet was related to the scale domain. Both of LPF and HPF were 

used to process the measured signal with AWGN, s, as shown in Figure 4. The output of an LPF (L) is the 

"approximation", which represents the low-frequency content within the measured signal with AWGN band. 

The output of a HPF (H) is the "detail," which represents the high-frequency content within the measured 

signal with AWGN band [5], [43].  

 

                      1 
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Figure 4. DWT coefficient algorithm architecture 

 

DWT basic working principle is based on the signal denoising window within the samples size. It 

employs sequences of LPF and HPF to process the time domain signal. LPF shows a low-frequency 

information known as approximation coefficients, cA, while HPF provides a high-frequency information 

known as detail coefficients, cD [44]. In order to obtain detail and approximation coefficients, the time 

domain of the original signal was processed through a series of HPF and down-sampled by 2 at various scales 

[45]. It is found that 𝑐𝐷8, 𝑐𝐷9 and 𝑐𝐷10 were able to denoise electrical and acoustic emission PD signals. 

Therefore, these cD orders with Haar wavelet function were chosen in this study [36]. Overall, DWT has the 

highest number of the denoising process flow followed by FIR and MA. 

 

2.4.4. Evaluation Method 

Electrical and acoustic emission PD signals were analyzed in term of RNL, NCC, NRMSE and 

computation time [24], [27], [46]. NRMSE and NCC were applied so that the denoised electrical and acoustic 

emission PD signals with AWGN by each of the methods were in the same scale. Parameter x in Equation 

(4), (5), and (6) is the measured signal with AGWN of electrical and acoustic emission PD signals whereby y 

is the denoised signal, i is the number of sample, N is the total number of sample and µ is the mean for 

measured signal with AWGN. The computation time was evaluated based on elapsed time of denoising 

process between the states to call the measured signal with AWGN until the end of denoising process. The 

coefficient of variation, 𝐶𝑣 was carried to determine the performance of denoising methods studied based on 

RNL, NCC, NRMSE as shown in Equation (7) [6], [47-48]. The SD is the standard deviation and M is the 

dataset mean. 

 

                  𝑅NL = 10 log
1

𝑁
 ∑ (𝑥(𝑖) −  𝑦(𝑖))²𝑁

𝑖=1                                                       (4) 

 

 

Normalized correlation of coefficient (NCC): 

 

                𝑁𝐶𝐶 =  
∑ 𝑥(𝑖)∗𝑦(𝑖)𝑁

𝑖=1

√(∑ 𝑥(𝑖)²𝑁
𝑖=1 )∗(∑ 𝑦(𝑖)²𝑁

𝑖=1 )

                                              (5)                                   

 

Normalized root mean square error (NRMSE): 

 

                𝑁𝑅𝑀𝑆𝐸 =  √
(𝑥(𝑖)− 𝑦(𝑖))²

(𝑥(𝑖)− µ𝑥(𝑖))²
                                                                                (6) 

 

 

Coefficient of variation, 𝐶𝑣: 

 

                𝐶𝑣 =  
𝑆𝐷

𝑀
                                                                                                            (7) 

 

  

3. RESULTS AND DISCUSSION 

3.1. Denoising Based on Moving Average 

The MA superimpose layers between 10 and 30 are found to have the best NRMSE and RNL to 

denoise the electrical and acoustic emission PD signals shown in Figures 5 (a) and (b). The peak voltage 

signals are 9.12 mV and 14 mV for electrical and acoustic emission PD signals. The durations of the 

denoised electrical and acoustic emission PD signals are 71 ns and 727 µs, respectively.    
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                                                    (a)                                                                    (b) 

Figure 5. Denoised (a) electrical and (b) acoustic emission PD signals based on MA 

 

 

The RNL index for denoising of the electrical PD signal based on the MA is between 34 and 37 

while the NRMSE index is between 0.95 and 1 as seen in Figure 6 (a) and (b). The NCC index is between 0.3 

and 0.7 as shown in Figure 6(c). In addition, there are 2 regions of computation times are found. The 1st 

region is between 0.02 s and 0.03 s while the 2nd region is close to 0.04 s as seen in Figure 6(d). 

The denoising of the acoustic emission PD signal based on the MA superimpose layers between 10 

and 30 result in RNL index in the range between 50 and 70. The NRMSE is between 0.75 and 0.8 as shown 

in Figures 6 (a) and (b). The NCC index is found between 0.783 and 0.791, as seen in Figures 6 (a) and (c). 

The computation time is between 0.03 s and 0.04 s as shown in Figure 6(d).  

 

     
                                                    (a)                                                                    (b) 

 

     
                                               (c)                                                                        (d) 

Figure 6. (a) RNL index, (b) NRMSE index, (c) NCC index and (d) computation time for denoising of 

electrical and acoustic emission PD signals based on moving average 

 

3.2. Denoising Based on Finite-Duration Impulse Response (FIR) 

The LPF function is able to reduce the high frequency component and let the low frequency to pass. 

An example of denoised electrical and acoustic emission PD peak voltage signals based on the LPF with 

  1 
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amplitudes of 8.75 mV and 25.3 mV is shown in Figures 7 (a) and (b). The durations to denoise the electrical 

and acoustic emission PD signals based on LPF are 4.1 ns and 664.35 µs. 

The denoising of the electrical PD signal based on the LPF results in RNL index in the range 

between 15.7 and 35.5 as seen in Figure 8(a), The NRMSE index is from 1.06 to 1.02 as shown in Figure 

8(b). The NCC index is between -0.1 and 0.1.  

The denoising of the acoustic emission PD signal based on the LPF leads to the RNL index in the 

range from 40 to 75, whereby the NRMSE index is from 0.82 to 0.83, as shown in Figures 8 (a) and (b). The 

NCC index is between 0.8 and 0.85. The computation time to denoise both electrical and acoustic emission 

PD signals is between 0.04 s and 0.05 s. 

 

        
                                                    (a)                                                                     (b) 

Figure 7. Denoised (a) electrical and (b) acoustic emission PD signals based on finite-duration impulse 

response low-pass filter 

 

     
                                                   (a)                                                                          (b) 

    
                                    (c)                                                                         (d) 

Figure 8. (a) RNL index, (b) NRMSE index, (c) NCC index and (d) computation time for denoising of 

electrical and acoustic emission PD signals based on finite-duration impulse response low-pass filter 

 

An example for electrical and acoustic emission PD signals denoised based on HPF is shown in 

Figures 9 (a) and (b). The peak voltage for denoised electrical PD signal is 75.56 mV with the duration of 

109 ns. The denoised peak voltage signal and duration for acoustic emission PD are 25.3 mV and 817.97 µs. 
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                                                  (a)                                                                    (b) 

Figure 9. Denoised (a) electrical and (b) acoustic emission PD signals based on finite-duration impulse 

response high-pass filter 

 

The denoising of electrical PD signal based on HPF leads to the RNL index in the range between 

30.5 and 31 as shown in Figure 10(a). The NRMSE index maintains close to 1.04 whereby the NCC index 

scatters between -0.1 and 0.1 as seen in Figures 10 (b) and (c). The mean for computation time is between 

0.04 s and 0.05 s.  

The denoising of the acoustic emission PD signal based on HPF results in RNL index in the range 

from 59.6 to 61.4 while the NRMSE index is between 0.828 and 0.38 as shown in Figures 10 (a) and (b). The 

NCC index scatters in 2 regions where the 1st region is between 0.65 and 0.68 and the 2nd region is between 

0.69 and 0.7 as seen in Figure 10(c). The mean computation times is 0.04 s. 

 

     
(a)      (b) 

    
(c)                                                              (d) 

Figure 10. (a) RNL index, (b) NRMSE index, (c) NCC index and (d) computation time for denoising of 

electrical and acoustic emission PD signals based on finite-duration impulse response high-impulse filter 

 

3.3. Denoising Based on Discrete Wavelet Transform 

The RNL and NRMSE indexes as result from the denoising of the electrical PD signal based on 

DWT are quite similar. 𝑐𝐷10 has the lowest mean computation time and high NCC index. Similarly, 𝑐𝐷10 has 

the lowest computation time for denoising of the acoustic emission PD signal. However, the highest index is 

NRMSE for 𝑐𝐷10. The mean NCC index for 𝑐𝐷10 is the highest as compared to 𝑐𝐷8 and 𝑐𝐷9. Based on the 

analyses, 𝑐𝐷10 is chosen as the detail coefficient for the analyses based on DWT. An example of denoised 
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electrical and acoustic emission PD signals based on DWT is shown in Figures 11 (a) and (b). The denoised 

electrical and acoustic emission PD peak voltage signals for DWT 𝑐𝐷10 are 1.69 mV and 15.2 mV, 

respectively. The duration to denoise electrical and acoustic emission PD signal based on DWT are 129 ns 

and 546 µs. 

 

    
                                                 (a)                                                                               (b) 

Figure 11. Denoised (a) electrical and (b) acoustic emission PD signals based on discrete wavelet transform 

at 𝑐𝐷10 

 

The denoising of the electrical PD signal based on DWT results in RNL index in the range from 140 

to 180, as shown in Figure 12(a). The NRMSE index is close to 1 as seen in Figure 12(b). The NCC index is 

scattered in 2 regions where the 1st region is between 0.02 and 0.03 and the 2nd region is between 0.05 and 

0.07 as seen in Figure 12(c).  

The denoising of the acoustic emission PD signal based on DWT leads to the RNL index close to 

200 as shown in Figure 12(a). The NRMSE index is between 0.92 and 0.96 while the NCC index is between 

0.3 and 0.4, as seen in Figures 12 (b) and (c). The mean computation times to denoise both electrical and 

acoustic emission PD signals based on DWT are 0.18 s and 0.22 s.  

 

      
                                (a)                                                                          (b) 

      
                                 (c)                                                                           (d) 

Figure 12. (a) RNL index, (b) NRMSE index, (c) NCC index and (d) computation time for denoising of 

electrical and acoustic emission PD signals based on discrete wavelet transform 
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3.4. Performance Evaluation of Denoising Methods 

Overall, the denoising for both electrical and acoustic emission PD signals based on DWT lead to 

the highest mean RNL index as shown in Table 2. The RNL index for electrical PD signal is between 30 and 

160 [24], [49]. However, LPF results in the highest mean NCC index. The denoising of electrical PD signal 

based on LPF leads to the lowest NRMSE index. HPF has the lowest NRMSE index for denoising of acoustic 

emission PD signal. MA has the fastest computation time to denoise both electrical and acoustic emission PD 

signals [27-28]. The NCC index for electrical PD signal is between 0.006 and 0.793, that is comparable with 

[50]. 

 

Table 2. Mean denoising index and computation time for electrical and acoustic emission PD signals 

PD signal 
Denoising 

method 
RNL NCC NRMSE Computation time (s) 

Electrical 

MA 35.671 0.530 0.980 0.032 

LPF 59.645 0.793 0.830 0.045 

HPF 30.561 0.006 1.036 0.042 

DWT 160.172 0.038 1.000 0.179 

Acoustic 

emission 

MA 65.173 0.788 0.776 0.038 
LPF 59.645 0.793 0.830 0.046 

HPF 59.658 0.691 0.831 0.038 

DWT 192.492 0.349 0.937 0.218 

 

Generally, the denoising for both electrical and acoustic emission PD signals based on HPF lead to 

the highest RNL 𝐶𝑣 index as seen in Table 3. The denoising of electrical PD signal based on HPF leads to the 

highest NCC 𝐶𝑣 index. DWT has the highest NCC 𝐶𝑣 index for denoising acoustic emission PD signal. The 

lowest NRMSE 𝐶𝑣 index is found for denoising of electrical PD signal based on DWT. The lowest NRMSE 

𝐶𝑣 index for denoising of acoustic emission PD signal is found for HPF. MA has the fastest computation time 

to denoise both electrical and acoustic emission PD signals based on 𝐶𝑣 index. 

 

Table 3. Coefficient of variation for mean denoising index 

PD signal 
Denoising 

method 
RNL NCC NRMSE Computation time 

Electrical 

MA 0.248 0.247 0.023 0.337 
LPF 0.131 0.045 0.029 0.496 

HPF 0.284 9.479 0.014 0.460 

DWT 0.055 0.431 0.000 0.428 

Acoustic 

emission 

MA 0.123 0.003 0.007 0.270 

LPF 0.131 0.045 0.029 0.395 

HPF 0.135 0.020 0.004 0.308 
DWT 0.040 0.086 0.012 0.691 

 

 

 

4. CONCLUSION  

According to the current study, it is found that the MA superimpose layers between 10 and 30 are 

optimum to denoise both electrical and acoustic emission PD signals based on RNL and NRMSE indexes. 

The 48th order number of HPF has the best denoising NCC index whereby RNL and NRMSE indexes are 

close to each other. For LPF, the 70th order number has the optimum mean RNL and NRMSE denoising 

indexes.  The denoising of both electrical and acoustic emission PD signals based on HPF results in the 

highest RNL 𝐶𝑣 index. HPF can also lead to the highest NCC 𝐶𝑣 index through denoising of electrical PD 

signal. The lowest NRMSE 𝐶𝑣 index is achieved once the denoising of electrical and acoustic emission PD 

signals are carried by DWT and HPF. Overall 𝐶𝑣 indexes indicate that DWT and MA denoising perform 

better to denoise electrical and acoustic emission PD signals. The DWT has a low NRMSE 𝐶𝑣 index and high 

RNL 𝐶𝑣 index as a result from the denoising electrical PD signal. The MA has a low NCC and computation 

time 𝐶𝑣 index for the acoustic emission PD signal followed by LPF, DWT and HPF. 
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