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 Uses the attenuation on the links between transceivers to produce an image 

using Radio Tomographic Imaging (RTI), a network of transceivers, or a 

Wireless Sensor Network (WSN). Several RTI setups have been constructed 

as monitoring areas. However, it is observed that most setups have 

limitations in the number of RF nodes due to a limited number of 

measurements. However, it is well known that the main difficulty in radio 

tomographic imaging attributes to the uncertainties in the RSS measurements 

of transceivers due to multipath effects, especially, when the environment of 

interest is much cluttered, and requirements on the larger number of nodes 

for the performance improvement. It is highly remarkable that the motivation 

of using fewer nodes in this work is to reduce the deployment cost of radio 

tomographic imaging, slower data collection rates, longer imaging 

reconstruction times, and bigger sensitivity matricest, this lead  author to 

proposed to design and development of an RTI system with a minimum of 8 

RF nodes. The strong and weak received signal strength (RSS) exhibited in 

the images will be used to assess the effectiveness and accuracy of human 

sensing localization in a region. The images were reconstructed based on 

selected image reconstruction algorithms, and they are Linear Back- 

Projection (LBP), Filtered Back Projection (FBP), Gaussian, Newton’s One-

step’s Error Reconstruction (NOSER) and Tikhonov Regularization (TR). 

The reconstructed images will be analysed using the Mean Structural 

Similarity (MSSIM) index. A comparison between the algorithms mentioned 

RTI system based on the MSSIM index. NOSER and TR algorithms scored 

the highest for the MSSIM index overall experiments, and it is the best 

technique to produce images that appear similar to the original images.   
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1. INTRODUCTION 

An image can be best understood by its caption. Images can be taken from front, side or top. An 

aerial In radio tomographic imaging, the attenuation of the connections between transceivers is estimated and 

used to create an image. An object obstructing the Line of Sight (LOS) between two devices will cause signal 

attenuation, as an image represents. By monitoring the RSS between transceiver pairs, the raw RSS data may 

be utilised to locate and track obstructions inside the WSN. To be classified as device-free, passive 

localization, this method does not need the use of a device of any kind. It is also known as device-free 

localization [1]–[6]. Optical cameras are the most often employed technology in DFL systems nowadays [7], 
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Thermal cameras, Passive Infrared (PIR) sensors [8], acoustic and vibration sensors, Ultrasound, Carbon 

Dioxide Based Occupancy Detection, and Radio Frequency methods [9] are all examples of passive infrared 

(PIR) sensors. 

 

2. RELATED WORK 

Most of the research presented in the area of RTI has focuses on single target localization and 

tracking. However, the RTI systems in real-world indoor and outdoor situations generally demand the 

localisation and tracking of a single target, where targets have crossing trajectories. As a result, numerous 

ongoing investigations are being undertaken to improve the RTI system's performance in terms of target 

localisation and precision. All studies used more than 20 RF nodes to have a perfect image, as shown in 

Table 1, so this paper has pushed of 8 RTI nodes to cover area monitoring for targets localization with less 

cost and to be set as a base for further study in future. 

 

Table 1. Number of nodes used in RTI research areas 

Work  Environment   Area No of 
nodes 

Technique  Algorithm  Accuracy 

Chiu & Dujovn [10] outdoor 6 m2 12 and 24 Area error - 0.12 

Xu et al. [11] indoor 11.52 m2 12 RMS 
Tikhonov 

LASSO 

0.0886 

0.1282 

Piumwardane et al.[12] outdoor 12.8m2 12 - - - 

Smallbon et al.[13] indoor 25m2 12 - - - 

Z. Wang et al.,[14] indoor 25m2 16 RMSE 
SubVRTI 

KRTI 

STRI 

ESRTI 

0.52 

0.43 

0.41 

0.23 

Lu et al.,[15] Indoor and outdoor 37..5m2 20 Area error - 0.7 

Tan et al.[16] Indoor and outdoor 24m2 20 MSE 
Tikhonov 

BCS 

HBCS 

LRSD 

0.338 

0.476 

0.463 

0.262 

Q. Wang et al.[17] Indoor  25m2 20 Area error VB-GMM 0.58 

A. Mishra et al.[18] Simulation 49 m2 24 RMSE 

PAR 

SS IM 

FSIM 

ν-SVR  -12.83 

46.11 

0.7931 

0.9162 

Wilson & Patwari [19] Indoor  6.4m2 28 MSE Tikhonov 0.036 

Bocca et al.[20] Indoor  56m2 33 Area error - 0.23 

Y. Zhao et al.[21] Indoor  100m2 34 RMSE 
VRTI 

SubVRT 

KRTI 

0.70 

0.65 

0.73 

Wilson & Patwari [22] indoor 72 m2 34 CDF skew-Laplace 
distribution 

0.58 

Thouin et al.[23] Outdoor  9, 49 and 

100 m2  

12, 28 and 

40  

OSPA Additive 

Likelihood 
Moment 

0.49 

Bocca, Kaltiokallio, et al.[24] Indoor  70, 58, and 
67 m2 

30, 33 and 
32 

RMSE - 0.45, 0.46 
and 0.55 

Sabek et al.[25] Indoor  114 and 

130 m2 

25 -  - 

Proposed study Indoor  4m
2
 8 MSSIM 

LBP 

FBP 

GAUSSIAN 
NOSER 
TR 

0.44 

0.45 

0.50 
0.51 
0.51 
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 As the average inaccuracy surpasses its projected performance, this research analyses the boundaries 

of the mathematical model and the needed parameters for RTI. Mathematical models are explained in 

sections III. IV and V, while system models are described. Object tracking techniques are explained in 

section VI. Methods and parameters are compared regarding their relative merits and demerits explained in 

section VII. In Section VIII, the empirical findings from an indoor setting are presented. Several model 

parameters are run on the same online data to determine the relative error. Section IX concludes this work. 

 

3. MATHEMATICAL MODEL 

 Models for the environment and RSS for a specific connection are necessary for localization actually 

to occur. The system is described generally using a linear and non-linear model in these approaches, allowing 

for a consistent method in the estimate. The issue is unusual in the RTI systems depend on ill-posed inverses, 

which need approaches such as FBP, which is linear and Tikhonov Regularization, which is non-linear, used 

to prevent tiny noise variations from overpowering any signal data during inversion, as detailed in [1], [21], 

[26][27]. 

 

A. Linear model Formulation 

Wilson and Patwari's linear formulation, whose methodology and general approach may also be 

found in [5], [7], [19], [21], [28]–[31], is one of the most often used RTI models in the literature. As seen in 

[19], the RSS of a particular link, i may be mathematically expressed by: 

𝑦𝑖(𝑡) = 𝑃𝑖 − 𝐿𝑖 − 𝑆𝑖(𝑡) − 𝐹𝑖(𝑡) − 𝑣𝑖(𝑡)      (1) 

 

Where 𝑃𝑖   is the transmitted power, static loss (loss due to distance or device characteristics) is 

expressed as 𝐿𝑖   , 𝑆𝑖(𝑡) is the shadowing loss or loss due to objects attenuating the signal, whereas fading loss 

(loss due to interference in the presence of many paths) is expressed as 𝐹𝑖(𝑡) and 𝑣𝑖(𝑡)  is measurement 

noise, all of these losses are expressed in decibels. The essential element in the linear formulation is 𝑆𝑖(𝑡𝑐) 

which is defined as [19]: 

𝑆𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝑥𝑗(𝑡)𝑁
𝑗=1       (2) 

 

Where   𝑤𝑖𝑗  is the weight a measure of the impact link i has on pixel j and  𝑥𝑗(𝑡) is the attenuation in pixel j 

at time t. This necessitates a calibration time with an empty scene, which is a contextual as well as logistical 

problem when implementing an RTI system that use the linear formulation. It does permit the representation 

of the change in RSS on a specific connection between calibration time 𝑡𝑐 and time t to be represented as 

[19]: 

∆𝑦𝑖 = 𝑦𝑖(𝑡) − 𝑦𝑖(𝑡𝑐) = 𝑆𝑖(𝑡) − 𝑆𝑖(𝑡𝑐) + 𝐹𝑖(𝑡) − 𝐹𝑖(𝑡𝑐) + 𝑣𝑖(𝑡) − 𝑣𝑖(𝑡𝑐)   (3) 

𝐹𝑖(𝑡) and 𝑣𝑖(𝑡) are two different terms that may be merged to form a single noise term 𝑛𝑖, and Equation (2) 

can be incorporated to turn Equation (3) into: 

∆𝑦𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗(𝑡) − ∑ 𝑤𝑖𝑗𝑥𝑗(𝑡𝑐) +𝑁
𝑗=1

𝑁
𝑗=1 𝑛𝑖     (4) 

∆𝑦𝑖 = ∑ 𝑤𝑖𝑗 (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡𝑐)) + 𝑛𝑖
𝑁
𝑗=1      (5) 

∆𝑦𝑖 = ∑ 𝑤𝑖𝑗∆𝑥𝑖 + 𝑛𝑖
𝑁
𝑗=1        (6) 

This may then be expressed vectorially and metrically as: 

∆𝑦 = 𝑊∆𝑥 + 𝑛        (7) 

Where ∆𝑦 represents the change in RSS on each link, ∆𝑥 epresents the change in attenuation in each pixel, n 

represents the measurement noise on each link, and W represents the weight matrix. Contains the weights 

applied to each connection in pixels [19]. Calibration may be simplified to Equation (8), and the RTI issue 

can be expressed in a linear form in the interests of discussion. 

𝑦 = 𝑊𝑥 + 𝑛        (8) 

Many different weight matrices, W, connect the RSS to an image. 

 

B. Weight Matrix 

The pixel content affects the link's signal intensity, as shown by the weight matrix W. Each 

connection is represented by a row and each pixel is represented by a column in the matrix. Any weight 

matrix value in row l and column p that is nonzero is due to the signal disruption model, which is discussed 

later in this section and assumes that pixels p have an effect on links L. Otherwise, the entry is zero [32]. 

Martin, et al.  [33] weight models have been found, and it is hypothesised that each model may be described 

in terms of a certain weight Equation (9). 

𝑊 = 𝑆 ⨀  𝛺       (9) 
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Where S is a binary matrix specifying which connections effect which pixels, W is a magnitude matrix 

defining how links affect pixels in more detail and  ⨀ is the element-wise product of the two matrices. A link 

m and pixel n may be selected from one of three typical selection matrices in [33] Equation (10) to (12). 

𝑆𝑚,𝑛
𝐸𝑙𝑙𝑖𝑝𝑠𝑒

= {
1, 𝑖𝑓 𝑑1,𝑚,𝑛 + 𝑑2,𝑚,𝑛  < 𝑑𝑚 + 𝜆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 
     (10) 

𝑆𝑚,𝑛
𝐿𝑖𝑛𝑒 = {

1, 𝑖𝑓  𝑙𝑖𝑛𝑘 𝑚 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑝𝑖𝑥𝑒𝑙 𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

     (11) 

𝑆𝑚,𝑛
𝐴𝑙𝑙 = 1        (12) 

 

Where 𝑑𝑚 is the total link length of link m,  𝑑1,𝑚,𝑛 is the distance from the centre of pixel n to one endpoint 

of link m, 𝑑2,𝑚,𝑛 is the distance from the centre of pixel n to the other endpoint of link m, and  λ is a 

parameter that can be selected to determine the length of the major axis of the ellipse that exceeds the length 

of link m. 

Expressed as 𝜆𝑚,𝑛= 𝑑1,𝑚,𝑛 + 𝑑2,𝑚,𝑛− 𝑑𝑚. The 𝑆𝐸𝑙𝑙𝑖𝑝𝑠𝑒  The selection matrix is the most frequently 

used in literature, found in a variety of RTI publications, including [31], [34]–[36], among many others. An 

elliptical pattern surrounding the transmitter and receiver conforms to the electromagnetic Fresnel ellipsoid, 

which is connected to diffraction patterns around an obstacle, as shown in [37], [38]. 

 

4. RTI SYSTEM SET UP 

Figure 1 shows the suggested setup. Each RF node was encased and evenly spaced. They were 

configured to receive the scattering field in numerous directions to generate images. This study's experiment 

arrangement examined a person. The system's hardware is designed based on RF nodes which is ESP8266 

wifi operated at frequency of 2.4 GHz. The system has 8 RF nodes, between each node 66.6 cm, monitoring 

area 200 cm x 200 cm. Essentially, the process tomography technique has several categories depending on 

the core of the system. In flow measurement, the node array is generally used as the RF node to transmit and 

receive signals. It is mounted around the area as shown in Figure 1 that needs to measure for data acquisition 

purposes. The measurement system is dependent upon the core of the system, and the type of desired data to 

be collected in this system has two methods online. Finally, the image reconstruction algorithms are used to 

visualise and represent the collected data as an image on the PC. 

 
Figure 1   Specification of the  system design  

 

The AP's data was sent to the cloud via Message Queue Telemetry Transport MQTT and Firebase. 

Data is sent to the cloud to monitor RSSI using a computer or a smartphone with internet access. Firebase 

stores and syncs data across users and devices in real-time, utilising a cloud-hosted NoSQL database. So, 

data sync across linked devices in milliseconds and stays accessible if applications go offline, as shown in the 

Figure 2. 

 

Cloud PC 
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Figure 2. Block diagram of network communication of the system 

 

 

5. SYSTEM MODELLING 

The prototype system proposed in this design has 8 RF nodes transceiver (Rx, Tx) nodes mounted 

around the monitoring area. The area has a dimension of 200cm x 200cm, and there are 66.6 cm intervals 

between each node, as shown in Figure 3 a. The model's mathematical computation is a key design aspect 

that impacts the RF signals and the reconstructed image. RF nodes are placed in a square cavern beside a 

similar-sized interior area. All projection characteristics, including propagation, frequency, and equations, 

apply to all RF nodes positioned around the internal square, as shown in Figure 3 b. Frequency propagation 

determines projection angle. Mixed parallel projection improves image quality[39].  

Figure 3. System modelling a) The actual experiment condition b) Model of full projection. 
 

6. SOLVING FORWARD PROBLEM 

The forward challenge is to compute each sensor's theoretical output in a two-dimensional segment. 

Using theoretical sensor outputs, a simulated measuring region will be constructed. The area of interest is 

mapped onto the arrays as square matrices with dimensions forming 600 × 600 matrices (360,000 pixels).  

Forward issue solved via sensitivity maps. A sensitivity map projects the effects of a sensor onto a known 

receiving sensor using weighting matrices that indicate RSS attenuation. 

 

A. Sensitivity maps  

The sensitivity function of an array tells us the degree to which a slight change in the resistivity of a 

section of the sub-surface will influence the potential measured by that array. The higher the sensitivity 

function's value, the greater the influence of the sub-surface region on the measurement. A different array 

gives a different type of response over the same sub-surface feature. Some arrays provide better responses 

over vertical changes, and some deliver better responses for horizontal changes [40]. Different arrays have 

different sensitivity, depth of investigation and different signal strength [41]. The Jacobian matrix J,  usually 

Access point 

8 RF Nodes 

Personal Computer 

MQTT(Firebase) 

Monitor RSS value 

Push data of 8 RF nodes to cloud 

Request for RSS 

 

  RSS LINK 

  RF node 

 

(a) 
(b) 
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called the sensitivity map, can be calculated from the electric field strength distribution 𝜕𝐸(𝑥, 𝑦)for different 

excitations J using the modified perturbation method as shown in Equation (13). One element 𝐽𝑗𝑖  of this 

matrix describes the dependency of the measurement data 𝐸ji on a change in permittivity of one element 

𝜕ℇ𝑟(𝑥, 𝑦) of the model [42]. 

𝐽𝑗𝑖 =
𝜕𝐸(𝑥,𝑦)

𝜕ℇ𝑟(𝑥,𝑦)
       (13) 

 

For the normalized sensitivity maps in the case of air as the reference material, an excitation at port 

j=1 and measurements at ports i =2,3,4,5,6,7 and 8 are shown in Figure 4 sensitivity maps of excitation at a 

node j = 1, with the corresponding measurement at nodes i=5 and i=8. Each sensitivity map corresponds to a 

row vector Jij for a reconstruction mesh, from which the forward model's mesh was generated. It is possible 

to exclude the dielectric windows from this array. The most sensitive mesh elements are positioned every 

time between the excitation and measurement ports. 

Figure 4. Normalized sensitivity maps of excitation at a node, j = 1, with the corresponding measurement at 

nodes i=5 and i=8. 

 

7. SOLVING INVERSE PROBLEM 

Several qualitative linear and nonlinear For this study, imaging methods were examined. When 

extracting the dispersed electromagnetic field, this imaging does not offer exact information about the object 

(person). The electromagnetic field, on the other hand, does reflect certain changes in various objects. To put 

it another way, qualitative imaging may rebuild a human picture in a WSN for proof of concept in an early 

investigation. Besides, these qualitative linear imaging approaches are chosen because they are the simplest 

and fastest to use. 

 

A. Linear Back Projection 

Generally, the LBP algorithm is an approach that can reconstruct an image of the unknown density 

distribution of the human by measuring the RF signals transmitted among transceivers. The LBP algorithm's 

simplicity and straight forwardness of the LBP algorithm make it a natural choice for image reconstruction in 

many fields of tomography. Despite its imperfect reconstruction accuracy, LBP has the benefit of being fairly 

quick, needing simply the multiplication of a fixed reconstruction matrix times the vector of data. 

Reconstruction images are applied to extract as much as possible of the internal distribution changes by using 

a linear back-projection algorithm (LBP). As noted in Equation (14), the LBP algorithm proves its capability, 

accuracy and contribution in radio system tomography to visualise multiphase components. Although LBP 

exhibits low-quality reconstruction due to reconstruction artefacts and left/right image roll-offs from the 

centre of the image, the implementation of LBP is considered a fast and practical function or filter that blurs 

the image.   

𝐺𝐿𝐵𝑃  (x,y)= ∑  8
Tx=1 ∑  𝑆𝑇𝑥 ,𝑅𝑥 × 𝑀𝑇𝑥,𝑅𝑥(x,y)

7

Rx=1
    (14) 

Where: 

𝑆𝑇𝑥 ,𝑅𝑥    =   
𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒

𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
 

𝑀𝑇𝑥,𝑅𝑥   = sensitivity maps 

 

B. filtered back projection 

 

Filtered back-projection is one of the analytical approaches for image reconstruction algorithms 

used in various fields of tomography, and it has the capability of removing noise (left/right blurring occurs in 

j=1, i=5 j=3, i=8 
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linear back projection) using a filter, which is a matrix with the exact dimensions as the Jacobian matrix in 

the LBP algorithm, as shown in Equation (15), which can be expressed mathematically[43]. The filter is 

constructed by identifying the highest pixel in the sensitivity matrix. 

 

𝐺FBP(x,y)= F(x,y) × 𝐺LBP(x,y)      (15) 

 

Equation (16) shows the maximum pixel value in the weight-balanced map, and Pmax is divided by 

the weight-balanced map, Wn, to obtain the filter matrix F(x,y).  

 

𝐹 =
𝑃𝑚𝑎𝑥

𝑊𝑛
       (16) 

Where 𝐺FBP(x,y)  is the filter back − projection, 𝐹(𝑥, 𝑦)  is filter matrix, 𝑃𝑚𝑎𝑥   is a maximum pixel 

value in a weight-balanced map and 𝑊𝑛 is the weight balanced map. 

 

C. Gaussian Algorithm 

The model is based on the log-distance path loss model, one of many radio signal propagation models. 

The log-distance path loss model is defined in Equation (17) [44]. 

𝑃𝐿𝑑 = 𝑃𝐿𝑑0 + 10𝛾 𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝜒      (17) 

 

Where 𝑃𝐿𝑑  is the path loss at distance d in decibels, 𝑑0 is a reference distance (usually 1 m) for which 

the signal strength is measured, γ is the path loss exponent (determined empirically for different 

environments), and χ is a Gaussian random variable. The log-distance path loss model, therefore, models 

environmental noise using a Gaussian random variable. This observation, together with the idea that a pixel 

should have less weight when it is farther away from the line of sight (LOS) path, led to the idea of using a 

Gaussian distribution for the weight assignment. The general Gaussian function is defined in Equation (18). 

𝑓(𝑥) =  𝛼𝑒
−

(𝑥−𝜇)2

2𝜎2        (18) 

 

Where α is the height of the curve’s peak, μ is the location of the peak’s centre, and σ is the standard 

deviation that controls the width of the top of the curve. The Gaussian model uses the Gaussian function to 

assign weights for the pixels. The idea is to give the most weight to pixels on the LOS path and less weight 

farther away, depending on their distance from the LOS path. 

 

D. Newton’s One-Step Error Reconstruction  

Newton’s one-step error reconstruction (NOSER) is a fast and practical algorithm for producing 

qualitative images [45]. Equations (19) to (21) show the NOSER formula for the RTI system. 

𝐺𝑁𝑂𝑆𝐸𝑅(𝑥, 𝑦) = ∑ ∑ [𝐻]−1 × 𝐿𝑆𝑗𝑖 × 𝐽𝑗𝑖(𝑥, 𝑦)𝑅
𝑖=1

𝑇
𝑗=1     (19) 

𝐿𝑆𝑗𝑖 = [𝑆𝑖𝑗
𝑡𝑜𝑡 − 𝑆𝑖𝑗

𝑖𝑛𝑐]
2
      (20) 

𝐻 = 𝐽𝑗𝑖(𝑥, 𝑦) ∗ [𝐽𝑗𝑖(𝑥, 𝑦)]
𝑇
       (21)   

  

Where  𝐿𝑆𝑗𝑖  is sensor loss calculated in the least square method, and H is the Hessian matrix. The least 

square method aims to minimize the variation between the 𝑆𝑖𝑗
𝑖𝑛𝑐  and 𝑆𝑖𝑗

𝑡𝑜𝑡 for a given electric field distribution 

in computational domain [42]. Besides, Hessian matrix is not square when the electrodes and air are excluded 

in the reconstruction. It is impossible to compute the direct inverse. Transposed matrix is utilized as a rough 

approximation instead of inverse [45], [46]. Hence, the NOSER formula is rewritten as in Equation (22) for 

the RTI system.          

𝐺𝑁𝑂𝑆𝐸𝑅(𝑥, 𝑦) = [𝐻]𝑇 × ∑ ∑ 𝐿𝑆𝑗𝑖 × 𝐽𝑗𝑖(𝑥, 𝑦)𝑅
𝑖=1

𝑇
𝑗=1     (22) 

 

E. Tikhonov Regularization  

Tikhonov Regularization (TR) is the most widely used method in linear inverse problems and for 

regularising the update problem in linear RTI [47]. From literature, these are a few examples that can be 

referred to [48]–[50]. It chooses a single solution from the infinite number of possible solutions and stabilizes 

the solution technique so that the noise in the data does not direct to considerable modifications in the final 

result [51]. Initially, the process of minimization of  𝑆𝑖𝑗
𝑖𝑛𝑐  and 𝑆𝑖𝑗

𝑡𝑜𝑡 has to be done. Next, the singular value 

decomposition is utilized to analyse the solution. In this study, summation of Hessian matrix is decomposed 

into three constituent matrices which are 𝑈, ∑ and 𝑉. 𝑈 and 𝑉 are unitary matrices and ∑ is a diagonal 

matrix. The diagonal elements of ∑ are the singular values, ρ in Equation (23) decays gradually to zero when 
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the matrix is ill-conditioned. The solution is represented by Equation (24) which its denominator will never 

equivalent to zero as ρ> 0 and it reduces noises in the measured data onto the absolute solution [51]. 

𝜌 = 𝑑𝑖𝑎𝑔(∑)      (23) 

𝑇𝑡𝑖𝑘ℎ,𝑘 =
𝜌

𝜌2+𝑘
      (24) 

 

where 𝑘 is the regularization parameter and 𝑘 > 0. The formula to reconstruct the image with the 

implementation of TR is expressed in Equation (25) for the RTI system. 

𝐺𝑡𝑖𝑘ℎ,𝛼 = 𝑈 × 𝑉 × 𝑑𝑖𝑎𝑔(𝑇𝑡𝑖𝑘ℎ,𝑘) × ∑ ∑ 𝐿𝑆𝑗𝑖 × 𝐽𝑗𝑖
𝑅
𝑖=1

𝑇
𝑗=1    (25) 

 

Tikhonov’s smoothing approach is determined by the regularization parameter. The different 

regularization parameter, 𝑘 value is applied for 8 RTI system to achieve final reconstructed image. 

 

8. NORMAL DISTRIBUTION 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Probability density function of a normal distribution  N (μ, σ), with mean μ and standard deviation 

σ > 0.  
 

Consider a sample 𝑥1, 𝑥2, … , 𝑥𝑛 drawn from a normal distribution. Each data measurement, 𝑥𝑖  is given 

accuracy of ±𝜀/2. Assuming that 𝜀 is small, the probability density function of N(μ,σ) can be approximated 

as a constant over [𝑥𝑖 −
𝜀

2
, 𝑥𝑖 +

𝜀

2
] as explained in [52]. The length for the sample is therefore: 

∑ {−𝐼𝑛(𝜀 𝑓(𝑥𝑖))}𝑛
𝑖=1 =  ∑ {−𝐼𝑛 (

𝜀

√2𝜋𝜎
) +

1

2
|

𝑥𝑖−μ

𝜎
|

2

}𝑛
𝑖=1       (26) 

 

By setting µ equal to the sample mean (m), and µ can only be stated to a finite accuracy, ±b/2. Leaving 𝜎 

fixed, µ having the value m, state it within [𝑚 −
𝑏

2
, 𝑚 +

𝑏

2
], assumed that µ as a priori to lie in range of size 

a, therefore takes ln (
𝑏

𝑎
), to state µ to accuracy ±

𝑏

2
 to ln (

𝑏

𝑎
). similarly to µ, 𝜎 is  known a prior to lie in 

[0 … 𝑝]. Is stated to have an accuracy ±𝑐/2. So ln (
𝑐

𝑝
) to state 𝜎 to within ±

𝑐

2
: ln (

𝑐

𝑝
). 

Note that sample standard, z is given by Equation (27). 

𝑧 = √∑
(𝑥𝑖−𝑚)2

𝑛

𝑛
𝑖=1        (27) 

 

This is a biased estimator for 𝜎; consider n=1, or n=2, although there is little bias for large values of n. 

replacing the divisor, n, (𝑛 − 1). The accuracy with which µ(±
𝑏

2
) and 𝜎 (±

𝑐

2
) should be state is found by 

adding contribution from the data, µ, 𝑎𝑛𝑑 𝜎, choosing b and c to minimise the expected total: 

− ln (
𝑏

𝑎
) − ln (

𝑐

𝑝
) + ∑ {− ln (

𝜀

√2𝜋𝜎
) +  

1

2
|

𝑥𝑖−μ

𝜎
|

2

} 𝑛
𝑖=1   

=  −ln (
𝑏𝑐

𝑎𝑝
) − 𝑛 ln (

𝜀

√2𝜋𝜎
) + ∑ { 

1

2
|

𝑥𝑖−μ

𝜎
|

2

}𝑛
𝑖=1        (28) 

 

𝑓
(𝑥

) 
  

𝑥 
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And noting that (𝑥𝑖 − 𝑚 − (µ − 𝑚))
2

= (𝑥𝑖 − 𝑚)2 − (2𝑥𝑖 − 𝑚)(µ − 𝑚) + (µ − 𝑚)2 and that ∑ (𝑥𝑖 −𝑛
𝑖=1

𝑚) = 0 

−ln (
𝑏𝑐

𝑎𝑝
) − 𝑛 ln (

𝜀

√2𝜋𝜎
) + 𝑛

{𝑧2+(µ−𝑚)2}

2𝜎2      (29) 

 

The expectation of (µ − 𝑚)2 over [𝑚 −
𝑏

2
, 𝑚 +

𝑏

2
], and assuming a uniform distribution in this rang, is 

(
1

𝑏
) [

𝑏3

3
]−𝑏

2
…

𝑏

2

=
(

2𝑏3

24
)

𝑏
=

𝑏2

12
. The differentiate with respect to b and: 

−
1

𝑏
+ 𝑛

𝑏

12𝜎2 = 0       (30) 

𝑏 = 𝜎√
12

𝑛
        (31) 

Substituting this value for b: 

 

− ln (
𝑐

𝑝
) − ln (

𝜎

𝑎
√

12

𝑛
) − 𝑛 ln (

𝜎

√2𝜋𝜎
) + 𝑛

(𝑧2+
𝜎2

𝑛
)

2𝜎2     

=  − ln (
𝑐

𝑝
) − ln (

𝜎

𝑎
√

12

𝑛
) − 𝑛 ln (

𝜎

√2𝜋𝜎
) +

𝑛 𝑧2

2𝜎2 +
1

2
       (32) 

 

To find the optimal value of 𝜎, which interestingly turn out to differ from z, differentiate with respect to 𝜎and 

set to 0: 
𝑛−1

𝜎
=

𝑛 𝑧2

𝜎3        (33) 

𝜎 = 𝑧√
𝑛

(𝑛−1)
        (34) 

Now 𝜎 can only be stated to finite accuracy, being in the range [
𝜎́−𝑐

2
,

𝜎́+𝑐

2
] .  similarly to µ − 𝑚, the 

expectation of (𝜎 − 𝜎́)2 is 
𝑐2

12
. 

Let 𝜎 = 𝜎́ (1 + ℎ) in Equation (32). 

− ln (
𝑐

𝑝
) − ln (

𝜎

𝑎
√

12

𝑛
) − 𝑛 ln (

𝜎

√2𝜋𝜎
) +

𝑛 𝑧2

2𝜎2
+

1

2
                                                                              

=  − ln(𝑐) + (𝑛 − 1)  ln(1 + ℎ) +
𝑛 𝑧2

2(𝜎2)(1 + ℎ)2 
+ {𝑡𝑒𝑟𝑚𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 ℎ}                     

=  − ln(𝑐) + (𝑛 − 1) (
ℎ−ℎ2

2
) + 𝑛 𝑧2 (1−2ℎ+3ℎ2)

2𝜎2 + (0ℎ3) + {𝑡𝑒𝑟𝑚𝑠 𝑛𝑜 ℎ}               (35) 

Assuming that the fractional error h in stating the standard deviation is small: 

− ln(𝑐) + ℎ ((𝑛 − 1) −
𝑛𝑧2

𝜎2
) + ℎ2 (

−(𝑛 − 1)

2
+

3𝑛𝑧2

2𝜎2
) + 𝑛

𝑧2

2𝜎2
                                                    

=  − ln(𝑐) + ℎ2(𝑛 − 1)          (36) 

 

Where (𝑛 − 1)𝜎2 = 𝑛𝑧2. So ℎ =
(𝜎−𝜎́)

𝜎́
 and the expectation 𝐸(ℎ2) =  

𝑐2

12 𝜎́2 putting in Equation (36). 

− ln(𝑐) +
𝑐2(𝑛−1)

12 𝜎2       (37) 

Differentiate with respect to c and to 0: 
1

𝑐
= 𝑐2 (𝑛−1)

12 𝜎2         (38) 

𝑐 =  𝜎√
6

(𝑛−1)
         (39) 

 
9. RESULTS AND DISCUSSION 

A. Calibration  

The calibration of the RTI system was done in two stages. The first measured the RSS value when 

the experiment area was empty, and the second measured using obstacle (human). Figure 6 shows the RSS 

value of both measurement calibration and measurement. The RSS values in the calibration of the system for 

all 8 RF nodes of the system were in the range of −23dBm ≤ x ≤ −25dBm when the zone was empty, and 

the RSS values of humans were in the range −42dBm ≤ x ≤ −52dBm.   
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Figure 6. The RSSI signals measured by the target node ( TR1= 2 m, TR3= 2 m); with humans. 

 

The system can identify the presence of intruders, and it triggers a feedback loop that has a 

substantially more significant standard deviation and variance in an inhabited room with an obstacle which 

was human [53]. Even from Table 2, we can deduce that statistics like variance and standard deviation are 

great for detecting intrusions. 

 

Table 2. Data statistic of RSSI for 100 cycles between two nodes. 
Condition Zero Human 1 Person 

Min[dB] -25 -52 

Max[dB] -23 -42 

Mean(µ)[dB] -23.86 -47.88 

Std dev. (𝜎) 0.73 2.62 

Var (𝜎2) 0.53 6.85 

 

Furthermore, one of the characteristics to emphasise in this part is the change in variance. The 

variance was computed so that the system could determine the difference in RSS readings from the average. 

The variance for the empty zone was approximate −23dBm ≤ x ≤ −26dBm; however, when the human 

was detected inside the area, the difference in RSS value increased between -15 dBm to -25 dBm. 

 

B. Experimental Results 

  The radio tomography system's core is its reconstruction algorithms, which aid in seeing the interior 

distribution. The RTI reconstruction used MATLAB regularisation. The image reconstruction algorithms 

applied in the system were The LBP, FBP, Gaussian, NOSER and TR algorithms, and the image quality of 

the reconstructed images was evaluated with the MSSIM image quality assessment to conclude the outcomes 

of the proposed radio tomography system. Three tests were carried out to test and assess the suggested 

technique for the various algorithms. Each algorithm has its own set of characteristics and mathematical 

qualities. In this research, the various proposed phantoms EXP.1, EXP.2 and EXP.3 have been tested to 

reconstruct the tomography imaging, as shown in Table 3. The Colour  scale  is  used  to  represent  the  

human  concentration  in  the tomogram, the blue colour was air, and the red colour was a human stand in the 

monitoring area. It can be observed that the higher intensity spot (red colour) is more concentrated in the 

targeted location, which represents the human phantoms. However, these reconstructed images also 

illustrated that, as the number and size of the human phantoms  increased, the smearing artefacts  

increasingly marked up the imaging results, which eventually amplified the image noise floor. This condition 

is primarily reflected by the LBP and FBP algorithms compared to the NOSER and Tikhonov Regularisation 

algorithms. The LBP and FBP algorithms are well understood for their poor accuracy due to the appearance 

of artefacts conceivably caused by the back- projection techniques. 
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Reconstructed Image 

Position 
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In contrast, the NOSER and Tikhonov Regularisation algorithms have visually improved the 

reconstructed tomogram images for all rice phantoms’ profiles. The improvement in minimising the smearing 

artefacts by these algorithms is believed to be yielded through solving the inverse problem using the non-

linear approach. The image reconstruction results across all algorithms are then quantified using MSSIM 

indexes. The MSSIM quantification is carried out due to its excellent performance. The tomography system 

could identify all the test profiles based on the static experiment findings. In the modelling part, a single 

individual was identified as being detectable. A human High Low-test profile was used to test this restriction, 

and the findings demonstrate that all five reconstruction algorithms could identify the human profile. This is 

obvious proof that the modelling in this study was proved. The maximum detection of humans will be tested 

later for multiple targets. 

   

C. Sigma analysis  

Statistics and sigma use the normal distribution as a shared continuous probability distribution. An 

informal term for it is "overall Mathematical Model," which describes the distribution of the data set. The 

first inflection point of the normal distribution occurs at one standard deviation from its mean, and the area 

under the curve and over the x-axis is equal to one. As a result, about 68% of values taken from a normal 

distribution lie within one standard deviation (σ) of the mean, approximately 95% of values fall within two 

standard deviations, and approximately 99.7% of values lay within three standard deviations. An important 

idea in statistical process control is that 99.7% of the data in a collection with a normally distributed 

distribution are within three standard deviations of the mean. 

Therefore, from the comparison of the different sigma, 0.8 sigma was the best overall also from the 

comparison of the different algorithms, based on Table 4 and Figure 7 to 9, for experiments EXP.1, EXP.2, 

and EXP.3, When sigma equals 0.8, the NOSER and TR algorithms performed best for the MSSIM index. 

Meanwhile, the Gaussian MSSIM index increased just somewhat when compared to the NOSER and TR 

MSSIM indexes. As a result, it seems that the NOSER and TR algorithms are the best techniques for 

producing pictures that look similar to the original images, followed by Gaussian, LBP, and FBP since they 

have the greatest scores across all reconstructed images. Finally, the NOSER and TR algorithms have the 

greatest overall value across all experiments, indicating that they are better than the other methods. 

 

Table 4. Different value of sigma with MSSIM indexes computed on reconstructed images. 
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LBP FBP 
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Table 5. Data statistic of RSSI for 100 cycles for one person at three locations. 

Condi

tion 

EXP.1 EXP.2 EXP.3 
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0.2

204 0.2205 

0.22

12 

0.2
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0.2
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0.2
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0.22

05 

0.2
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0.22

36 

0.2

242 0.2219 

0.22

22 

0.2
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Max 0.4

678 

0.4
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0.48

56 

0.4
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0.5
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0.4
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0.49

59 

0.5
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0.40

06 

0.4

069 0.4201 

0.45

75 

0.4
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µ) 

    
0.3
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0.3

184 0.3216 

0.32

88 

0.3

332 

0.3

302 

0.3

286 0.3252 

0.31

62 

0.3
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0.32

16 

0.3

169 0.3255 

0.32

80 

0.3
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dev.(𝜎
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0.0
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0.0
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0.11
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0.1
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0.1
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0.1
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0.0
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0.0
895 
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098 

0.0
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0.0
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0.0
100 0.0114 

0.01
16 

0.0
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0.00
52 

0.0
046 0.0060 

0.00
77 

0.0
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The system can identify the presence of intruders. It generates a feedback loop that has a 

substantially more significant standard deviation and variance in an inhabited room than it does in an empty 

room. Even from Table 5, the system can deduce that statistics like variance and standard deviation are great 

for detecting intrusions. 

 

 
Figure 7. MSSIM indexes calculated on reconstructed images based on sigma (EXP.1). 

 

 
Figure 8. MSSIM indexes calculated on reconstructed images based on sigma (EXP.2). 
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Figure 9. MSSIM indexes calculated on reconstructed images based on sigma (EXP.3). 

 

D. Mean Structural Similarity Analysis 

Image quality was evaluated using the Mean Structural Similarity Index (MSSIM) evaluation tool. Figure 10 

shows the EXP.1, EXP.2 and EXP.3 in different locations. In this experiment, five reconstruction algorithms 

were involved. As shown in Table 6, all the phantoms were in a background of air, which was used as the 

reference.  A comparison among the frequencies is made for the different algorithms, and it is found that the 

NOSER and TR algorithm has the highest value overall (0.4959) (0.508895), respectively. For the Gaussian 

algorithm in the tests for the three experiments, the highest value was 0.50376; for the FBP algorithm, the 

highest value was 0.453221; and for the LBP algorithm, the highest value was 0. 

 

Table 6. MSSIM indexes computed on reconstructed images of the experiment 

Algorithm 
Experiment  

EXP.1 EXP.2 EXP.3 

LBP 0.448516 0.447774 0.393272 

FBP 0.37589 0.453221 0.39406 

GAUSSIAN 0.414206 0.50376 0.399988 

NOSER 0.495585 0.508895 0.407536 

TIKHONOV 0.495585 0.508895 0.407536 

 

 

 
Figure10.  MSSIM indexes calculated on reconstructed images of experiment 
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However, the MSSIM result suggests a low index for all phantoms. The maximum score was 

acquired for experiment B with an index value of 0.508895 using the NOSER and TR algorithms, while the 

lowest score was obtained for experiment A with an index value of 0.37589 using the FBP method. In 

general, the NOSER, TR, and Gaussian approaches performed well and resulted in an increase in the 
MSSIM index. 

 

10. CONCLUSION 

Radio tomography imaging for human localization has been successfully developed, the evaluation 

and analysis of its performances was made by using minimum number of RF nodes. The sigma was proposed 

to solve the issue with low spatial resolution image by reducing the noise. Several experiments were 

conducted, and the results had showed encouraging improvement in tomogram reconstruction using sigma 

method where a 0.8 of sigma was the best of overall. NOSER and TR algorithms scored the highest for the 

MSSIM index overall experiments, and it is the best technique to produce images that appear similar to the 

original images. 
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