
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 11, No. 3, September 2023, pp. 815~833

ISSN: 2089-3272, DOI: 10.52549/ijeei.v11i3.4786  815

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

ACRMiner: An Incremental Approach for Finding Dense and

Sparse Rectangular Regions from a 2D Interval Dataset

Dwipen Laskar1, AnjanaKakoti Mahanta2
1,2Department of Computer Science, Gauhati University

Jalukbari, Guwahati, Assam, India

Article Info ABSTRACT

Article history:

Received May 11, 2023

Revised Sep 8, 2023

Accepted Sep 22, 2023

 In many applications, transactions are associated with intervalsrelated to

time, temperature, humidity, or other similar measures. The term "2D

interval data" or "rectangle data" is used when there are two connected

intervals with each transaction. Two connected intervals give rise to a

rectangle. The rectangles may overlap producing regions with different

density values. The density value or support of a region is the number of

rectangles that contain it. A region is closed if its density is strictly bigger

than any region properly containing it. For rectangle dataset, these regions

are rectangular in shape. In this paper an algorithm named ACRMinerhas

been proposed that takes as input a sequence of rectangles and computes all

closed overlapping rectangles and their density values. The algorithm is

incremental and thusis suitable for dynamic environment. Depending on an

input threshold the regions can be classified as dense and sparse. Here a tree-

based data structure named as ACR-Treeis used. The method has been

implemented and tested on synthetic and real-life datasets and results have

been reported. Fewapplications of this algorithm have been discussed. The

worst-case time complexity the algorithmis O(n5) where n is the number of

input rectangles.

Keyword:

Dense Regions

Sparse Regions

Closed Rectangles

Interval Data Mining

Support Counts

Copyright © 2023 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

DwipenLaskar,

Department of Computer Science,

Gauhati University,

Jalukbari, Guwahati, Assam, India

Email: laskardwipen@gauhati.ac.in

1. INTRODUCTION

Data mining is the process of extracting and discovering unknown, hidden patterns from

data[1][32]. Various data mining techniques include clustering, classificarion and association rule mining etc.

In data mining, transactions may be event related data in real world and are associated with intervals in both

continuous and discrete domains such as intervals of distance, time, blood pressure, etc[2][3]. An interval has

start and end values associated with it[4][5][6][7][8]. Interval data mining is a data mining approach that

extracts hidden information, patterns, and association rules [27] from interval data sets. In an interval dataset

there may be many intervals which overlap. This overlapping interval information help users to group

transactions based on a certain similarity measure. The total number of overlapping intervals is called the

support of the overlapped region of these intervals. The idea of closed interval [9] is an extension of the

concept of closed item-set [10]. The support of a closed interval is strictly more than the support of any

interval properly containing it. For an interval dataset the closed intervals are actually the non-empty

intersections of intervals in the dataset [11]. This is because if the intersection of two (or more) intervals is

extended in either direction then its support decreases. Hence the support of any interval properly containing

it will be less than the support of it. Let us consider a data set with two intervals I1=[4, 7] andI2=[5, 8] as

shown in Figure 1. The overlapping (intersection) of these two intervals is the interval I3=[5, 7]. The interval

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

816

I3 has support value 2 as it is contained in both the intervalsI1 and I2. The interval I3=[5, 7] is closed because

if we extend it in any direction one of the intervals I1 and I2 will not contain it.

Figure 1. Intervals I1=[4, 7] and I2=[5 , 8] with overlapping interval I3=[5, 7] with support 2

Numerous techniques have already been proposed for one dimensional (1D) interval data set,

including mining closed intervals [6][8][9][12][13][14], closed frequent intervals [6][8][9][11][12][15],

maximal frequent intervals [6][9][15][16] and Minimal Infrequent Intervals[17]. However, there are many

real-world problems in which objects are associated with two intervals and can be represented as rectangles

in 2D space as shown in Figure 2.

Figure 2. Rectangle R with intervals Ix=[X1,X2]and Iy=[Y1,Y2]

Here Ix=[X1,X2] andIy=[Y1,Y2] are intervals in X-domain and Y-domain respectively, and R is the

corresponding rectangle. The rectangle R is generally represented as [X1, X2, Y1, Y2]. Any point P(x,y) in

this rectancle will have x ∈ Ix and y ∈Iy. A set of such rectangles is called rectangle data set [6][15]. Finding

dense and sparse region from these rectangle datasets is also important for the users. For example, in food

storage control system, temperature and humidity are two important environmental factors to preserve the

food products. The system can record the temperature interval i.e. minimum and maximum temperature and

also the humidity range i.e. the minimum and maximum humidity level for each of the food products that are

required to preserve them efficiently. Both the environmental factors temperature and humidity can be

visualized as a rectangle in two dimensional spaces as show in Figure 3, for the set of rectangle data given in

Table 1.

Table 1. Temperature and Humidity of fruits
Fruit name Temperature (0F)

[max, min]
Humidity (%)

[max, min]

Papaya [10, 17] [40, 75]

Orange [14, 19] [35, 45]

Pineapple [12, 21] [35, 65]

Mango [16, 20] [60, 85]

Now, if we extract closed rectangles from this set of rectangles that is represented by temperatures

and humidity ranges, then it is possible to find out the dominant temperature and humidity intervals that can

be applied to preserve the maximum or desired number of food products. Thus, these dominant rectangular

areas are dense regions with different density values. In Figure 3, there are 4 fruits Papaya, Orange,

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

817

Pineapple and Mango and their respective temperature and humidity factors are as shown in Table 1. The

area filled with Red and Green are dense regions with support value 3 because they are the result of

overlapping of three rectangles given in Table 1. There may be multiple number of dense regions for a given

minimum threshold value of density. The red coloured area represents the rectangle R1=[16,17,60,65] which

is the intersection of 3 rectangles and so its support value is 3. Similarly R2=[14,17,40,55] is also a rectangle

with support 3.

Figure 3. Dense Regions R1 and R2for temperature and humidity factors of the fruits as given in Table 1

Various rectangle data mining approaches such as mining maximal empty rectangles

[18][19[20][22][23], mining holes in large datasets[21][22] and rectangle packing problems [31] have been

proposed for multidimensional data. But all these approaches are not directly based on interval data.

Only a few algorithms have been proposed for mining 2D interval data truly based on interval

information of underlying data. Mining closed frequent rectangles [6][8] and maximal frequent rectangles

[15] are available to extract frequent relevant information from two dimensional interval data. Although,

closed frequent rectangles are computed in [6][8][15] they cannot compute all closed rectangles that are

present in the dataset. These proposed methods require the threshold value before they can be computed.

They compute all closed frequent rectangles or maximal frequent rectangles based on this prior information

of threshold. For a new threshold value, the entire process must be recompiled. Also, the methods mentioned

above needs data to be preprocessed and are not incremental.

In this paper we propose an incremental algorithm named as ACRMiner for finding all closed

rectangles and their support counts from rectangle datasets and then classify the region as dense and sparse

based on any user defined threshold.The proposed algorithm uses a data structure named as ACR-Tree for

storing all closed rectangles and their respective support counts present in the dataset. Whenever a new

rectangle is inputted, the algorithm updates the ACR-Tree to generate the new closed rectangles along with

their support counts without visiting the dataset. All the closed rectangles along with their support counts can

be generated with a single pass of the dataset. All the frequent closed rectangles can also be computed for any

user given minimum support with a single scan of ACR-Tree. Finally, based on a minimum density threshold,

the regions as classified as dense and sparse regions. In section 3. a number of properties of closed rectangles

and dense regions are stated and proved in the form of theorems. These results are used in the algorithm

proposed in this paper.

This paper is organized into nine sections. Section 2 discusses literature reviews on related works to

the problem at hand. In Section 3, some basic definitions related to mining dense region based on closed

rectangle problem are given. In Section 4, a detail about ACR-Ttee data structure is discussed. The

construction of the ACR-Tree and the proposed algorithm is explained in Section 5. Section 6, discusses the

complexity analysis of the proposed algorithm. In section 7, the extension of proposed method to higher

dimensional space is discussed. The experimental results are given in section 8. Section 9 discusses some

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

818

practical applications of the proposed method. The conclusion and scope of the future work is presented in

section 10.

2. LITERATURE REVIEW

Following are some of the research works found in interval data mining.

J. F. Allen [7] published the first work in the field of interval data, in which the author defined 13

possible relationships between two intervals and proposed a method for mining knowledge from temporal

intervals. The 13 possible relations are: equal,starts, startedby, before, after, finishes, finishedby, overlaps,

overlapped by, during, contains, meets, and metby.

P. Papapetrou et al [10] proposed an enumeration tree-based method for mining frequent interval

arrangements based on J.F. Allen's 13 possible relationships among the intervals. Their proposed method,

known as the A-Close algorithm, finds frequent interval item-sets.

N. Sarmah[8] proposed an algorithm for mining closed frequent intervals from an interval

dataset.The proposed algorithm proposed mines the closed frequent intervals directly from interval datasets.

N. J. Sarmah and A.K. Mahanta [6] proposed an algorithm for mining closed frequent rectangles by

scanning the rectangles dataset once. The algorithm needs data to be pre-processed and stored in an array.

From the pre-processed dataset, the algorithm computes the closed frequent rectangles for a user defined

threshold using data structures called CII, CIO, HR and CR.

I. Hazarika and A. K. Mahanta [28] proposed an algorithm to mine maximal frequent rectangles

from a rectangle dataset using a data structure called IR-tree. The proposed algorithm is a combination of

four algorithms named as Algorithm-A, Algorithm-B, Algorithm-C and Algorithm-D. Algorithm-A

constructs IR-Tree for X-intervals (denoted as IRx-tree) and Y-intervals (denoted as IRy-tree) for a rectangle

dataset with two domains X and Y. Algorithm-B extracts all Y-intervals with frequency (denoted as YList)

associated with an input interval I from X-domain by traversing the IRx tree. Similarly, XListcan also be

constructed by traversing the IRy tree. Finally, Algorithm-C or Algorithm-D can be used to mine maximal

frequent rectangles (MFRS) from the rectangle dataset.

Laskar et al. [11] proposed an incremental algorithm using a data structure called SCI-Tree to mine

all closed intervals together with their support counts form an interval dataset. The SCI-Tree data structure is

the modification of CI-Tree [2] data structure that not only stores the support counts of the all closed intervals

but also keep a distinction between input closed intervals and generated closed intervals.

Edmonds et al. [18][19] proposed a time efficient algorithm which can find all maximal empty rectangles in

large and multidimensional space with a single scan of the data sets. The algorithm needs the data to be

preprocessed and sorted.

Liu et al. [20] proposed the first algorithm to identify the maximal empty rectangle (hyper-

rectangles) in a k-dimensional continuous space.The proposed approach discovers the set of all possible

maximal empty hyper-rectangles (MHR) from a given set of points in k dimesional space and has at least a

point bounding each of its surfaces.

Liu B et al. [21] proposed algorithm for finding interesting holes in a large database. The hole is

simply a region in the space that contains no data point.

Lemley et al. [22] presented a polynomial time algorithm based on Monte Carlo approach for finding largest

empty holes (large hyper-rectangles) in high dimensional data where the dimensionality and input size make

it challenging to analyse the data.

A. Duttaand S. Soundaralaksmi[23] developed a time and space efficient algorithm for finding

maximal empty hyper rectangles (MEHR) within a bounding hyper rectangle (BHR)in three dimensional

spaces.

J. Backer and J. M. Keil [29] proposed the bichromatic rectangle problem for finding the

largestaxis-aligned hyperrectangle in d-dimensional space that has only blue points and no red points. All the

relevant hyper-rectangles are also ranked by this proposed algorithm.

N E.Costa et al. [30] proposed a fast heat-map visualization algorithm called as OL-HeatMap to vizualize

density of overlapping of several 2D axis aligned bounding boxes called as rectangles based on sweep-line

paradigm.

From the literature review it has been observed that although many methods have been proposed but

they basically focus on finding closed frequent intervals, closed frequent rectanglesand empty rectangles.

Based on the type of input data, concept of density measuse etc.used, various featues have been identified

viz. type of input data, density measuring approach, computation of support count, Incremental method

(yes/no) and outcomeof the method andacomparative analysis of similarmethods is summarized in Table 2 to

highlight the gap between these methods and our proposed work.

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

819

Table 2. Comparative Analysis of various proposed methods

Literature
Type of input

data

Density

Measuring

approach

Computation of
Support Count

Incremental
(Y/N)

Outcome of the
method

Sarmah and Mahanta [8] Interval
Overlapping of

intervals

It computes support

counts only for the

frequent intervals

No
Closed frequent

intervals

Sarmah and Mahanta [6] Interval
Overlapping of

Rectangles

It computes support

counts of all closed

frequent rectangles

No
Closed frequent

rectangles

Hazarika and Mahanta [28] Interval
Overlapping of

Rectangles

It computes support

counts of maximal

frequent rectangles
by finding all

closed frequent

intervals

No
Maximal frequent

rectangles

Edmonds et al. [18][19] Point
Not required

empty regions are

extracted
No

Maximal empty

rectangles

Liu et al. [20][21] Point
Not required

empty maximal

hyper rectangles

are extracted

Yes

All large emptyl

Hyper-Rectangles

(MHR)

Lemley et al. [22] Point Not required
big empty holes are

extracted
No

Largest empty

rectangles

A. Dutta and S.

Soundaralaksmi [23]
Point Not required

maximum empty
rectangles are

extracted

No

Maximum empty
hyper rectangles

(MEHR)

N E.Costa et al. [30] Interval
Overlapping of

Rectangles

Computes support
counts of all

overlapping

rectangles

No

HeatMap
Visualization of

Overlapping

Rectangles

Our Proposed Method Interval
Overlapping of

Rectangles

Computes support

counts of all closed

rectangles

Yes
Dense and Sprase

Rectangular Regions

3. PROBLEM DEFINITION

The problem is to find dense and sparse regions w.r.t. a threshold value in a given rectangle

databaseRDB. The concept of closed rectangle is used in the process. Various terms, definitions and theorems

will be used in the problem under consideration.

3.1. Terms and Definitions used

Following terms and definitions will be used in the proposed problem of finding sense and sparse

regions.

Rectangle: A rectangle R is defined by two intervals],[21 XXI x = and
],[21 YYI y =
where xI and yI

 are

intervals in totally ordered domains X and Y respectively (as shown in Figure 2). If p=(x, y) is a point in the

rectangle R then yx IIp 
 where, ()21 XxX  and ()21 YyY  . Such a rectangle R can be uniquely identified by

the 4-tuple],,,[2121 YYXX and any such 4-tuple will uniquely identify a rectangle, i.e.],,,[2121 YYXXR = .

Rectangle Dataset: Let },....,,,{ 321 nrrrrRDB = be a rectangle dataset consisting of set of records, where

each recordristores a 5-tuple
],,,,[

2121
fYYXX iiii

 which denotes a rectangle
],,,[

2121
iiiii YYXXR =

 with frequency f in

2D space.

Containment of Rectangles: A rectangle],,,[2121 YYXXR = is said to be contained in another rectangle

],,,['
2

'
1

'
2

'
1

' YYXXR = , denoted by
'RR  iff],[],['

2
'
121 XXXX  and],[],['

2
'

121 YYYY  . An interval [a, b] contains an interval

[c, d], denoted as],[],[badc  iff bdca  . So, containment of rectangles R and
'R i.e.

'RR  can be defined as

)('
221

'
1 XXXX  and)('

221
'

1 YYYY  .

Proper Containment of Rectangles: A rectangleRis said to be properly contained in another

rectangle
'R denoted by

'RR  iff (],[],(['
2

'
121 XXXX  and])),[],['

2
'

121 YYYY  or)],[],((['
2

'
121 XXXX  and])),[],['

2
'

121 YYYY  .

An interval [a, b] properly contains an interval [c, d], denoted as],[],[badc  iff)(bdca  or)(bdca  or

)(bdca  . So, if
'RR  then)(('

221
'
1 XXXX  and))(('

221
'

1 YYYY  or)(('
221

'
1 XXXX  and))(('

221
'

1 YYYY  or

)(('
221

'
1 XXXX  and))(('

221
'

1 YYYY  or)(('
221

'
1 XXXX  and))(('

221
'

1 YYYY 

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

820

Support of a Rectangle: Given a rectangle dataset RDB , supports of a rectangle],,,[2121 YYXXR = is

the sum of the frequency values of the rectangles in RDB that contains R .

Closed Rectangles: A rectangle R is said to be closed if the support of any rectangle
'R properly

containing R is less than the support of R i.e. if
'RR  and if 1s and 2s are supports of R and

'R respectively then

12 ss  .

Intersection of Intervals: An interval],[21 XXI x = is said to intersect interval],['
2

'
1

' XXIx = if the

intersection)('
xx II  is non-empty i.e.)('

22
'
11 XXXX  or)(2

'
2

'
11 XXXX  or)(2

'
21

'
1 XXXX  or

)('
221

'
1 XXXX  . The intersection of two intervals],[21 XXI x = and],['

2
'
1

' XXIx = is an interval
],[

21
rrr

x XXI =

denoted as)('
xx

r
x III = where intersection is defined in the usual way defined for sets.

Intersection of Rectangles: A rectangle],,,[2121 YYXXR = is said to be intersect rectangle

],,,['
2

'
1

'
2

'
1

' YYXXR = if the intersection)('RRRr = is non-empty. This will hold iff]),[],(['
2

'
121 XXXX  and

]),[],(['
2

'
121 YYYY  are both non-empty. The result of)('RR  is a rectangle

],,,[
2121
rrrrr YYXXR =

where

]),[],([],['
2

'
12121

XXXXXX rr =
and

]),[],([],['
2

'
12121

YYYYYY rr =
.

Equality of Rectangles: Two rectangles],,,[2121 YYXXR = and],,,['
2

'
1

'
2

'
1

' YYXXR = are said to be equal

denoted as
'RR = iff

'
11 XX = ,

'
22 XX = ,

'
11 YY = and

'
22 YY = .

Density value of a region: The density value or support of a region is the number of input

rectangles that contain it.

Dense and Sparse Regions: A region R is called dense if its support is greater than any user

defined minimum support threshold  . A region which is not dense is termed as sparse.

Maximal Dense Region: A dense region is said to be maximal if it is not properly contained in any

dense region.

3.2. Theorems used in the Proposed Method

The following two theorems of closed rectangles that were proved in [6] will be used in designing

our proposed algorithm and for the sake of completeness these have been stated below.

Theorem A. If],,,[2121 YYXX is a closed rectangle then

(i) There is an input rectangle with X1 as its left end value containing],,,[2121 YYXX .

(ii) There is an input rectangle with X2 as its right end value containing],,,[2121 YYXX .

(iii) There is an input rectangle with Y1 as its lower end value containing],,,[2121 YYXX .

(iv) There is an input rectangle with Y2 as its upper end value containing],,,[2121 YYXX .

Proof: Proof of Theorem-A is given in [6].

Theorem B. A rectangle],,,[2121 YYXX is closed if all of the following are satisfied:

(i) X1 is the left end value of an input rectangle say R, part(X1) ≥ X2 and the Y-interval of input rectangle

R contains [Y1, Y2].

(ii) X2 is the right end value of an input rectangle say R’, part(X2) ≤ X1 and the Y-interval of input

rectangle R’ contains [Y1, Y2].

(iii) Y1 is the lower end value of an input rectangle, part(Y1) ≥ Y2 and the X-interval of the input rectangle

contains [X1, X2].

(iv) Y2 is the upper end value of an input rectangle, part (Y2) ≤ Y1 and the X-interval of the input rectangle

contains [X1, X2].

Proof: Proof of theorem-B is given in [6].

In addition to above theorems we have proposed following theorems that will be used in our work.

Theorem 1.If],,,[2121 YYXXR = is a rectangle properly containing],,,['
2

'
1

'
2

'
1

' YYXXR = i.e. RR ' then

)sup()sup(' RR  .

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

821

Proof: It is obvious since all input rectangles in the rectangle dataset containing],,,[2121 YYXXR = will

also contain],,,['
2

'
1

'
2

'
1

' YYXXR = and so)sup()sup(' RR  .

Theorem 2. If],,,[2121 YYXXR = is a rectangle in the input dataset then R is closed.

Proof: Let,],,,['
2

'
1

'
2

'
1

' YYXXR = be a rectangle properly containing R . i.e.
'RR  . Then,)sup()sup(' RR  .

Now, R is a rectangle in the input dataset containing rectangle R but not containing the rectangle
'R . So,

)sup()sup(' RR  . Therefore, R is a closed rectangle.

Theorem 3. The intersection of two intersecting input rectangles 1R and 2R is a closed rectangle.

Proof: Let, 1R and 2R be two input rectangles. Suppose the rectangles are as shown in Figure 4.

Figure 4. Intersection of closed rectangles 1R and 2R

Let,],,,[2121 YYXXR = be the intersection of 1R and 2R . Let,],,,['
2

'
1

'
2

'
1

' YYXXR = be an input rectangle that

properly contains rectangle R . Then)sup()sup(' RR  . Since,
'R properly contains R , at least one (or more) of the

followinginequalities will have to be true

(i) 1
'
1 XX 

(ii)
'
22 XX 

(iii) 1
'

1 YY 

(iv)
'
22 YY 

If (i) or (iv) is true then 2R does not contain
'R .

If (ii) or (iii) is true then 1R does not contain
'R .

In either case, support of
'R will be less than that of R . The proof will follow in the same way for all

non-empty intersections of rectangles 1R and 2R . Hence, R is a closed rectangle.

Theorem 4. A rectangle],,,[2121 YYXXR = is a closed rectangle iff it is the intersection of four input

rectangles all of which may not be distinct.

Proof: Theorem-A states that if],,,[2121 YYXXR = is a closed rectangle than all its four sides are parts

of input rectangles containing R . Hence R is the intersection of these rectangles. These four rectangles

however may not be distinct. Theorem-B states that if a rectangle R is such that all its four sides are parts of

input rectangles containing R then R is a closed rectangle. In this case R will be the intersection of these four

rectangles.

Theorem 5. Intersection of two closed rectangles is a closed rectangle.

Proof: Let, 1R and 2R be two closed rectangles and Let, R is their intersection. Suppose R is not

closed. Then, there is a rectangle properly containing R (say
'R) whose support is same as R . i.e.)sup()sup('RR =

. But as 1R is a closed rectangle, the left side of the rectangle 1R will be a part of an input rectangle which

contains 1R [Theorem-A and Theorem-B]. Then this input rectangle will contain R but not
'R and hence support

of R cannot be same as
'R . The same argument can be applied to any

'R containing R . Therefore, there cannot

be a rectangle properly containing R having the same support as that of R and hence R is closed.

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

822

 Although our work is concentrated on rectangular regions but the concept can be extended to any

well-defined region of arbitrary shape. Theorem 6 and Theorem 7 are proved in this direction.

Theorem 6. Support of a region r is the support of the smallest closed rectangle containing r . If no

such rectangle exists then the support of r is zero.

Proof: Letris region as shown in Figure 5. Ifris not contained in any closed rectangle thenris not

contained in any input rectangle either (Theorem-1 or Theorem 2) and hence support of ris zero.

Now, suppose R is the smallest closed rectangle containing r. Since Rr  ,)sup()sup(Rr  .

Figure 5. Support of a regionris the support of the smallest closed rectangle containingr.

Suppose,)sup()sup(Rr  . Then there is at least one input rectangle containing rbut not containingR.

Let, IRbe one such rectangle. Let us consider the rectangle IRR . It is non empty as it is containsr. It is

closed by Theorem-5.

Also, RIRR )( as R IR . Therefore IRR is a closed rectangle containing r which is a contradiction to such

assumption that Ris the smallest closed rectangle containingr. Therefore,)sup()sup(Rr =

Theorem 7. Let  be the minimum support value used for defining dense regions. Then any closed

rectangle of support  will be a maximal dense region.

Proof: Suppose R is closed rectangle of support  and the region R is not maximal as shown in

Figure 6.

Then, there is a region r such that Rr  and r is dense. Form the Theorem-6, support of r is the support of the

smallest closed rectangle containing r .

 Let, R be such a rectangle. Then RrR  and)sup()sup(Rr = . Since, RR  and r is closed)sup()sup(RR 

contradicting our assumption that r is dense.Hence, R is a maximal dense region.

Form the Theorem-6 and Theorem-7 it is clear that for any minimum support threshold  , the closed

rectangles of support  are the maximal dense regions. In case there is no closed rectangle of support  then

the next integer greater than  say
' having closed rectangles will serve the purpose. If there are no such

'

values then there will be no dense region.

Figure 6. Maximal dense region R with support 

4. ACRMINER FOR COMPUTING ALL CLOSED RECTANGLES

The proposed algorithm uses a tree like data structure named as ACR-Tree to compute all closed

rectangles incrementally. Since the algorithm is incremental it can process dynamic data. It does not require

any preprocessing of input data. Whenever a new rectangle is given as input it automatically updates its data

structure ACR-Tree. The input rectangles are given one by one in a sequence to the algorithm. Each record in

RDB contains a rectangle],,,[2121 YYXXR = . Here, 1X and 2X refers to the left and right end point of the interval
],[21 XX in X-domain. Similarly, 1Y and 2Y refers to the lower and upper end point of the interval],[21 YY in Y-

domain. For the construction of ACRMiner, the theorems and definitions as discussed in Section 3are used.

The proposed ACRMiner contains two types of lists of nodes- a header-list LISTIR _ and a number of sub-lists.

There is one sub-list CR_LIST for each node in the header-list IR_LIST. Any node in the header-list stores a

9-tuple),sup,,,,,,,(2121 CRNextIRNextfreqareaYYXX , where 1X , 2X , 1Y and 2Y refers to the left, right, lower and upper

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

823

end points respectively of an input rectangle R respectively. Each node in IR_LISTis associated to a distinct

input rectangle],,,[2121 YYXXR = in dataset RDB. The field area stores the area of the rectangle R where
)()(1212 YYXXarea −−=

. The value of areaof a header-node is important in our proposed implementation

because the newly created sub-list node will be added to the sub-list of the header node having smaller area .

All the rectangles in the sub list of a header node are contained in the rectangle represented by that header

node. A larger-area rectangle is more likely to intersect with a newly inputted rectangle than a smaller-area

rectangle. If a large area rectangle contains more rectangles, the cost of rectangle intersection computation

increases. However, all of the rectangles in that larger rectangle's sub-list may not intersect with the newly

entered rectangle. To reduce the cost of computation of intersection of rectangles the sub-list of large area

rectangle is kept short. For that reason, when a new node is created as a result of the intersection of a header

node and the new input rectangle, the resulting node is added to the sub list of that header node whose

rectangle at the node has the least area.

The field freq stores the frequency count of the rectangleRin the input rectangle database. The field
sup stores the support counts of the rectangle R in the same input rectangle database.IRNext and CRNext are

two pointers associated with each header node eH in IR_LIST. The pointer IRNext points to the node next to

node eH in IR_LIST. The pointer CRNext points to the node in the sub-list HeLISTCR_
associated to eH. Any

node e Lin sub-list HeLISTCR_
stores a 6-tuple)sup,,,,,,('

2
'

1
'
2

'
1 LNextcountYYXX , where

'
1X ,

'
2X ,

'
1Y and

'
2Y refers to the

rectangle],,,['
2

'
1

'
2

'
1

' YYXXR = . Each rectangle in a sub-list is a non-empty intersection of a number of input

rectangles. The field count stores this number. The pointer LNext points to nodenext to eL in HeLISTCR_
.The field

sup stores the support counts of the rectangle
'R in the same input rectangle database.

A node eL in HeLISTCR_
of a header node with rectangle R represents a rectangle which is a non-empty

intersection of R with some rectangle in IR_LIST or with some rectangle in some sub-list ILISTCR _ .

In the construction of ACR-Tree, whenever a new input rectangle comes it is inserted into the header

list IR_LIST as a node. The newly inserted header node contains its calculated value of area, sup and freq. If

the newly insterted input rectangle already exits as a node in the header list then only the sup and freqvalues

are updated. Once the header node is inserted in ACR-Tree then the non-empty interestions between the

newly inserted rectangle and the rectangle present at other existing header nodes are inserted into the sublist

CR_LIST of the header node having the smallest area between them. The non-empty intersections of the

newly inserted rectangle and the rectangles present at sublist of each header node is also inserted into the

sublist of suitable header nodes. The count and sup values of all the respective nodes are also updated. All the

rectangles present in header list and sublists are closed rectangles. The detail construction of the ACR-Tree is

explained in section 5. Apictorial view of a sample structure of ACR-Tree is shown in Figure 7 where

],,[
2121

iiii RRRR
i YYXXR =

for ni 1 are the input rectangles. The nodes that are linked vertically represent the

header list.Sublist of a header node is shown by the list of nodes linked horizontally. In Figure 7,

sup],,,,[1111

2121
RRRR

YYXX
,

sup],,,,[
1
1

1
1

1
1

1
1

12111211
RRRR

YYXX
,

sup],,,,[
2
1

2
1

2
1

2
1

12111211
RRRR

YYXX
…..,

sup],,,,[2222

2121
RRRR

YYXX
,……..…….

sup],,,,[
2121

nnnn RRRR
YYXX

 are all the closed rectangles along with their supports.

Figure 7. Pictorial Representation of ACR-Tree Data structure

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

824

5. CONSTRUCTION OF ACRMINER

The proposed algorithmACRMiner for construction of ACR-Treecan be divided into three parts, viz.

Header-List–Update, Sub-List-Updateand Final-Support-Update. The first two parts are used to construct the

ACR-Tree and the last part i.e. Final-Support-Update part is used to compute the support counts of the the

nodes that are present in the constructed ACRMiner. In Header-List-Update part, the procedure

IR_LIST_Update is used to upate the header list IR_LIST in ACR-Tree. A counter Icontain is used which stores

the sum of the frequency counts of input rectangles that contain the newly inserted

rectangleI=[X1,X2,Y1,Y2].The procedureIR_LIST_Update also updates the supports of all existing header

nodes. The second part i.e. Sub-List-Update uses aprocedure called CR_LIST_Update to update the sub-list

CR_LIST associated with each node in IR_LIST. The CR_LIST_Update procedure is called when any new

node I is added to the header-list IR_LIST.The procedure CR_LIST_Update is used for generation of new

closed rectangles. The newly generated closed rectangles are added to the sub lists CR_LIST in ACR-Tree.

The third part i.e. Final-Support-Update uses a procedure FS_Update. This procedure scans the ACR-

Treeand updatesthe support of the nodes present in the sub lists CR_LIST’s of ACR-Tree. All the nodes in

ACR-Tree represent closed rectangles as each is a non-empty intersection of a number of input rectangles.

However, more than one node may represent the same closed rectangle. In such cases, any one of them is

chosen as all such nodes have same suppor count and the rest nodes are ignored. For an input rectangle

I=[X1,X2,Y1,Y2] with frequency f, these threeparts involved in updating of ACR-Tree are discussed in depthin

following sections.

5.1. Header-List-Update part

 The procedure IR_LIST_Update updates the header list in ACR-Tree. The counter Icontain is initialized

to zero before the header-list modification starts for each newly inserted input rectangle. While updating the

header list of ACR-Tree, when a new rectangle],,,[2121 YYXXI = with frequencyf isinputted then Icontainis

updated as Icontain=Icontain+freq for each rectangle with frequency freq in theheader-list ofACR-Tree that

contains I. Now, if the rectangle I is not present in the header listIR_LISTthen],,,[2121 YYXXI = is inserted as a

node p at the end of the header-list LISTIR _ . The frequency freq and support sup of the node p is set as
ffreqp =. and containIfp +=sup.. respectively. The area of the node p is also computed and it is set as

)()(. 1212 YYXXareap −−=
. If the rectangleI is already present at a node eHin the header-list of ACR-Tree then

the frequency and support of the node He is updated as ffreqefreqe HH += .. and fee HH += sup.sup. respectively. The

supports of all other header nodes He representing rectangles that are contained in I are updated as
fee HH += sup.sup. . Now, procedure CR_LIST_Update is called for modification of the sublist in ACR -Treeif

any new node is added to the header list IR_LIST.

5.2. Sub-Lists-Update part

 As stated earlier, the procedure CR_LIST_Update updates the sub-lists in ACR-Tree. When a new

rectangle],,,[2121 YYXXI = with frequency f is added as a nodepinto the header list then the sub lists of all the

header nodes need to be updated. A node eL in the sub lists of a header node eH in ACR-Tree represenets a

rectangle
'R with support count sup. InCR_LIST_Update, all the header nodes eH and their sub lists are

traversed. The intersection of rectangle Iat node p with the rectangles present in all the header nodes except p

and their sub listsare computed and non-empty intersections are inserted into the sub listi.e. if peH  is a

header node in ACR-Tree and the rectangle R at node eH has a non empty intersection with the rectangle I at

pthen it is selected for generation of new rectangles. If R is contained in I then the travseral of the nodes in

the sub list of eH is not required because all the rectangles in the sub list of headernodeeH are also contained

by I and hence generatesno new rectangles. If rectangle R is not contained in rectangle I and has non empty

intersection thena new rectangle is generated. This newly generated rectangle is added as a new node to the

sub list of eH or I depending on whichever have the rectangle with smaller area between these two. If both the

rectangles at eH and I have same area then the new rectangle is added as a node Re to the sublist of He . The

value of count of Re is set as 2 i.e. 2. =counteR . The justification for setting of 2. =counteR is that Re is a new

rectangle formed by the intersection of two input rectangles at He and I . The support count of Re is set as zero

i.e. 0sup. =Re . Now, all the nodes in the sublist of He are traversed. If Le is a node in the sublist of He then

intersection of I is taken with the rectangle
'R at nodes Le in the sub list of He having 4 counteL for generation

of new rectangles. If this intersection generates a new closed rectangle newR then it is added as a node Ke to

the sub list of current header node He if its area of header node He is smaller or equal to the area of R i.e.

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

825

areaIareae
H

.
. Otherwise, Ke is added to the sub-list of I . Whenever such a new rectangle Ke is generated its

counter count of node eK is set to 1+= CounteCounte Lk . This is because Ke is the result of intersection of Le

and input rectangle R is the intersection of counteL  numbers of input rectangles. In sub-list modification, only

the nodes Le in the sublist of He having 4 counteL are considered for generation of new closed rectangles.

This is justified because any closed rectangle is the intersection of at most four input rectangles (from

Theorem-4 as mentioned in section 3). The supports of Ke set as 0sup. =Ke

5.3. Final-Support-Update part

Finally, the procedure FS_Update is called for the modification of the support of the nodespresentin

the sub lists. In this part, supports of the all the nodes in each sub list CR_LIST of ACR-Tree are updated by

scanning the header nodes eH’s in the header list IR_LIST of ACR-Tree. In FS_Update, for each node Le in

CR_LIST all the header-node sare visited and support of eL is updated by adding the frequency of each header

node eH in IR_LISTthat contains eL. So, support of eL is modified as freqeee HLL .supsup += for each such

header node eH. The support count of node eLisinitialized as 0sup=Le before its support computation.The

algorithm for construction of ACR_Tree is given below.

Algorithm: ACRMiner- Constructs the ACR-Tree

Input: Rectangle Database, RDB

Output: ACR-Tree containing all closed rectangles with support and frency count

Step1: for each rectangle in RDB do

Step2: Update header list IR_LIST using procedure IR_LIST_Update

Step3: Update Sub list CR_LIST using procedure CR_LIST_Update

Step4: Update final support count of all the rectangles in the sub list IR_LISTs using procedure

FS_Update

Step5: Report CostructtedACR-Tree

5.4. Example

Let us consider the following Rectangle database RDBas shown in Table 3 and construction of

ACRMiner is elaborated as shown below with diagrams.

Table 3. Rectangle database, RDB

Record No
Rectangle,

I=[X1,X2,Y1,Y2]
Frequency, f

I1 1, 8, 2, 6 1

I2 1, 4, 1, 3 1
I3 5, 8, 2, 6 1

I4 2, 7, 7, 9 1

I5 5, 8, 2, 6 2

For the input rectangle I=[1, 8, 2, 6] with frequency f=1, first IR_LIST_Update procedure is called.

Initialization of Icontain=0 is done and Icontain for Iis computed. Since, header list IR_LIST is empty and hence

Icontain=0. The frequency, support and area of node, I=[1, 8, 2, 6, 28, 1, 1] is calculated as I.freq=f,

I.sup=f+Icontain and I.area=|(X2-X1)*(Y2-Y1)|. The input rectangle I is added to the header list IR_LIST as

node, I=[1, 8, 2, 6, 28, 1, 1] (using IR_LIST_Update) where I.area=28, I.freq=1 and I.sup=1 is the area,

frequency and support of the rectangle [1, 8, 2, 6] respectively which is represented by node I. Since, it is the

only node in the header list, therefore no modification of the sub list is done. Finally, support counts of all the

nodes in sub list are updated using the procedure FS_Update. Since the sub list is empty so updation process

ends. Figure 8, shows the modified ACR-Tree after insertion ofI=[1, 8, 2, 6] with frequency f=1.

Figure 8. ACR-Tree after the insertion of I=[1, 8, 2, 6], frequency, f=1

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

826

For the input rectangle I=[1, 4, 1, 3] with frequency f=1, header nodeI=[1, 4, 1, 3] is added to the

ACR-Tree using IR_LIST_Update procedure as node I=[1,4,1,3,6,1,1] whereI.area=6,

I.freq=1+Iconatin=1+0=1 and I.sup=1 is the area, frequency and support of the rectangle [1, 8, 2, 6]

respectively which is represented by node I. Since, I is not contained by any of the recatmgles at header

niodes and hence Icontain=0. Now, the sub-list modification is processed using CR_LIST_Update procedure

following the steps as discussed above. Newly generated rectangle [1, 4, 2, 3] is added to the sub-list of the

header node [1, 4, 1, 3, 6, 1, 1] as node eR= [1, 4, 2, 3, 2, 0] where eR.count=2 and eR.sup=0 is the count and

support of the rectangle [1, 4, 2, 3] respectively which is represented by node eR. Finally, support counts of

all the nodes in sub list are updated using the procedure FS_Update. There is one such node eR= [1, 4, 2, 3, 2,

0] is present in the list. The support of this node is the sum of the frequencies of all the nodes that contains it.

Hence, its support is set as eR.sup=1+1=2. Figure 9, shows the modified ACR-Tree after insertion of I=[1, 4,

1, 3] with frequencyf=1.

Figure 9. ACR-Tree after the insertion of I=[1, 4, 1, 3], frequency, f=1

Following the same procedure records I3 and I4 is inserted to the ACR-Tree and the tree is updated

accordingly. Figure 10 and Figure 11 shows the updated ACR-Tree.

Figure 10. ACR-Tree after the insertion I=[5,8,2,6] with frequency, f=1

Figure 11. ACR-Tree after the insertion I=[2,7,7,9] with frequency, f=1

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

827

For the input rectangle I=[5, 8, 2, 6] with frequency f=2, the ACR-Tree is updated using the using

IR_LIST_Update procedure. Since, therectangle [5, 8, 2, 6] is already present in the header list as node I=[5,

8, 2, 6, 12, 1, 2]. So, Icontain count is ignored. Only the frequency and support of the header node representing

the rectangle [5, 8, 2, 6] needs to updated. So, frequency and support of this header node are set as

I.freq=I.freq+f=1+2=3 and I.sup=I.sup+f=2+2=4. Now, procedure FS_Updateis called forthe

modifications of support coutnts of nodes in the sub lists CR_LIST.The final modified tree is as shown in

Figure 12.

Figure 12. ACR-Tree after the insertion I=[5,8,2,6] with frequency, f=2

The output of ACR-Mineralgorithm gives all closed rectangles together with their support

countsuing the datastructureACR-Tree. A total of 5 closed rectangles are found and their support counts are

also computed and they areviz.{[1,8,2,6],1}, {[1,4,1,3],1}, {[1,4,2,3],2}, {[5,8,2,6],4} and {[2,7,7,9],1} .

Now, if density threshold is considered as 2 then the resultant dense regions are: {[1,4,2,3],2}and

{[5,8,2,6],4}

6. COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHM

 In ACR-Tree, Header List IR_LIST is unsorted and new nodes are always added at the end of the

Header List. The size of the Header List is equal to the number of input rectangles. The sub lists are also

unsorted and new nodes are always added at the beginning of the lists. Linked list implementation is used for

updation of IR_LIST and CR_LIST’s in ACR-Tree. So, O(n)steps are required for header list updating for a

given input rectanglewhere n is the number of the rectangles in the input data set. The sub listCR_LISTeHof

each header node He is updated by computing the non empty intersections of the rectangles at each header

node and at the correspondingsub list with the input rectangle. Since, any closed rectangle is the intersection

of at most four input rectangles, so the maximum number of possible closed rectangles will be: nC1 +nC2 +
nC3+ nC4 = O(n4)

Each rectangle in the sub lists is the intersection of a number of input rectangles. A count value is

stored with each node in the sub lists to store this number. If this value is 4 (four) then no more intersections

are taken with that rectangle. Therefore the total number of nodes in the sub lists is O(n4). Thus the worst

case time complexity for updating of ACR-Tree for one input rectangle is (O(n) + O(n4))=O(n4). If the

dataset has n input rectangles then for inserting n input rectangles in ACR-Tree, the proposed algorithm will

require)()(* 54 nOnOn = time in worst case. Each rectangle in the sub lists is evaluated with all the nodes in the

header listIR_LISTto update its support counts. Since, there are atmostO(n4) rectangles and number of the

nodes in the header list can beatomostn, so the worst time complexity for updating of supports of nodes in

sub lists of ACR-Tree for one input rectangle is n* O(n4)=O(n5). Thus total worst case time complexity for

the complete modification of ACR-Treeis O(n5)+ O(n5)=2*O(n5)= O(n5). On average the algorithm will

however perform better than this. For most of the input rectangles the number of intersection computed will

be less. This is because if the intersection of the input rectangle with the rectangle at a header node is null

then all rectangles in the corresponding sub list will also have empty intersection and so the sub list of the

header node is not traversed. Also while adding nodes to sub lists, the header node with small rectangle size

is taken so that the probability of occurrences of such cases increases. The sizes of the sub-lists will also be

much smaller on average.

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

828

7. EXTENSION OF THE PROPOSED ALGORITHM TO HIGHER DIMENSIONAL SPACE

 The problem that has been discussed so far in the 2-dimensional space can be extended easily to 3-

dimensional space also. In 3-dimensional space the corresponding problem will be to mine closed frequent

cubes from an input dataset of cubes. A cube can be represented as C=[Ix, Iy, Iz], where Ix, Iy, Iz are one

dimensional intervals in X, Y and Z domains respectively. Frequent cubes, closed frequent cubes and maximal

frequent cubes are straight forward extensions of the corresponding concepts for intervals and rectangles. The

theorems in section 3 can be extended to higher dimensional space. A closed cube will be the intersection of

six input cubes all of which may not be distinct. Computing the intersection of two rectangles involves

computing the intersections of two pairs of intervals and for cubes it involves computing intersections of

three pairs of intervals. Thus, computing the intersections of two hyper cubes is linear in the dimension of the

underlying space. In the ACR-Treedata structure, the nodes will store cubes where each cube will be

represented by three intervals. The number of closed cubes can be at most O(n6) and so the overall

complexity will be n* O(n6) = O(n7).

8. EXPERIMENTAL EVALUATION OF PROPOSED ALGORITHM

 The proposed algorithm is implemented by developing C++ programs in Linux PC having Intel

Core i5 processor with 4 GB RAM. To validate the proposed method, the algorithm has been tested with

three real life datasets Fruit datasets, Vegetables data sets and Car datasets. The proposed method is also

tested with a number of synthetic datasets.

8.1. Results Applied on Fruit Dataset

The fruit dataset is used to test our proposed technique. This dataset is collected from

https://extension.umaine.edu/publications/4135e/. This data set contains information about suitable

temperature and humidity ranges (min-max) for 16 different fruits, which is recommended for suitable

temperature and humidity storage conditions of the fruits [26]. Temperature and humidity ranges are depicted

as X-domain and Y-domain respectively. The propsed algorithm was applied on this dataset and the result is

shown in Table 4. A total of obtained 10 closed rectangles together with their support counts for the fruit data

set.Table4 shows two closed rectangles [31, 31, 90, 90] and [32, 32, 90, 90] with support count of 13,

indicating that they are dense regions with density value 13. The dense rectangle [31,31,90,90] shows that if

the temperature and humidity values are kept fixed at 31 and 90 respectively then 13 numbers of fruits will

be preserved. Similarly same number of fruits will be preserved if temperature and humidity values are kept

fixed at 32 and 90 respectively.The other solutions such as [30, 31, 90, 95] and [31, 32, 90, 95] allow for

some variation in temperature and humidity values and larger rectangles with density values less than 13 may

be chosen for this.

Table 4. Closed Rectangles with support values generated from fruit dataset

Closed Rectangles Support Count

[30, 40, 90, 95], [31, 32, 85, 85], [29, 31, 90, 95] 1

[30, 31, 90, 95] 3

[31, 32, 90, 95] 10

[31, 32, 90, 90] 11

[32, 32, 90, 95], [31, 31, 90, 95] 12

[32, 32, 90, 90], [31, 31, 90, 90] 13

Numbers of dense closed rectangles computed by the proposed method with varying density

thresholds are shown in Table 5. Form the result it is found that there is no dense region for the density

threshold value,  =14.

Table 5. No of dense closed rectangles with varying density thresholds,  on fruit data set

Density threshold,


(min) No of Dense Closed Rectangles

2 7
4 6

8 6

10 6
12 4

14 0

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

829

8.2. Results Applied on Vegetable Dataset

The vegetable dataset is used to test our proposed technique. This dataset is also collected from

https://extension.umaine.edu/publications/4135e/. This data set contains information about suitable

temperature and humidity ranges (min-max) for 69 different vegetables, recommended for their suitable

storage [26]. Temperature and humidity ranges are depicted as X-domain and Y-domain rectangles for

evaluation of the proposed method. The proposed method generated 52 closed rectangles together with their

support counts for this data set. Numbers of dense closed rectangular regions for varying density thresholds

are shown in Table 6. Form the result, it is found that there is no dense region for the density threshold value,
 =40.

Table 6. No of dense closed rectangles with varying density thresholds,  onVegetable data set
Density threshold,  (min) No of Dense Closed

Rectangles

5 15

10 8
15 8

20 8

25 6
30 3

35 1

40 0

Out of the 52 closed rectangles there are three closed rectangles viz. {[32,32,98,100],33},

{[32,32,99,100],34} and {[32,32,98,98],38} found which are dense rectangular regions having density value

more than 30. The dense rectangle {[32,32,98,98],38} shows that if the temperature and humidity values are

kept fixed at 32 and 98 respectively then 38 numbers of vegetables will be preserved. The other two solutions

allow for some variation in temperature and humidity values, and larger rectangles with density values less

than 30 may be chosen for this.

8.3. Results Applied on Car Dataset

The car interval dataset contains 33 car samples that are described by 8 interval features and one

class level feature. The interval features are Price, EngineCapacity, TopSpeed, Acceleration, Step, Length,

Width, and Height [24][25]. The samples are divided into 4 different class levels viz. Utilitarian, Berlina,

Sporting and Luxury with 10, 8, 8 and 7 samples respectively. In this paper, two interval features

EngineCapacity and TopSpeed features together are considered to assess the effectiveness of the proposed

method where EngineCapacity represents X-interval and TopSpeed represents the Y-interval component of a

rectangle. The outcome of the proposed method with various minimum density threshold values is shown in

Table 7.

Table 7. No of dense closed rectangles with varying density thresholds, on Car data set

Density threshold,  (min) No of Dense Closed
Rectangles

1 243

2 220
3 181

4 135

5 90
6 55

7 29

8 9
9 0

The total number of closed rectangles generated is 243. The closed rectangle calculated for this

dataset represents the number of car samples that share the same engine capacity and top speed range. For

example, there are 76 such combinations of engine capacity and top speed range that are found in more than

4 car samples in the car dataset as shown in Table 7. Two such rectangular regions discovered are {[2171,

3199,226, 250],4}and {[2799, 3199,232,250],6}.

8.4. Results Applied on Synthetic Interval Dataset

The proposed method is tested on five synthetic datasets of varying sizes viz. Syndataset1,

Syndataset2,Syndataset3, Syndataset4, Syndataset5 and Syndataset6. The generation of synthetic datasets is

discussed below.

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

830

8.4.1. Generation of Synthetic Dataset

The various synthetic datasetsused in this proposed algorithm ACRMinerisgenerated by using a

synthetic data generator to generate the synthetic rectangle dataset. The input to the data generator is the

number of transactions of rectangles (n) , frequency of rectangle trnsaction (f), maximum value of the left

end point of the interval in x-domain (
xlmax), maximum span of the intervals in x-domain (xspan), maximum

value of the low end points of the intervals in y-domain (
y

lmax) and maximum span of the interval in y-

domain (yspan
). The span of an interval denotes the difference between thetwo points in a domain.In this

synthetic data generator, a random number generator is used. This random number generator generates values

for the left end poinst in the x-domain from 1 and
xlmax . The span values generated for these

intervalsarewhithin 1 to xspan . Similarly it generates values for low end points in the y-domain between 1 to
y

lmax and the span of the interval between 1 and yspan
. The synthetic datasets used in the porposed method are

generated with 200max =
xl , 100=xspan ,

200max =
y

l
,

100=yspan
and 1=f .

This synthetic data generator uses a random number generator which gererates values for the left to

generate the rectangle data set.

8.4.2. Results on Various Synthetic Dataset

The proposed method is applied to above five synthetic datasets. The number of closed rectangles

computed and the time of execution of this method on these datasets are shown in Table 8.

Table 8. No of closed rectangles generated by the proposed method on various synthetic datasets
Dataset Name Size of the Dataset No of Closed Rectangles

Generated

Execution Time

Syndataset1 1000 2624112 4.1767
Syndataset2 2000 4911136 14.247

Syndataset3 4000 14640928 62.318

Syndataset4 6000 19181947 141.2157
Syndataset5 8000 23687357 239.3524

Syndataset6 10000 25981481 351.8229

Figure 13, plots a graph of the proposed method's execution time versus dataset size. This

demonstrates how the execution time of the proposed ACRMiner algorithm increases as the size of the input

data increases.

Figure 13. Time requirement of the proposed algorithm for varying size of synthetic dataset

8.4.3. Results of Varying Density Values on Synthetic Datasets

Because the density threshold value is crucial in deciding whether a region is dense or not, the

proposed method is tested on various synthetic datasets to see how the output varies. To examine this

variation, the synthetic datasets with the smallest and largest number of records, Syndataset1 and

Syndataset6, were used. The results of these experiments are shown in Table 9.

The results in Table 9, shows that the number of dense closed rectangles decreases as the density

threshold increases, which is obvious.

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

831

Table 9. Result on synthetic dataset for different density thresold,  (min)
Dataset Name Size of the Dataset Density Threshold, 

(min)

No of Closed Rectangles

Generated

 10 2603476

Syndataset1 1000

20 2438929

40 1476241
60 397245

80 40770

100 57
120 0

Syndataset6 10000

100 25564221
200 23398811

400 12888840

600 1848229
800 294230

1000 794

1200 0

The results in Table 9, shows that the number of dense closed rectangles decreases as the density

threshold increases, which is obvious.

9. APPLICATIONS OF THE PROPOSE METHOD

The proposed method has application in a wide range of real-world problems. Some of the fields in

which this method is useful are discussed in this section.

(1) Meteorology: Meteorology is the study of the atmospheric phenomena and the effects of weather on the

atmosphere. There are various important factors such as rainfall, temperature, humidity, air quality, day

time (sunrise and sunset time) etc. If two important parameters such as temperature (max and min) and

day time (sunrise and sunset time) are selected for a particular location and period then it willreperesent

a rectangular space. If the tempatureand day time parameters are recorded for a number of days

thenthere may be many overlapping rectangular regions available within the represented space. The

algorithm proposed in this paper can be used to compute the density or suppor counts of these

overlapping regions.From the density or support values of such regions one can find out suitable

information about temperature and day time available on the majority of days for that location.This

information may help tourists decide on the best time to visit this location.

(2) Healthcare: In healthcare, factors like blood sugar level, hemoglobin etc. contains crucial information

about the helath condition of a patitient. For example, by considering factors like blood sugar level

(lowest level and highest level) and hemoglobin count (max and min count) for patients suffering from

diabetic, our proposed algorithm will provide information about blood sugar level and hemoglobin

count common in most diabetic patients which may be useful for their effective treatments.

(3) VLSI Design: In VLSI design, placement of rectangular modules on a plane within a rectangle of

minimum area without overlap is a crucial stage. The background of this process is the rectangle

packing problem. The algorithm proposed in this paper can be used to find out the maximal overlapping

regions of rectangles which will make VLSI design process faster.

(4) Automatic Label Placement on Maps: In cartography, label placement is a critical task in map

production that requires a significant amount of manual work and time. Label placement is critical since

it involves placing of labels in such a way that no two labelled map regions overlap. Too densely

labelled maps are difficult to study and visualize. Finding the optimal placement of labels is expensive

and the underlying problem is NP-Hard. In most algorithms the labels are placed initially by some

procedure and after that the placements are improved by reducing the overlapping. The sizes of the

labels may also be reduced. The algorithm proposed in this paper can be used in the initial placement of

labels by extracting the overlapping rectangles. It can also be used to calculate the quality of a

placement by calculating the total overlapping area.

(5) Heatmap visualization: Heatmap is a density-based data visualization technique used in big data visual

analytics [30]. In the study of natural events such as storms, hurricanes, earthquakes etc., the affected

areas are represented using bounding boxes or rectangles. Intensity values are calculated by the number

of rectangles intersecting at a place. In such cases heatmaps are drawn to pictorially demonstrate the

intensity of the event or magnitude of the phenomenon by using different colors i.e. different colors

represent different intensity or magnitude values. Dark colors are usually used to represent high

intensity values. Again, in many applications, the regions of interest are represented or approximated by

rectangles. Different users have different regions of interest and then overlapping regions will indicate

the regions that are of interest to many users. The algorithm proposed in this paper can be used for such

  ISSN: 2089-3272

IJEEI, Vol. 11, No. 3, September 2023: 815 – 833

832

applications. Closed rectangles with high support values can be assigned dark colors. In other words,

the darkness can be made proportional to the support values of the closed rectangles.

(6) In Aquaculture Industry: Water quality parameters that are commonly monitored in the aquaculture

industry farming aquatic organisms include temperature, dissolved oxygen, pH, alkalinity, ammonia,

and nitrites. Each organism has a range for these parameters which is conducive to their survival. If two

important parameters are selected then the conductive ranges for the organisms are nothing but

rectangles. If two rectangles corresponding to two organisms overlaps then the overlapping area will

indicate the ranges of the parameters which are conductive for both the organisms. The algorithm

proposed in this paper can be used for such applications. Closed rectangles with high support values

will indicate ranges suitable for large number of organisms to survive.

10. CONCLUSION AND FUTURE WORK

In this paper we have proposed an incremental algorithm named as ACRMiner for computing all

closed rectangles together with their support counts in a rectangle database and then based on a user defined

threshold all the 2D closed regions are classified either as dense or sparse regions. The algorithm is

incremental by nature and hence is applicable to dynamic data sets. The algorithm may generate duplicate

closed rectangles and hence more space is needed. In case of duplicate closed rectangles, the rectangle with

highest support will be considered. The proposed algorithm can correctly generate all closed rectangles

together with their support counts from the given input dataset of rectangles using a tree like data structure

called as ACR-Tree. The correctness of the algorithm follows from the theorems that have been proved. The

effectiveness of the proposed algorithm is verified by testing on real-life datasets and synthetic data sets as

well. Future work includes attempt to design a procedure so that generation of duplicates could be avoided.

Future work also includes looking for methods to improve the performance of the proposed algorithm by

using other suitable data structures.

REFERENCES
[1] A. E. Dangananand, A. M. Sison, “An Improved Overlapping Clustering Algorithm to Detect Outlier”, Indonesian

Journal of Electrical Engineering and Informatics, vol. 6, no. 4, pp.401-409, 2018.

[2] U. Beyaztas, H. L. Shangand and Abdel-Salam G. Abdel-Salam, “Functional linear models for interval-valued

data”, Communications in Statistics-Simulation and Computation, vol. 51, no. 7, pp.3513-3532, 2020.

[3] A. Workman and J. J. Song, “Spatial analysis for interval-valued data”, Journal of Applied Statistics, August 2023.

(DOI: 10.1080/02664763.2023.2249636)

[4] R. Mavlyutovand and P. Cudre-Mauroux, “Managing Big Interval Data with CINTIA: the Checkpoint INTerval

Array”, IEEE Transactions on Big Data, vol. 7, no. 2, pp.285-298, June 2021.

[5] M. Izadikhah, R Roostaee and A. Emrouznejad, “Fuzzy Data Envelopment Analysis with Ordinal and Interval

Data”, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, vol. 29, no. 3, pp.385-410,

June 2021.

[6] N. Sarma, “Study and Design of Algorithms for Certain Problems in Interval Data Mining”. Doctoral Thesis.

Department of Computer Science, Gauhati University, 2017.

[7] J. F. Allen, “Maintaining knowledge about temporal intervals”, Communications of the ACM, vol. 26, no. 11,

pp.832-843, 1983.

[8] N. J. Sarmah and A. K. Mahanta, “An efficient algorithm for mining closed frequent intervals”, International

Journal of Knowledge Engineering and Data Mining, vol. 5, no. 3, pp.222-240, 2018.

[9] A. K. Mahanta and M. Dutta, “Mining closed frequent intervals from interval data”, International. Journal of

Applied Science and Advance Technology, vol. 1, no. 1, pp.1-3, 2012.

[10] P. Papapetrou, G. Kollios, S. Sclaroff and D. Gunopulos, “Discovering frequent arrangements of temporal

intervals”, in Fifth IEEE International Conference on Data Mining, 2005. ICDM'05, pp. 354-361.

[11] D. Laskar, N. Sarmah and A.K. Mahanta, “SCI-Tree: An Incremental Algorithm for Computing Support Counts of

all Closed Intervals from an Interval Dataset”, International Journal of Innovative Technology and Exploring

Engineering (IJITEE), vol. 8 no. 9, pp. 233-242, 2019.

[12] I. Hazarika and A. K. Mahanta, “An Incremental Algorithm for Mining Closed Frequent Intervals”, In Advanced

Computational and Communication Paradigms, Springer, Singapore, pp. 63-73, 2018.

[13] N. J. Sarmah and A. K. Mahanta 2014, February. “An incremental approach for mining all closed intervals from an

interval database”, inIEEE International Advance Computing Conference, 2014. IACC’05, pp. 529-532.

[14] M. Dutta, M. Dutta and A. K. Mahanta, “Mining closed intervals in an interval database: An incremental method”,

in IEEE International Conference on Electrical, Computer and Communication Technologies, 2015. (ICECCT-

2015) pp. 1-5.

[15] I. Hazarika, “Study and Development of Data Mining Techniques for Classical and Symbolic Data”. Doctoral

Thesis. Department of Computer Science, Gauhati Univesity.,2018.

IJEEI ISSN: 2089-3272 

ACRMiner: An Incremental Approach for Finding Dense and Sparse Rectangular… (Dwipen Laskar et al)

833

[16] J. Lin, “Mining Maximal Frequent Intervals”. 2003 Proceedings of ACM symposium on Applied Computing, 2003.,

pp. 426–431.

[17] D. I. Mazumdar, D.K. Bhattacharyya and M. Dutta, “Mining Minimal Infrequent Intervals”, Journal of Computer

Science and Engineering, vol. 179, no. 35, pp. 26-30, 2018.

[18] J. Edmonds, J. Gryz, D. Liang and R. J. Miller, “Mining for empty rectangles in large data sets”. Proceedings of the

8th International Conference on Database Theory, United Kingdom (London), 2001., pp. 157-160.

[19] J. Edmonds, J. Gryz, D. Liang and R. J. Miller, “Mining for empty rectangles in large data sets”, Theoretical

Computer Science,. Vol. 296(3), pp. 435-452, 2003.

[20] L. P. Ku, B. Liu and W. Hsu, “Discovering large empty maximal hyper-rectangle in multi-dimensional space”.

National University of Singapore, Department of Information Systems and Computer Science, 1997.

[21] B. Liu, B., L.P. Ku and W. Hsu, W. “Discovering interesting holes in data”, Proceedings of Fifteenth International

Joint Conference on Artificial Intelligence (IJCAI), 1997. vol. 2, pp. 930–935.

[22] J. Lemley, F. Jagodzinski and R. Andonie, “Big holes in big data: A monte carlo algorithm for detecting large

hyper-rectangles in high dimensional data”. 2016, IEEE 40th annual computer software and applications

conference (COMPSAC), vol. 1, pp. 563-571, June 2016.

[23] A. Datta and S. Soundaralakshmi, “An efficient algorithm for computing the maximum empty rectangle in three

dimensions”, Information Sciences, vol. 128 issue. (1-2), pp.43-65, 2000.

[24] HEDJAZI Lyamine. Accessed: Jun. 2019. [Online]. Available: http://lhedjazi.jimdo.com/useful-links

[25] F.D.A. De Carvalho, R. M. De Souza, M. Chavent and Y. Lechevallier, “Adaptive Hausdorff distances and

dynamic clustering of symbolic interval data”, Pattern Recognition Letters, vol. 27, no. 3, pp.167-179., 2006.

[26] https://extension.umaine.edu/publications/f wpcontent/uploads/sites/52/2015/04/4135.pdf

[27] N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, “Discovering frequent closed itemsets for association rules”. In

International Conference on Database Theory, 1999.pp. 398-416.

[28] I. Hazarika and A. K. Mahanta, “Mining maximal frequent rectangles”. Advances in Data Analysis and

Classification, vol. 16, issue 3, No. 5, pp. 593-616, 2022.

[29] J. Backer and J. M. Keil, “The bichromatic rectangle problem in high dimensions”, in 21st Canadian Conference on

Computational Geometry, 2009. pp. 157–160.

[30] N E. Costa and T. Pechlivanoglou and M. Papageliset, “OL-HeatMap: Effective Density Visualization of Multiple

Overlapping Rectangles”, Big Data Research, vol. 25, article 100235, 2021, pp. 1-12.

[31] M. Bozorgi et al. “A Time-Efficient and Exploratory Algorithm for the Rectangle Packing Problem”, Intelligent

Automation and Soft Computing, vol. 31, no. 2, pp.885-898, 2022.

[32] A. Bedboudi, C. Bouras and Mohmed T. Kimour, “A Heterogeneous Population-Based Genetic Algorithm for Data

Clustering”, Indonesian Journal of Electrical Engineering and Informatics, vol. 5, no.3, pp.275-284, 2017.

BIOGRAPHY OF AUTHORS

DwipenLaskar, is a PhD scholar in the department of Computer Science, Gauhati University.

He completed B.Sc. degree in 2002 from Gauhati University in Assam. He obtained the degree

of M.Sc. in Computer Science from Gauhati University in 2005. In 2008, he completed his

M.Tech. in information technology at Tezpur University in Assam.

Presently he is also working as an Assistant Professor in the Department of Computer Science in

the Gauhati University since 2015. He also worked as an Assistant Professor in GIMT, Assam

(Presently known as GirijanadaChowdhury University) from 2008 to 2015. His area of interest

in research includes Data Mining, Machine Learning and Interval Data Mining and Pattern

Recognition.

AnjanaKakotiMahanta, is presently working as Professor in department of Computer Science,

Gauhati University. She obtained PhD in Computer Science in 1990. She visited the University

of Warsaw for three months in 2007 as part of a bilateral exchange programme between the

Polish Academy of Sciences and the Indian National Science Academy (INSA), where she

worked on research projects with faculty members from the department of computer science.

Her current area of research includes Algorithms and Data Mining. In her

36 years of teaching experience, she has guided and awarded 13 scholars. She had more than 73

research publications in various international, national journals and conferences.

