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 In many applications, transactions are associated with intervalsrelated to 

time, temperature, humidity, or other similar measures.  The term "2D 

interval data" or "rectangle data" is used when there are two connected 

intervals with each transaction. Two connected intervals give rise to a 

rectangle. The rectangles may overlap producing regions with different 

density values. The density value or support of a region is the number of 

rectangles that contain it. A region is closed if its density is strictly bigger 

than any region properly containing it. For rectangle dataset, these regions 

are rectangular in shape. In this paper an algorithm named ACRMinerhas 

been proposed that takes as input a sequence of rectangles and computes all 

closed overlapping rectangles and their density values. The algorithm is 

incremental and thusis suitable for dynamic environment. Depending on an 

input threshold the regions can be classified as dense and sparse. Here a tree-

based data structure named as ACR-Treeis used. The method has been 

implemented and tested on synthetic and real-life datasets and results have 

been reported. Fewapplications of this algorithm have been discussed. The 

worst-case time complexity the algorithmis O(n5) where n is the number of 

input rectangles. 

Keyword: 

Dense Regions 

Sparse Regions 

Closed Rectangles 

Interval Data Mining 

Support Counts 

Copyright © 2023 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

DwipenLaskar,  

Department of Computer Science, 

Gauhati University, 

Jalukbari, Guwahati, Assam, India 

Email: laskardwipen@gauhati.ac.in 

 

 

1. INTRODUCTION 

Data mining is the process of extracting and discovering unknown, hidden patterns from 

data[1][32]. Various data mining techniques include clustering, classificarion and association rule mining etc. 

In data mining, transactions may be event related data in real world and are associated with intervals in both 

continuous and discrete domains such as intervals of distance, time, blood pressure, etc[2][3]. An interval has 

start and end values associated with it[4][5][6][7][8].  Interval data mining is a data mining approach that 

extracts hidden information, patterns, and association rules [27] from interval data sets. In an interval dataset 

there may be many intervals which overlap. This overlapping interval information help users to group 

transactions based on a certain similarity measure. The total number of overlapping intervals is called the 

support of the overlapped region of these intervals. The idea of closed interval [9] is an extension of the 

concept of closed item-set [10]. The support of a closed interval is strictly more than the support of any 

interval properly containing it. For an interval dataset the closed intervals are actually the non-empty 

intersections of intervals in the dataset [11]. This is because if the intersection of two (or more) intervals is 

extended in either direction then its support decreases. Hence the support of any interval properly containing 

it will be less than the support of it. Let us consider a data set with two intervals I1=[4, 7] andI2=[5, 8] as 

shown in Figure 1. The overlapping (intersection) of these two intervals is the interval I3=[5, 7]. The interval 
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I3 has support value 2 as it is contained in both the intervalsI1 and I2. The interval I3=[5, 7] is closed because 

if we extend it in any direction one of the intervals I1 and I2 will not contain it. 

 

 
Figure 1. Intervals I1=[ 4, 7] and I2=[ 5 , 8 ] with overlapping interval I3=[ 5, 7] with support 2 

 

 

Numerous techniques have already been proposed for one dimensional (1D) interval data set, 

including mining closed intervals [6][8][9][12][13][14], closed frequent intervals [6][8][9][11][12][15], 

maximal frequent intervals [6][9][15][16] and Minimal Infrequent Intervals[17]. However, there are many 

real-world problems in which objects are associated with two intervals and can be represented as rectangles 

in 2D space as shown in Figure 2.  

 

 
Figure 2. Rectangle R with intervals Ix=[X1,X2]and Iy=[Y1,Y2] 

 

 

Here Ix=[X1,X2] andIy=[Y1,Y2] are intervals in X-domain and Y-domain respectively, and R is the 

corresponding rectangle. The rectangle R is generally represented as [X1, X2, Y1, Y2].  Any point P(x,y) in 

this rectancle will have x ∈ Ix  and y ∈Iy. A set of such rectangles is called rectangle data set [6][15]. Finding 

dense and sparse region from these rectangle datasets is also important for the users. For example, in food 

storage control system, temperature and humidity are two important environmental factors to preserve the 

food products. The system can record the temperature interval i.e. minimum and maximum temperature and 

also the humidity range i.e. the minimum and maximum humidity level for each of the food products that are 

required to preserve them efficiently. Both the environmental factors temperature and humidity can be 

visualized as a rectangle in two dimensional spaces as show in Figure 3, for the set of rectangle data given in 

Table 1.  

 

Table 1. Temperature and Humidity of fruits 
Fruit name Temperature (0F) 

[max, min] 
Humidity (%) 

[max, min] 

Papaya [10, 17] [40, 75] 

Orange [14, 19] [35, 45] 

Pineapple [12, 21] [35, 65] 

Mango [16, 20] [60, 85] 

 

 

Now, if we extract closed rectangles from this set of rectangles that is represented by temperatures 

and humidity ranges, then it is possible to find out the dominant temperature and humidity intervals that can 

be applied to preserve the maximum or desired number of food products. Thus, these dominant rectangular 

areas are dense regions with different density values. In Figure 3, there are 4 fruits Papaya, Orange, 
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Pineapple and Mango and their respective temperature and humidity factors are as shown in Table 1.  The 

area filled with Red and Green are dense regions with support value 3 because they are the result of 

overlapping of three rectangles given in Table 1. There may be multiple number of dense regions for a given 

minimum threshold value of density.  The red coloured area represents the rectangle R1=[16,17,60,65]  which 

is the intersection of 3 rectangles and so its support value is 3. Similarly R2=[14,17,40,55] is also a rectangle 

with support 3. 

 

 
Figure 3. Dense Regions R1 and R2for temperature and humidity factors of the fruits as given in Table 1 

 

 

Various rectangle data mining approaches such as mining maximal empty rectangles 

[18][19[20][22][23], mining holes in large datasets[21][22] and rectangle packing problems [31] have been 

proposed for multidimensional data. But all these approaches are not directly based on interval data. 

Only a few algorithms have been proposed for mining 2D interval data truly based on interval 

information of underlying data. Mining closed frequent rectangles [6][8] and maximal frequent rectangles 

[15] are available to extract frequent relevant information from two dimensional interval data. Although, 

closed frequent rectangles are computed in [6][8][15] they cannot compute all closed rectangles that are 

present in the dataset. These proposed methods require the threshold value before they can be computed. 

They compute all closed frequent rectangles or maximal frequent rectangles based on this prior information 

of threshold. For a new threshold value, the entire process must be recompiled. Also, the methods mentioned 

above needs data to be preprocessed and are not incremental. 

In this paper we propose an incremental algorithm named as ACRMiner for finding all closed 

rectangles and their support counts from rectangle datasets and then classify the region as dense and sparse 

based on any user defined threshold.The proposed algorithm uses a data structure named as ACR-Tree for 

storing all closed rectangles and their respective support counts present in the dataset. Whenever a new 

rectangle is inputted, the algorithm updates the ACR-Tree to generate the new closed rectangles along with 

their support counts without visiting the dataset. All the closed rectangles along with their support counts can 

be generated with a single pass of the dataset. All the frequent closed rectangles can also be computed for any 

user given minimum support with a single scan of ACR-Tree. Finally, based on a minimum density threshold, 

the regions as classified as dense and sparse regions. In section 3. a number of properties of closed rectangles 

and dense regions are stated and proved in the form of theorems. These results are used in the algorithm 

proposed in this paper.  

This paper is organized into nine sections. Section 2 discusses literature reviews on related works to 

the problem at hand. In Section 3, some basic definitions related to mining dense region based on closed 

rectangle problem are given. In Section 4, a detail about ACR-Ttee data structure is discussed. The 

construction of the ACR-Tree and the proposed algorithm is explained in Section 5. Section 6, discusses the 

complexity analysis of the proposed algorithm. In section 7, the extension of proposed method to higher 

dimensional space is discussed. The experimental results are given in section 8. Section 9 discusses some 
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practical applications of the proposed method. The conclusion and scope of the future work is presented in 

section 10. 

 

2. LITERATURE REVIEW 

Following are some of the research works found in interval data mining.  

J. F. Allen [7] published the first work in the field of interval data, in which the author defined 13 

possible relationships between two intervals and proposed a method for mining knowledge from temporal 

intervals. The 13 possible relations are: equal,starts, startedby, before, after, finishes, finishedby, overlaps, 

overlapped by, during, contains, meets, and metby. 

P. Papapetrou et al [10] proposed an enumeration tree-based method for mining frequent interval 

arrangements based on J.F. Allen's 13 possible relationships among the intervals. Their proposed method, 

known as the A-Close algorithm, finds frequent interval item-sets. 

N. Sarmah[8] proposed an algorithm for mining closed frequent intervals from an interval 

dataset.The proposed algorithm proposed mines the closed frequent intervals directly from interval datasets. 

N. J. Sarmah and A.K. Mahanta [6] proposed an algorithm for mining closed frequent rectangles by 

scanning the rectangles dataset once. The algorithm needs data to be pre-processed and stored in an array. 

From the pre-processed dataset, the algorithm computes the closed frequent rectangles for a user defined 

threshold using data structures called CII, CIO, HR and CR. 

I. Hazarika and A. K. Mahanta [28] proposed an algorithm to mine maximal frequent rectangles 

from a rectangle dataset using a data structure called IR-tree. The proposed algorithm is a combination of 

four algorithms named as Algorithm-A, Algorithm-B, Algorithm-C and Algorithm-D. Algorithm-A 

constructs IR-Tree for X-intervals (denoted as IRx-tree) and Y-intervals (denoted as IRy-tree) for a rectangle 

dataset with two domains X and Y. Algorithm-B extracts all Y-intervals with frequency (denoted as YList) 

associated with an input interval I from X-domain by traversing the IRx tree. Similarly, XListcan also be 

constructed by traversing the IRy tree. Finally, Algorithm-C or Algorithm-D can be used to mine maximal 

frequent rectangles (MFRS) from the rectangle dataset. 

Laskar et al. [11] proposed an incremental algorithm using a data structure called SCI-Tree to mine 

all closed intervals together with their support counts form an interval dataset. The SCI-Tree data structure is 

the modification of CI-Tree [2] data structure that not only stores the support counts of the all closed intervals 

but also keep a distinction between input closed intervals and generated closed intervals.  

Edmonds et al. [18][19] proposed a time efficient algorithm which can find all maximal empty rectangles in 

large and multidimensional space with a single scan of the data sets. The algorithm needs the data to be 

preprocessed and sorted. 

Liu et al. [20] proposed the first algorithm to identify the maximal empty rectangle (hyper-

rectangles) in a k-dimensional continuous space.The proposed approach discovers the set of all possible 

maximal empty hyper-rectangles (MHR) from a given set of points in k dimesional space and has at least a 

point bounding each of its surfaces. 

Liu B et al. [21] proposed algorithm for finding interesting holes in a large database. The hole is 

simply a region in the space that contains no data point. 

Lemley et al. [22] presented a polynomial time algorithm based on Monte Carlo approach for finding largest 

empty holes (large hyper-rectangles) in high dimensional data where the dimensionality and input size make 

it challenging to analyse the data. 

A. Duttaand S. Soundaralaksmi[23] developed a time and space efficient algorithm for finding 

maximal empty hyper rectangles (MEHR) within a bounding hyper rectangle (BHR)in three dimensional 

spaces. 

J. Backer and J. M. Keil [29] proposed the bichromatic rectangle problem for finding the 

largestaxis-aligned hyperrectangle in d-dimensional space that has only blue points and no red points. All the 

relevant hyper-rectangles are also ranked by this proposed algorithm. 

N E.Costa et al. [30] proposed a fast heat-map visualization algorithm called as OL-HeatMap to vizualize 

density of overlapping of several 2D axis aligned bounding boxes called as rectangles based on sweep-line 

paradigm.  

From the literature review it has been observed that although many methods have been proposed but 

they basically focus on finding closed frequent intervals, closed frequent rectanglesand  empty rectangles. 

Based on the type of input data, concept of density measuse etc.used, various featues have been identified 

viz. type of input data, density measuring approach, computation of support count, Incremental method 

(yes/no) and outcomeof the method andacomparative analysis of similarmethods is summarized in Table 2 to 

highlight the gap between these methods and our proposed work. 
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Table 2. Comparative Analysis of various proposed methods 

Literature 
Type of input 

data 

Density 

Measuring 

approach 

Computation of 
Support Count 

Incremental 
(Y/N) 

Outcome of the 
method 

Sarmah and Mahanta [8] Interval 
Overlapping of 

intervals 

It computes support 

counts only for the 

frequent intervals 

No 
Closed frequent 

intervals 

Sarmah and Mahanta [6] Interval 
Overlapping of 

Rectangles 

It computes support 

counts of all closed 

frequent rectangles 

No 
Closed frequent 

rectangles 

Hazarika and Mahanta [28] Interval 
Overlapping of 

Rectangles 

It computes support 

counts of maximal 

frequent rectangles 
by finding all 

closed frequent 

intervals 

 

No 
Maximal frequent 

rectangles 

Edmonds et al. [18][19] Point 
Not required 

 

empty regions are 

extracted 
No 

Maximal empty 

rectangles 

Liu et al. [20][21] Point 
Not required 

 

empty maximal 

hyper rectangles 

are extracted 

Yes 

All large emptyl 

Hyper-Rectangles 

(MHR) 

Lemley et al. [22] Point Not required 
big empty holes are 

extracted 
No 

Largest empty 

rectangles 

A. Dutta and S. 

Soundaralaksmi [23] 
Point Not required 

maximum empty 
rectangles are 

extracted 

 
 

No 

Maximum empty 
hyper rectangles 

(MEHR) 

N E.Costa et al. [30] Interval 
Overlapping of 

Rectangles 

Computes support 
counts of all 

overlapping 

rectangles 

No 

HeatMap 
Visualization of 

Overlapping 

Rectangles 

Our Proposed Method Interval 
Overlapping of 

Rectangles 

Computes support 

counts of all closed 

rectangles 

Yes 
Dense and Sprase 

Rectangular Regions 

 

 

3. PROBLEM DEFINITION 

The problem is to find dense and sparse regions w.r.t. a threshold value in a given rectangle 

databaseRDB. The concept of closed rectangle is used in the process. Various terms, definitions and theorems 

will be used in the problem under consideration. 

 

3.1. Terms and Definitions used 

Following terms and definitions will be used in the proposed problem of finding sense and sparse 

regions. 

Rectangle: A rectangle R is defined by two intervals ],[ 21 XXI x = and
],[ 21 YYI y =
where xI and yI

 are 

intervals in totally ordered domains X and Y respectively (as shown in Figure 2). If p=(x, y) is a point in the 

rectangle R then yx IIp 
 where, ( )21 XxX  and ( )21 YyY  . Such a rectangle R can be uniquely identified by 

the 4-tuple ],,,[ 2121 YYXX and any such 4-tuple will uniquely identify a rectangle, i.e. ],,,[ 2121 YYXXR = .  

Rectangle Dataset: Let },....,,,{ 321 nrrrrRDB = be a rectangle dataset consisting of set of records, where 

each recordristores a 5-tuple 
],,,,[

2121
fYYXX iiii

 which denotes a rectangle 
],,,[

2121
iiiii YYXXR =

 with frequency f in 

2D space. 

Containment of Rectangles: A rectangle ],,,[ 2121 YYXXR = is said to be contained in another rectangle

],,,[ '
2

'
1

'
2

'
1

' YYXXR = , denoted by
'RR  iff ],[],[ '

2
'
121 XXXX  and ],[],[ '

2
'

121 YYYY  . An interval [a, b] contains an interval 

[c, d], denoted as ],[],[ badc  iff bdca  . So, containment of rectangles R and 
'R i.e. 

'RR  can be defined as 

)( '
221

'
1 XXXX  and )( '

221
'

1 YYYY  . 

Proper Containment of Rectangles: A rectangleRis said to be properly contained in another 

rectangle
'R denoted by

'RR  iff ( ],[],([ '
2

'
121 XXXX  and ])),[],[ '

2
'

121 YYYY  or )],[],(([ '
2

'
121 XXXX  and ])),[],[ '

2
'

121 YYYY  . 

An interval [a, b] properly contains an interval [c, d], denoted as ],[],[ badc  iff )( bdca  or )( bdca  or

)( bdca  . So, if
'RR  then )(( '

221
'
1 XXXX  and ))(( '

221
'

1 YYYY  or  )(( '
221

'
1 XXXX  and ))(( '

221
'

1 YYYY  or 

)(( '
221

'
1 XXXX  and ))(( '

221
'

1 YYYY  or )(( '
221

'
1 XXXX  and ))(( '

221
'

1 YYYY   
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Support of a Rectangle: Given a rectangle dataset RDB , supports of a rectangle ],,,[ 2121 YYXXR = is 

the sum of the frequency values of the rectangles in RDB that contains R . 

Closed Rectangles: A rectangle R is said to be closed if the support of any rectangle
'R properly 

containing R is less than the support of R i.e. if
'RR  and if 1s and 2s are supports of R and

'R respectively then

12 ss  . 

Intersection of Intervals: An interval ],[ 21 XXI x =  is said to intersect interval ],[ '
2

'
1

' XXIx = if the 

intersection )( '
xx II  is non-empty i.e. )( '

22
'
11 XXXX  or )( 2

'
2

'
11 XXXX  or )( 2

'
21

'
1 XXXX  or

)( '
221

'
1 XXXX  . The intersection of two intervals ],[ 21 XXI x = and ],[ '

2
'
1

' XXIx = is an interval
],[

21
rrr

x XXI =
 

denoted as )( '
xx

r
x III =   where intersection is defined in the usual way defined for sets. 

Intersection of Rectangles: A rectangle ],,,[ 2121 YYXXR = is said to be intersect rectangle

],,,[ '
2

'
1

'
2

'
1

' YYXXR = if the intersection )( 'RRRr = is non-empty. This will hold iff ]),[],([ '
2

'
121 XXXX  and 

]),[],([ '
2

'
121 YYYY   are both non-empty. The result of )( 'RR   is a rectangle 

],,,[
2121
rrrrr YYXXR =

where 

]),[],([],[ '
2

'
12121

XXXXXX rr =
and 

]),[],([],[ '
2

'
12121

YYYYYY rr =
. 

Equality of Rectangles: Two rectangles ],,,[ 2121 YYXXR =  and ],,,[ '
2

'
1

'
2

'
1

' YYXXR = are said to be equal 

denoted as
'RR = iff

'
11 XX = , 

'
22 XX = , 

'
11 YY = and 

'
22 YY = . 

Density value of a region: The density value or support of a region is the number of input 

rectangles that contain it. 

Dense and Sparse Regions: A region R is called dense if its support is greater than any user 

defined minimum support threshold  . A region which is not dense is termed as sparse. 

Maximal Dense Region: A dense region is said to be maximal if it is not properly contained in any 

dense region. 

 

3.2. Theorems used in the Proposed Method  

The following two theorems of closed rectangles that were proved in [6] will be used in designing 

our proposed algorithm and for the sake of completeness these have been stated below. 

 

Theorem A.  If ],,,[ 2121 YYXX  is a closed rectangle then 

(i) There is an input rectangle with X1 as its left end value containing ],,,[ 2121 YYXX  . 

(ii) There is an input rectangle with X2 as its right end value containing ],,,[ 2121 YYXX  . 

(iii) There is an input rectangle with Y1 as its lower end value containing ],,,[ 2121 YYXX . 

(iv) There is an input rectangle with Y2 as its upper end value containing ],,,[ 2121 YYXX . 

 

Proof: Proof of Theorem-A is given in [6]. 

Theorem B.  A rectangle ],,,[ 2121 YYXX  is closed if all of the following are satisfied: 

(i) X1 is the left end value of an input rectangle say R, part(X1) ≥ X2 and the Y-interval of input rectangle 

R contains [Y1, Y2]. 

(ii) X2 is the right end value of an input rectangle say R’, part(X2) ≤ X1 and the Y-interval of input 

rectangle R’ contains [Y1, Y2]. 

(iii) Y1 is the lower end value of an input rectangle, part(Y1) ≥ Y2 and the X-interval of the input rectangle 

contains [X1, X2]. 

(iv) Y2 is the upper end value of an input rectangle, part (Y2) ≤ Y1 and the X-interval of the input rectangle 

contains [X1, X2]. 

 

Proof: Proof of theorem-B is given in [6]. 

In addition to above theorems we have proposed following theorems that will be used in our work.  

Theorem 1.If ],,,[ 2121 YYXXR = is a rectangle properly containing ],,,[ '
2

'
1

'
2

'
1

' YYXXR =  i.e. RR ' then

)sup()sup( ' RR  . 
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Proof: It is obvious since all input rectangles in the rectangle dataset containing ],,,[ 2121 YYXXR =  will 

also contain ],,,[ '
2

'
1

'
2

'
1

' YYXXR =  and so )sup()sup( ' RR  . 

 

Theorem 2. If ],,,[ 2121 YYXXR = is a rectangle in the input dataset then R is closed. 

Proof: Let, ],,,[ '
2

'
1

'
2

'
1

' YYXXR =  be a rectangle properly containing R . i.e.
'RR  . Then, )sup()sup( ' RR  . 

Now, R is a rectangle in the input dataset containing rectangle R but not containing the rectangle
'R . So,

)sup()sup( ' RR  . Therefore, R is a closed rectangle. 

 

Theorem 3. The intersection of two intersecting input rectangles 1R and 2R is a closed rectangle. 

Proof: Let, 1R and 2R be two input rectangles. Suppose the rectangles are as shown in Figure 4. 

 

 

Figure 4. Intersection of closed rectangles 1R and 2R  

 

Let, ],,,[ 2121 YYXXR = be the intersection of 1R and 2R . Let, ],,,[ '
2

'
1

'
2

'
1

' YYXXR =  be an input rectangle that 

properly contains rectangle R . Then )sup()sup( ' RR  . Since, 
'R properly contains R , at least one (or more) of the 

followinginequalities will have to be true 

(i) 1
'
1 XX   

(ii) 
'
22 XX   

(iii) 1
'

1 YY   

(iv) 
'
22 YY   
 

If (i) or (iv) is true then 2R does not contain
'R . 

If (ii) or (iii) is true then 1R does not contain
'R . 

In either case, support of 
'R will be less than that of R . The proof will follow in the same way for all 

non-empty intersections of rectangles 1R and 2R . Hence, R is a closed rectangle. 

 

Theorem 4.  A rectangle ],,,[ 2121 YYXXR = is a closed rectangle iff it is the intersection of four input 

rectangles all of which may not be distinct. 

Proof: Theorem-A states that if ],,,[ 2121 YYXXR =  is a closed rectangle than all its four sides are parts 

of input rectangles containing R . Hence R is the intersection of these rectangles. These four rectangles 

however may not be distinct. Theorem-B states that if a rectangle R is such that all its four sides are parts of 

input rectangles containing R then R is a closed rectangle. In this case R will be the intersection of these four 

rectangles. 

 

Theorem 5.   Intersection of two closed rectangles is a closed rectangle. 

Proof: Let, 1R and 2R be two closed rectangles and Let, R is their intersection.  Suppose R is not 

closed. Then, there is a rectangle properly containing R (say
'R ) whose support is same as R . i.e. )sup()sup( 'RR =

. But as 1R is a closed rectangle, the left side of the rectangle 1R will be a part of an input rectangle which 

contains 1R [Theorem-A and Theorem-B]. Then this input rectangle will contain R but not
'R and hence support 

of R cannot be same as
'R . The same argument can be applied to any

'R containing R . Therefore, there cannot 

be a rectangle properly containing R having the same support as that of R and hence R is closed. 
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 Although our work is concentrated on rectangular regions but the concept can be extended to any 

well-defined region of arbitrary shape. Theorem 6 and Theorem 7 are proved in this direction. 

 

Theorem 6.   Support of a region r is the support of the smallest closed rectangle containing r . If no 

such rectangle exists then the support of r is zero. 

Proof: Letris region as shown in Figure 5. Ifris not contained in any closed rectangle thenris not 

contained in any input rectangle either (Theorem-1 or Theorem 2) and hence support of ris zero. 

Now, suppose R is the smallest closed rectangle containing r. Since Rr  , )sup()sup( Rr  . 

 

 
Figure 5. Support of a regionris the support of the smallest closed rectangle containingr. 

  

Suppose, )sup()sup( Rr  . Then there is at least one input rectangle containing rbut not containingR. 

Let, IRbe one such rectangle. Let us consider the rectangle IRR . It is non empty as it is containsr. It is 

closed by Theorem-5. 

Also, RIRR )(  as R IR . Therefore IRR is a closed rectangle containing r which is a contradiction to such 

assumption that Ris the smallest closed rectangle containingr. Therefore, )sup()sup( Rr =  

  

Theorem 7.   Let  be the minimum support value used for defining dense regions. Then any closed 

rectangle of support  will be a maximal dense region. 

Proof: Suppose R is closed rectangle of support  and the region R is not maximal as shown in 

Figure 6.  

Then, there is a region r such that Rr  and r is dense. Form the Theorem-6, support of r is the support of the 

smallest closed rectangle containing r .  

 Let, R be such a rectangle. Then RrR  and )sup()sup( Rr = . Since, RR  and r is closed )sup()sup( RR 

contradicting our assumption that r is dense.Hence, R  is a maximal dense region. 

Form the Theorem-6 and Theorem-7 it is clear that for any minimum support threshold  , the closed 

rectangles of support  are the maximal dense regions. In case there is no closed rectangle of support  then 

the next integer greater than  say 
' having closed rectangles will serve the purpose. If there are no such 

'

values then there will be no dense region. 

 

 
Figure 6. Maximal dense region R with support   

 

4. ACRMINER FOR COMPUTING ALL CLOSED RECTANGLES 

The proposed algorithm uses a tree like data structure named as ACR-Tree to compute all closed 

rectangles incrementally. Since the algorithm is incremental it can process dynamic data. It does not require 

any preprocessing of input data. Whenever a new rectangle is given as input it automatically updates its data 

structure ACR-Tree. The input rectangles are given one by one in a sequence to the algorithm. Each record in

RDB   contains a rectangle ],,,[ 2121 YYXXR = . Here, 1X and 2X  refers to the left and right end point of the interval 
],[ 21 XX  in X-domain. Similarly, 1Y and 2Y  refers to the lower and upper end point of the interval ],[ 21 YY  in Y-

domain. For the construction of ACRMiner, the theorems and definitions as discussed in Section 3are used. 

The proposed ACRMiner contains two types of lists of nodes- a header-list LISTIR _  and a number of sub-lists. 

There is one sub-list CR_LIST for each node in the header-list IR_LIST. Any node in the header-list stores a 

9-tuple ),sup,,,,,,,( 2121 CRNextIRNextfreqareaYYXX , where 1X , 2X , 1Y  and 2Y  refers to the left, right, lower and upper 
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end points respectively of an input rectangle R respectively. Each node in IR_LISTis associated to a distinct 

input rectangle ],,,[ 2121 YYXXR = in dataset RDB. The field area stores the area of the rectangle R where
)()( 1212 YYXXarea −−=

. The value of areaof a header-node is important in our proposed implementation 

because the newly created sub-list node will be added to the sub-list of the header node having smaller area . 

All the rectangles in the sub list of a header node are contained in the rectangle represented by that header 

node. A larger-area rectangle is more likely to intersect with a newly inputted rectangle than a smaller-area 

rectangle. If a large area rectangle contains more rectangles, the cost of rectangle intersection computation 

increases. However, all of the rectangles in that larger rectangle's sub-list may not intersect with the newly 

entered rectangle. To reduce the cost of computation of intersection of rectangles the sub-list of large area 

rectangle is kept short. For that reason, when a new node is created as a result of the intersection of a header 

node and the new input rectangle, the resulting node is added to the sub list of that header node whose 

rectangle at the node has the least area.  

The field freq  stores the frequency count of the rectangleRin the input rectangle database. The field
sup stores the support counts of the rectangle R in the same input rectangle database.IRNext and CRNext are 

two pointers associated with each header node eH in IR_LIST. The pointer IRNext points to the node next to 

node eH in IR_LIST. The pointer CRNext points to the node in the sub-list HeLISTCR_
associated to eH. Any 

node e Lin sub-list HeLISTCR_
stores a 6-tuple )sup,,,,,,( '

2
'

1
'
2

'
1 LNextcountYYXX , where

'
1X ,

'
2X ,

'
1Y and 

'
2Y  refers to the 

rectangle ],,,[ '
2

'
1

'
2

'
1

' YYXXR = . Each rectangle in a sub-list is a non-empty intersection of a number of input 

rectangles. The field count stores this number. The pointer LNext points to nodenext to eL in HeLISTCR_
.The field

sup stores the support counts of the rectangle
'R in the same input rectangle database. 

A node eL in HeLISTCR_
of a header node with rectangle R represents a rectangle which is a non-empty 

intersection of R with some rectangle in IR_LIST or with some rectangle in some sub-list ILISTCR _ .  

In the construction of ACR-Tree, whenever a new input rectangle comes it is inserted into the header 

list IR_LIST as a node. The newly inserted header node contains its calculated value of area, sup and freq. If 

the newly insterted input rectangle already exits as a node in the header list then only the sup and freqvalues 

are updated. Once the header node is inserted in ACR-Tree then the non-empty interestions between the 

newly inserted rectangle and the rectangle present at other existing header nodes are inserted into the sublist 

CR_LIST of the header node having the smallest area between them. The non-empty intersections of the 

newly inserted rectangle and the rectangles present at sublist of each header node is also inserted into the 

sublist of suitable header nodes. The count and sup values of all the respective nodes are also updated. All the 

rectangles present in header list and sublists are closed rectangles. The detail construction of the ACR-Tree is 

explained in section 5. Apictorial view of a sample structure of ACR-Tree is shown in Figure 7 where 

],,[
2121

iiii RRRR
i YYXXR =

for ni 1 are the input rectangles. The nodes that are linked vertically represent the 

header list.Sublist of a header node is shown by the list of nodes linked horizontally. In Figure 7, 

sup],,,,[ 1111

2121
RRRR

YYXX
, 

sup],,,,[
1
1

1
1

1
1

1
1

12111211
RRRR

YYXX
, 

sup],,,,[
2
1

2
1

2
1

2
1

12111211
RRRR

YYXX
….., 

sup],,,,[ 2222

2121
RRRR

YYXX
,……..…….  

sup],,,,[
2121

nnnn RRRR
YYXX

 are all the closed rectangles along with their supports. 

 

 
Figure 7. Pictorial Representation of ACR-Tree Data structure 
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5. CONSTRUCTION OF ACRMINER 

The proposed algorithmACRMiner for construction of ACR-Treecan be divided into three parts, viz. 

Header-List–Update, Sub-List-Updateand Final-Support-Update. The first two parts are used to construct the 

ACR-Tree and the last part i.e. Final-Support-Update part is used to compute the support counts of the the 

nodes that are present in the constructed ACRMiner. In Header-List-Update part, the procedure 

IR_LIST_Update is used to upate the header list IR_LIST in ACR-Tree.  A counter Icontain is used which stores 

the sum of the frequency counts of input rectangles that contain the newly inserted 

rectangleI=[X1,X2,Y1,Y2].The procedureIR_LIST_Update also updates the supports of all existing header 

nodes. The second part i.e. Sub-List-Update uses aprocedure called CR_LIST_Update to update the sub-list 

CR_LIST associated with each node in IR_LIST. The CR_LIST_Update procedure is called when any new 

node I is added to the header-list IR_LIST.The procedure CR_LIST_Update is used for generation of new 

closed rectangles. The newly generated closed rectangles are added to the sub lists CR_LIST in ACR-Tree. 

The third part i.e. Final-Support-Update uses a procedure FS_Update. This procedure scans the ACR-

Treeand updatesthe support of the nodes present in the sub lists CR_LIST’s of ACR-Tree. All the nodes in 

ACR-Tree represent closed rectangles as each is a non-empty intersection of a number of input rectangles. 

However, more than one node may represent the same closed rectangle. In such cases, any one of them is 

chosen as all such nodes have same suppor count and the rest nodes are ignored. For an input rectangle 

I=[X1,X2,Y1,Y2] with frequency f, these threeparts involved in updating of ACR-Tree are discussed in depthin 

following sections. 

 

5.1. Header-List-Update part 

 The procedure IR_LIST_Update updates the header list in ACR-Tree. The counter Icontain is initialized 

to zero before the header-list modification starts for each newly inserted input rectangle. While updating the 

header list of ACR-Tree, when a new rectangle ],,,[ 2121 YYXXI = with frequencyf isinputted then Icontainis 

updated as Icontain=Icontain+freq for each rectangle with frequency freq in theheader-list ofACR-Tree that 

contains I. Now, if the rectangle I is not present in the header listIR_LISTthen ],,,[ 2121 YYXXI = is inserted as a 

node p at the end of the header-list LISTIR _ . The frequency freq and support sup of the node p is set as
ffreqp =. and containIfp +=sup..  respectively. The area of the node p is also computed and it is set as

)()(. 1212 YYXXareap −−=
. If the rectangleI is already present at a node eHin the header-list of ACR-Tree then 

the frequency and support of the node He is updated as ffreqefreqe HH += .. and fee HH += sup.sup. respectively. The 

supports of all other header nodes He representing rectangles that are contained in I are updated as
fee HH += sup.sup. . Now, procedure CR_LIST_Update is called for modification of the sublist in ACR -Treeif 

any new node is added to the header list IR_LIST. 

 

5.2. Sub-Lists-Update part 

 As stated earlier, the procedure CR_LIST_Update updates the sub-lists in ACR-Tree. When a new 

rectangle ],,,[ 2121 YYXXI = with frequency f is added as a nodepinto the header list then the sub lists of all the 

header nodes need to be updated. A node eL in the sub lists of a header node eH in ACR-Tree represenets a 

rectangle
'R  with support count sup. InCR_LIST_Update, all the header nodes eH and their sub lists are 

traversed. The intersection of rectangle Iat node p with the rectangles present in all the header nodes except p 

and their sub listsare computed and non-empty intersections are inserted into the sub listi.e. if peH  is a 

header node in ACR-Tree and the rectangle R at node eH has a non empty intersection with the rectangle I at 

pthen it is selected for generation of new rectangles. If R is contained in I then the travseral of the nodes in 

the sub list of eH is not required because all the rectangles in the sub list of headernodeeH are also contained 

by I and hence generatesno new rectangles. If rectangle R is not contained in rectangle I and has non empty 

intersection thena new rectangle is generated. This newly generated rectangle is added as a new node to the 

sub list of eH or I depending on whichever have the rectangle with smaller area between these two. If both the 

rectangles at eH and I have same area then the new rectangle is added as a node Re to the sublist of He . The 

value of count  of Re is set as 2 i.e. 2. =counteR . The justification for setting of 2. =counteR  is that Re is a new 

rectangle formed by the intersection of two input rectangles at He and I . The support count of Re is set as zero 

i.e. 0sup. =Re . Now, all the nodes in the sublist of He are traversed. If Le is a node in the sublist of He then 

intersection of I is taken with the rectangle
'R at nodes Le in the sub list of He  having 4 counteL  for generation 

of new rectangles. If this intersection generates a new closed rectangle newR then it is added as a node Ke  to 

the sub list of current header node He if its area of header node He  is smaller or equal to the area of R i.e. 
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areaIareae
H

.
. Otherwise, Ke is added to the sub-list of I . Whenever such a new rectangle Ke  is generated its 

counter count of node eK is set to 1+= CounteCounte Lk . This is because Ke  is the result of intersection of Le

and input rectangle R is the intersection of counteL   numbers of input rectangles. In sub-list modification, only 

the nodes Le in the sublist of He having 4 counteL  are considered for generation of new closed rectangles. 

This is justified because any closed rectangle is the intersection of at most four input rectangles (from 

Theorem-4 as mentioned in section 3). The supports of Ke  set as 0sup. =Ke  

 

5.3. Final-Support-Update part 

Finally, the procedure FS_Update is called for the modification of the support of the nodespresentin 

the sub lists. In this part, supports of the all the nodes in each sub list CR_LIST of ACR-Tree are updated by 

scanning the header nodes eH’s in the header list IR_LIST of ACR-Tree. In FS_Update, for each node Le in 

CR_LIST all the header-node sare visited and support of eL is updated by adding the frequency of each header 

node eH in IR_LISTthat contains eL. So, support of eL is modified as freqeee HLL .supsup +=   for each such 

header node eH. The support count of node eLisinitialized as 0sup=Le before its support computation.The 

algorithm for construction of ACR_Tree is given below. 

 

Algorithm: ACRMiner- Constructs the ACR-Tree 

Input: Rectangle Database, RDB 

Output: ACR-Tree containing all closed rectangles with support and frency count 

 

Step1: for each rectangle in RDB do 

Step2: Update header list IR_LIST using procedure IR_LIST_Update 

Step3: Update Sub list CR_LIST using procedure CR_LIST_Update 

Step4: Update final support count of all the rectangles in the sub list IR_LISTs using procedure 

FS_Update 

Step5: Report CostructtedACR-Tree 

 

5.4. Example  

Let us consider the following Rectangle database RDBas shown in Table 3 and construction of 

ACRMiner is elaborated as shown below with diagrams. 

 

Table 3. Rectangle database, RDB 

Record No 
Rectangle, 

I=[X1,X2,Y1,Y2] 
Frequency, f 

I1 1, 8, 2, 6 1 

I2 1, 4, 1, 3 1 
I3 5, 8, 2, 6 1 

I4 2, 7, 7, 9 1 

I5 5, 8, 2, 6 2 

 

 

For the input rectangle I=[1, 8, 2, 6] with frequency f=1, first IR_LIST_Update procedure is called. 

Initialization of Icontain=0 is done and Icontain for Iis computed. Since, header list IR_LIST is empty and hence 

Icontain=0. The frequency, support and area of node, I=[1, 8, 2, 6, 28, 1, 1] is calculated as I.freq=f, 

I.sup=f+Icontain and I.area=|(X2-X1)*(Y2-Y1)|. The input rectangle I is added to the header list IR_LIST as 

node, I=[1, 8, 2, 6, 28, 1, 1]  (using IR_LIST_Update) where I.area=28, I.freq=1 and I.sup=1 is the area, 

frequency and support of the rectangle [1, 8, 2, 6] respectively which is represented by node I. Since, it is the 

only node in the header list, therefore no modification of the sub list is done. Finally, support counts of all the 

nodes in sub list are updated using the procedure FS_Update. Since the sub list is empty so updation process 

ends. Figure 8, shows the modified ACR-Tree after insertion ofI=[1, 8, 2, 6] with frequency f=1. 

 

 
Figure 8. ACR-Tree after the insertion of I=[1, 8, 2, 6], frequency, f=1 
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For the input rectangle I=[1, 4, 1, 3] with frequency f=1, header nodeI=[1, 4, 1, 3] is added to the 

ACR-Tree using IR_LIST_Update procedure as node I=[1,4,1,3,6,1,1] whereI.area=6, 

I.freq=1+Iconatin=1+0=1 and I.sup=1 is the area, frequency and support of the rectangle [1, 8, 2, 6] 

respectively which is represented by node I. Since, I is not contained by any of the recatmgles at header 

niodes and hence Icontain=0. Now, the sub-list modification is processed using CR_LIST_Update procedure 

following the steps as discussed above. Newly generated rectangle [1, 4, 2, 3] is added to the sub-list of the 

header node [1, 4, 1, 3, 6, 1, 1] as node eR= [1, 4, 2, 3, 2, 0] where eR.count=2 and eR.sup=0 is the count and 

support of the rectangle [1, 4, 2, 3] respectively which is represented by node eR. Finally, support counts of 

all the nodes in sub list are updated using the procedure FS_Update. There is one such node eR= [1, 4, 2, 3, 2, 

0] is present in the list. The support of this node is the sum of the frequencies of all the nodes that contains it. 

Hence, its support is set as eR.sup=1+1=2. Figure 9, shows the modified ACR-Tree after insertion of I=[1, 4, 

1, 3] with frequencyf=1. 

 

 
Figure 9. ACR-Tree after the insertion of I=[1, 4, 1, 3], frequency, f=1 

  

Following the same procedure records I3 and I4 is inserted to the ACR-Tree and the tree is updated 

accordingly. Figure 10 and Figure 11 shows the updated ACR-Tree. 

 

 
Figure 10. ACR-Tree after the insertion I=[5,8,2,6] with frequency, f=1 

 

 
Figure 11. ACR-Tree after the insertion I=[2,7,7,9] with frequency, f=1 
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For the input rectangle I=[5, 8, 2, 6] with frequency f=2, the ACR-Tree is updated using the using 

IR_LIST_Update procedure. Since, therectangle [5, 8, 2, 6] is already present in the header list as node I=[5, 

8, 2, 6, 12, 1, 2]. So, Icontain count is ignored. Only the frequency and support of the header node representing 

the rectangle [5, 8, 2, 6] needs to updated. So, frequency and support of this header node are set as 

I.freq=I.freq+f=1+2=3 and I.sup=I.sup+f=2+2=4. Now, procedure FS_Updateis called forthe 

modifications of support coutnts of nodes in the sub lists CR_LIST.The final modified tree is as shown in 

Figure 12. 

 

 
Figure 12. ACR-Tree after the insertion I=[5,8,2,6] with frequency, f=2 

 

 

The output of ACR-Mineralgorithm gives all closed rectangles together with their support 

countsuing the datastructureACR-Tree. A total of 5 closed rectangles are found and their support counts are 

also computed and they areviz.{[1,8,2,6],1}, {[1,4,1,3],1}, {[1,4,2,3],2}, {[5,8,2,6],4} and {[2,7,7,9],1} . 

Now, if density threshold is considered as 2 then the resultant dense regions are: {[1,4,2,3],2}and 

{[5,8,2,6],4} 

 

 

6. COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHM 

 In ACR-Tree, Header List IR_LIST is unsorted and new nodes are always added at the end of the 

Header List. The size of the Header List is equal to the number of input rectangles. The sub lists are also 

unsorted and new nodes are always added at the beginning of the lists. Linked list implementation is used for 

updation of IR_LIST and CR_LIST’s in ACR-Tree. So, O(n)steps are required for header list updating for a 

given input rectanglewhere n is the number of the rectangles in the input data set. The sub listCR_LISTeHof 

each header node He is updated by computing the non empty intersections of the rectangles at each header 

node and at the correspondingsub list with the input rectangle. Since, any closed rectangle is the intersection 

of at most four input rectangles, so the maximum number of possible closed rectangles will be: nC1 +nC2 + 
nC3+ nC4 = O(n4) 

Each rectangle in the sub lists is the intersection of a number of input rectangles. A count value is 

stored with each node in the sub lists to store this number. If this value is 4 (four) then no more intersections 

are taken with that rectangle. Therefore the total number of nodes in the sub lists is O(n4). Thus the worst 

case time complexity for updating of ACR-Tree for one input rectangle is (O(n) + O(n4))=O(n4). If the 

dataset has n input rectangles then for inserting n input rectangles in ACR-Tree, the proposed algorithm will 

require )()(* 54 nOnOn = time in worst case. Each rectangle in the sub lists is evaluated with all the nodes in the 

header listIR_LISTto update its support counts. Since, there are atmostO(n4) rectangles and number of the 

nodes in the header list can beatomostn, so the worst time complexity for updating of supports of nodes in 

sub lists of ACR-Tree for one input rectangle is n* O(n4)=O(n5). Thus total worst case time complexity for 

the complete modification of ACR-Treeis O(n5)+ O(n5)=2*O(n5)= O(n5). On average the algorithm will 

however perform better than this. For most of the input rectangles the number of intersection computed will 

be less. This is because if the intersection of the input rectangle with the rectangle at a header node is null 

then all rectangles in the corresponding sub list will also have empty intersection and so the sub list of the 

header node is not traversed. Also while adding nodes to sub lists, the header node with small rectangle size 

is taken so that the probability of occurrences of such cases increases. The sizes of the sub-lists will also be 

much smaller on average. 
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7. EXTENSION OF THE PROPOSED ALGORITHM TO HIGHER DIMENSIONAL SPACE 

 The problem that has been discussed so far in the 2-dimensional space can be extended easily to 3-

dimensional space also. In 3-dimensional space the corresponding problem will be to mine closed frequent 

cubes from an input dataset of cubes. A cube can be represented as C=[Ix, Iy, Iz], where Ix, Iy, Iz are one 

dimensional intervals in X, Y and Z domains respectively. Frequent cubes, closed frequent cubes and maximal 

frequent cubes are straight forward extensions of the corresponding concepts for intervals and rectangles. The 

theorems in section 3 can be extended to higher dimensional space. A closed cube will be the intersection of 

six input cubes all of which may not be distinct. Computing the intersection of two rectangles involves 

computing the intersections of two pairs of intervals and for cubes it involves computing intersections of 

three pairs of intervals. Thus, computing the intersections of two hyper cubes is linear in the dimension of the 

underlying space. In the ACR-Treedata structure, the nodes will store cubes where each cube will be 

represented by three intervals. The number of closed cubes can be at most O(n6) and so the overall 

complexity will be n* O(n6) = O(n7). 

 

 

8. EXPERIMENTAL EVALUATION OF PROPOSED ALGORITHM 

 The proposed algorithm is implemented by developing C++ programs in Linux PC having Intel 

Core i5 processor with 4 GB RAM. To validate the proposed method, the algorithm has been tested with 

three real life datasets Fruit datasets, Vegetables data sets and Car datasets. The proposed method is also 

tested with a number of synthetic datasets. 

 

8.1. Results Applied on Fruit Dataset 

The fruit dataset is used to test our proposed technique. This dataset is collected from 

https://extension.umaine.edu/publications/4135e/. This data set contains information about suitable 

temperature and humidity ranges (min-max) for 16 different fruits, which is recommended for suitable 

temperature and humidity storage conditions of the fruits [26]. Temperature and humidity ranges are depicted 

as X-domain and Y-domain respectively. The propsed algorithm was applied on this dataset and the result is 

shown in Table 4. A total of obtained 10 closed rectangles together with their support counts for the fruit data 

set.Table4 shows two closed rectangles [31, 31, 90, 90] and [32, 32, 90, 90] with support count of 13, 

indicating that they are dense regions with density value 13. The dense rectangle [31,31,90,90] shows that if 

the temperature and humidity values are kept fixed at 31 and 90 respectively then 13 numbers of fruits will 

be preserved.  Similarly same number of fruits will be preserved if temperature and humidity values are kept 

fixed at 32 and 90 respectively.The other solutions such as [30, 31, 90, 95] and [31, 32, 90, 95] allow for 

some variation in temperature and humidity values and larger rectangles with density values less than 13 may 

be chosen for this. 

 

Table 4. Closed Rectangles with support values generated from fruit dataset 

Closed Rectangles Support Count 

[30, 40, 90, 95], [31, 32, 85, 85], [29, 31, 90, 95] 1 

[30, 31, 90, 95] 3 

[31, 32, 90, 95] 10 

[31, 32, 90, 90] 11 

[32, 32, 90, 95], [31, 31, 90, 95] 12 

[32, 32, 90, 90],  [31, 31, 90, 90] 13 

 

 

Numbers of dense closed rectangles computed by the proposed method with varying density 

thresholds are shown in Table 5. Form the result it is found that there is no dense region for the density 

threshold value,  =14. 

 

Table 5. No of dense closed rectangles with varying density thresholds,  on fruit data set 

Density threshold,


(min) No of Dense Closed Rectangles 

2 7 
4 6 

8 6 

10 6 
12 4 

14 0 
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8.2. Results Applied on Vegetable Dataset 

The vegetable dataset is used to test our proposed technique. This dataset is also collected from 

https://extension.umaine.edu/publications/4135e/. This data set contains information about suitable 

temperature and humidity ranges (min-max) for 69 different vegetables, recommended for their suitable 

storage [26]. Temperature and humidity ranges are depicted as X-domain and Y-domain rectangles for 

evaluation of the proposed method. The proposed method generated 52 closed rectangles together with their 

support counts for this data set. Numbers of dense closed rectangular regions for varying density thresholds 

are shown in Table 6. Form the result, it is found that there is no dense region for the density threshold value, 
 =40. 

 

Table 6. No of dense closed rectangles with varying density thresholds,  onVegetable data set 
Density threshold,  (min) No of Dense Closed 

Rectangles 

5 15 

10 8 
15 8 

20 8 

25 6 
30 3 

35 1 

40 0 

 

 

Out of the 52 closed rectangles there are three closed rectangles viz. {[32,32,98,100],33}, 

{[32,32,99,100],34}  and {[32,32,98,98],38} found which are dense rectangular regions having density value 

more than 30. The dense rectangle {[32,32,98,98],38} shows that if the temperature and humidity values are 

kept fixed at 32 and 98 respectively then 38 numbers of vegetables will be preserved. The other two solutions 

allow for some variation in temperature and humidity values, and larger rectangles with density values less 

than 30 may be chosen for this. 
 

8.3. Results Applied on Car Dataset 

The car interval dataset contains 33 car samples that are described by 8 interval features and one 

class level feature.  The interval features are Price, EngineCapacity, TopSpeed, Acceleration, Step, Length, 

Width, and Height [24][25]. The samples are divided into 4 different class levels viz. Utilitarian, Berlina, 

Sporting and Luxury with 10, 8, 8 and 7 samples respectively. In this paper, two interval features 

EngineCapacity and TopSpeed features together are considered to assess the effectiveness of the proposed 

method where EngineCapacity represents X-interval and TopSpeed represents the Y-interval component of a 

rectangle. The outcome of the proposed method with various minimum density threshold values is shown in 

Table 7. 

 

Table 7. No of dense closed rectangles with varying density thresholds, on Car data set 

Density threshold,  (min) No of Dense Closed 
Rectangles 

1 243 

2 220 
3 181 

4 135 

5 90 
6 55 

7 29 

8 9 
9 0 

 

 

The total number of closed rectangles generated is 243. The closed rectangle calculated for this 

dataset represents the number of car samples that share the same engine capacity and top speed range. For 

example, there are 76 such combinations of engine capacity and top speed range that are found in more than 

4 car samples in the car dataset as shown in Table 7. Two such rectangular regions discovered are {[2171, 

3199,226, 250],4}and {[2799, 3199,232,250],6}.  

 

8.4. Results Applied on Synthetic Interval Dataset 

The proposed method is tested on five synthetic datasets of varying sizes viz. Syndataset1, 

Syndataset2,Syndataset3, Syndataset4, Syndataset5 and Syndataset6. The generation of synthetic datasets is 

discussed below. 
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8.4.1. Generation of Synthetic Dataset 

The various synthetic datasetsused in this proposed algorithm ACRMinerisgenerated by using a 

synthetic data generator to generate the synthetic rectangle dataset. The input to the data generator is the 

number of transactions of rectangles ( n ) , frequency of rectangle trnsaction ( f ), maximum value of the left 

end point of the interval in x-domain (
xlmax ), maximum span of the intervals in x-domain ( xspan ), maximum 

value of the low end points of the intervals in y-domain (
y

lmax ) and maximum span of the interval in y-

domain ( yspan
). The span of an interval denotes the difference between thetwo points in a domain.In this 

synthetic data generator, a random number generator is used. This random number generator generates values 

for the left end poinst in the x-domain from 1 and
xlmax . The span values generated for these 

intervalsarewhithin 1 to xspan . Similarly it generates values for low end points in the y-domain between 1 to 
y

lmax and the span of the interval between 1 and yspan
. The synthetic datasets used in the porposed method are 

generated with 200max =
xl , 100=xspan , 

200max =
y

l
, 

100=yspan
and 1=f .  

This synthetic data generator uses a random number generator which gererates values for the left to 

generate the rectangle data set.   

 

8.4.2. Results on Various Synthetic Dataset 

The proposed method is applied to above five synthetic datasets. The number of closed rectangles 

computed and the time of execution of this method on these datasets are shown in Table 8. 

 

Table 8. No of closed rectangles generated by the proposed method on various synthetic datasets 
Dataset Name Size of the Dataset No of Closed Rectangles 

Generated 

Execution Time 

Syndataset1 1000 2624112 4.1767 
Syndataset2 2000 4911136 14.247 

Syndataset3 4000 14640928 62.318 

Syndataset4 6000 19181947 141.2157 
Syndataset5 8000 23687357 239.3524 

Syndataset6 10000 25981481 351.8229 

 

 

Figure 13, plots a graph of the proposed method's execution time versus dataset size. This 

demonstrates how the execution time of the proposed ACRMiner algorithm increases as the size of the input 

data increases. 

 

 
Figure 13. Time requirement of the proposed algorithm for varying size of synthetic dataset 

 

 

8.4.3. Results of Varying Density Values on Synthetic Datasets 

Because the density threshold value is crucial in deciding whether a region is dense or not, the 

proposed method is tested on various synthetic datasets to see how the output varies. To examine this 

variation, the synthetic datasets with the smallest and largest number of records, Syndataset1 and 

Syndataset6, were used. The results of these experiments are shown in Table 9. 

The results in Table 9, shows that the number of dense closed rectangles decreases as the density 

threshold increases, which is obvious. 
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Table 9. Result on synthetic dataset for different density thresold,  (min) 
Dataset Name Size of the Dataset Density Threshold, 

(min) 

No of Closed Rectangles 

Generated 

  10 2603476 

Syndataset1 1000 

20 2438929 

40 1476241 
60 397245 

80 40770 

100 57 
120 0 

Syndataset6 10000 

100 25564221 
200 23398811 

400 12888840 

600 1848229 
800 294230 

1000 794 

1200 0 

 
 

The results in Table 9, shows that the number of dense closed rectangles decreases as the density 

threshold increases, which is obvious. 

 

 

9. APPLICATIONS OF THE PROPOSE METHOD 

The proposed method has application in a wide range of real-world problems. Some of the fields in 

which this method is useful are discussed in this section. 

(1) Meteorology: Meteorology is the study of the atmospheric phenomena and the effects of weather on the 

atmosphere. There are various important factors such as rainfall, temperature, humidity, air quality, day 

time (sunrise and sunset time) etc. If two important parameters such as temperature (max and min) and 

day time (sunrise and sunset time) are selected for a particular location and period then it willreperesent 

a rectangular space. If the tempatureand day time parameters are recorded for a number of days 

thenthere may be many overlapping rectangular regions available within the represented space. The 

algorithm proposed in this paper can be used to compute the density or suppor counts of these 

overlapping regions.From the density or support values of such regions one can find out suitable 

information about temperature and day time available on the majority of days for that location.This 

information may help tourists decide on the best time to visit this location. 

(2) Healthcare: In healthcare, factors like blood sugar level, hemoglobin etc. contains crucial information 

about the helath condition of a patitient. For example, by considering factors like blood sugar level 

(lowest level and highest level) and hemoglobin count (max and min count) for patients suffering from 

diabetic, our proposed algorithm will provide information about blood sugar level and hemoglobin 

count common in most diabetic patients which may be useful for their effective treatments. 

(3) VLSI Design: In VLSI design, placement of rectangular modules on a plane within a rectangle of 

minimum area without overlap is a crucial stage. The background of this process is the rectangle 

packing problem. The algorithm proposed in this paper can be used to find out the maximal overlapping 

regions of rectangles which will make VLSI design process faster. 

(4) Automatic Label Placement on Maps: In cartography, label placement is a critical task in map 

production that requires a significant amount of manual work and time. Label placement is critical since 

it involves placing of labels in such a way that no two labelled map regions overlap. Too densely 

labelled maps are difficult to study and visualize. Finding the optimal placement of labels is expensive 

and the underlying problem is NP-Hard. In most algorithms the labels are placed initially by some 

procedure and after that the placements are improved by reducing the overlapping. The sizes of the 

labels may also be reduced. The algorithm proposed in this paper can be used in the initial placement of 

labels by extracting the overlapping rectangles. It can also be used to calculate the quality of a 

placement by calculating the total overlapping area. 

(5) Heatmap visualization: Heatmap is a density-based data visualization technique used in big data visual 

analytics [30]. In the study of natural events such as storms, hurricanes, earthquakes etc., the affected 

areas are represented using bounding boxes or rectangles. Intensity values are calculated by the number 

of rectangles intersecting at a place. In such cases heatmaps are drawn to pictorially demonstrate the 

intensity of the event or magnitude of the phenomenon by using different colors i.e. different colors 

represent different intensity or magnitude values. Dark colors are usually used to represent high 

intensity values. Again, in many applications, the regions of interest are represented or approximated by 

rectangles. Different users have different regions of interest and then overlapping regions will indicate 

the regions that are of interest to many users. The algorithm proposed in this paper can be used for such 
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applications. Closed rectangles with high support values can be assigned dark colors. In other words, 

the darkness can be made proportional to the support values of the closed rectangles. 

(6) In Aquaculture Industry: Water quality parameters that are commonly monitored in the aquaculture 

industry farming aquatic organisms include temperature, dissolved oxygen, pH, alkalinity, ammonia, 

and nitrites. Each organism has a range for these parameters which is conducive to their survival. If two 

important parameters are selected then the conductive ranges for the organisms are nothing but 

rectangles. If two rectangles corresponding to two organisms overlaps then the overlapping area will 

indicate the ranges of the parameters which are conductive for both the organisms. The algorithm 

proposed in this paper can be used for such applications. Closed rectangles with high support values 

will indicate ranges suitable for large number of organisms to survive. 

 

 

10. CONCLUSION AND FUTURE WORK 

In this paper we have proposed an incremental algorithm named as ACRMiner for computing all 

closed rectangles together with their support counts in a rectangle database and then based on a user defined 

threshold all the 2D closed regions are classified either as dense or sparse regions. The algorithm is 

incremental by nature and hence is applicable to dynamic data sets. The algorithm may generate duplicate 

closed rectangles and hence more space is needed. In case of duplicate closed rectangles, the rectangle with 

highest support will be considered. The proposed algorithm can correctly generate all closed rectangles 

together with their support counts from the given input dataset of rectangles using a tree like data structure 

called as ACR-Tree. The correctness of the algorithm follows from the theorems that have been proved. The 

effectiveness of the proposed algorithm is verified by testing on real-life datasets and synthetic data sets as 

well. Future work includes attempt to design a procedure so that generation of duplicates could be avoided.   

Future work also includes looking for methods to improve the performance of the proposed algorithm by 

using other suitable data structures.  
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