
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 

Vol. 11, No. 4, December 2023, pp. 945~966 

ISSN: 2089-3272, DOI: 10.52549/ijeei.v11i4.4930      945 

  

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index 

Characterization of Short-Term Wind Power Variations and 

Estimation of Reserve Requirements for High Wind Generation 

Shares 
 

M. Saber Eltohamy1,, M. Said Abdel Moteleb2, Hossam E. A. Talaat3, S. F. Mekhamer4, Walid Omran5            
1,2Dept. of Power Electronics and Energy Conversion, Electronics Research Institute, Egypt 

1Electrical Power and Machines Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt 
3,4Department of Electrical Engineering, Future University in Egypt, Egypt 

5Department of Mechatronics, Faculty of Engineering and Materials Science, German University in Cairo, Egypt 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jul 9, 2023 

Revised Oct 24, 2023 

Accepted Nov 15, 2023 

 

 The need to deal with variability in wind power output is one of the greatest 

challenges connected with adopting a considerable amount of wind power into 

power grids. Power system operators need to acquire more information on this 

variability, which can be utilized in the mitigation of high ramping events, 

especially when these events synchronize with a large error in the prediction, 

ensuring flexibility and reliability in the power system besides the economic 

considerations. The paper analyses short-term variability in output power 

using actual data obtained from aggregated wind farms from 2015 to 2020, 

where power ramping characteristics are described using a variety of 

measurements. The use of the standard deviation of short-term wind power 

variation as a reserve measure will be investigated in detail since there is no 

consensus about the ideal confidence level value as a multiplier of σ, which 

ranges from 3 to 6 times σ. The paper addresses how large this confidence 

level should be, as well as developing a data-driven approach for estimating 

this reserve with increasing wind shares and evaluating the proper distribution 

of short-term wind variation. The results illustrate that the stochastic variations 

in wind power can retain many of their characteristics from year to year, even 

when the share of wind capacity is raised. 
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1. INTRODUCTION 

Power systems are steadily increasing generation from renewable resources at the expense of fossil 

fuels to diversify generating supplies for improved reliability while also meeting environmental targets [1][2]. 

Hence, renewable generation (RG) accounted for 82% of total capacity increases in 2020, and wind and solar 

generating represented 91% of that [3]. Another remarkable fact worth considering is the response of wind 

energy in the face of exceptional times such as COVID-19 pandemic and the current war between Russia and 

Ukraine, as the fossil fuels sector during these events experienced market volatility, whereas the wind energy 

sector exhibited a more stable response [4][5]. However, RG increases energy variability and uncertainty [6], 

since its production changes based on climatic conditions. Thus, power system planners are looking for flexible 

generating sources that support renewable instead of just looking for sources of generation to meet demand 

[7][8]. 

Studying RG variability is essential to system operators [9][10], who should study, analyse, and take 

the required measures to avoid the consequences of high power ramping occurrences [11][12]. In [13], the 

authors quantify the ranges of wind power output, only 3 months of data are utilised to construct dynamic 
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ranges, whilst wind variations vary with seasons, and times of the day [14], therefore further data would contain 

additional information and could produce different ranges [15]. The investigation of increasing shares of 

variable RG on the characteristics of power ramping has been discussed in [16][17] through statistical analysis 

of historical data. In [18][19], new metrics have been introduced for understanding the characteristics of power 

ramping. In [20], the ramp rates of in-stream tidal, solar, and wind as uncorrelated RGs have been investigated 

to optimise their capacity combination. The authors of [21] evaluated the level of complementarity of wind, 

PV, and hydro-power by studying variability and ramp events, they showed that the combined PV–wind power 

production has a better performance for offsetting the ramp events, and the wind power fluctuates more 

violently than PV. Analysis of wind power in shorter periods showed more variability and resulted in an 

improved cost estimation [22]. The authors of [23] showed the relevance of distance among wind farms on the 

variability of power output. Distributing wind farms over a larger area decreases the effects of diurnal and 

synoptic wind peaks because changeable weather patterns do not affect each turbine at the same time [12][24]. 

While all predictive algorithms in [25] predicted just a few ramp events, future studies should incorporate ramp 

forecasts of RG [26], as the prediction error rate is still rather high [27][28], and influences the balance of 

generation and demand [29][30], which impacts electricity prices [31]. In [32], the authors enhanced long short 

term memory to increase the accuracy of the wind power forecast. The wind power signal exhibits great 

unpredictability, while the wind power data exhibit long-term correlation. Belgium's 2018 wind power data 

was used to test the forecasting technique, the ramp prediction was not totally solved, and the forecast error 

remained considerable when ramp events occurred, although it was far smaller than other forecast approaches. 

The authors demonstrated that the pattern of ramp events is too complex to identify with accuracy, making it 

difficult for future research to identify patterns related to ramp events. So, improving the methods of forecasting 

is still under investigation [33][34]. The link between the weather mechanisms and ramp events has been 

studied, trying to investigate the weather mechanisms that create upward and downward ramp events [35][36], 

although it is an extremely case-dependent problem [37][38]. In [25], just 34% of ramp events had their causes 

identified, while no explanation was made for the remaining proportion. Wind power has more intermittency 

than the wind speed that produced it [24][10]. Therefore, the fluctuations linked with the wind speed forecasts 

are lower than that observed, and wind speed alone cannot explain a large percentage of wind power 

fluctuations [39].  

In [40], the reserve associated with wind generation was estimated, and this reserve increased linearly 

with regard to the wind penetration rate. In [41][42], the geo-spreading of wind farms has a smoothing impact 

on the inherent variations, hence linear upscaling of the reserve with expansion in wind generation should be 

avoided [43]. The operation of power systems is based on probabilities and risks, so reserves are generally 

estimated to cover fluctuations within a certain probability [44]. Recently, most approaches in the calculation 

of reserves have moved toward probabilistic methodologies [45][46]. In [47], the stochastic and deterministic 

models have been compared to represent the short-term fluctuation of wind and solar power in a European 

long-term least-cost optimization model that is used to address investments for the interconnected European 

nations into 2050. Investigating how various approaches to account for uncertainty and various temporal 

resolutions affect model outcomes is part of this. Representative days or time slices were used to express the 

temporal resolution. Six years of hourly load data were utilized, with the assumption that the load profile in 

2050 will have the same shape and thirty years of historical hourly capacity factors of combined wind and solar 

power were used to reflect short-term variability. Stochastic models have been suggested as an alternative to 

deterministic models for long-term studies involving large shares of variable renewable energy sources. This 

is because deterministic models base investment decisions on a single operational scenario, while stochastic 

models consider a variety of representative operational scenarios that may arise.  

The reserve needs were calculated in [48] based on the distribution of wind power variations. Load 

and short-term PV variations were assumed to be based on normal distribution, whereas other distributions 

were thought to be more precise for wind data [43], such as Weibull, Gamma, and Laplace [42][48][49]. While 

using different definitions to estimate wind power fluctuations in [50], affected the obtained distributions. 

Previously conducted studies also assumed that the probability density function of wind power variations is 

invariant, which was not supported by evidence. Wind variations and uncertainty are not normally distributed 

[51][52]. Furthermore, the central-limit theorem, which predicts the convergence to the normal distribution, 

did not apply in [12]. In the case of normal distribution, adjusting the reserve at three standard deviations (3σ) 

of the mean will absorb 99.7% of imbalances but the variations in wind power followed a normal distribution 

with longer tails [50], requiring more reserve to be absorbed [53][54]. The authors of [55] computed how many 

times the standard deviation value of the hourly variations and minute-to-minute fluctuations should be 

multiplied to get the 99.7% percentile value, they found that the standard deviation values have to be multiplied 

by about 5.6 to obtain the regulations calculated by the percentile value, and by around 3.4 to reach the load 

following determined by the percentile value. In contrast, the optimal confidence level in [41] was 3σ. The 

additional variability of wind was estimated to be a 2 MW standard deviation with each 100 MW wind farm 
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erected according to the operational data from wind farms, and the standard deviation multiplier was assumed 

to be 5 in the calculation of the regulating reserve required [56]. 

Determining extra operational reserves is a significant concern in power systems that target 

considerable wind penetration. For the same wind penetration level, the divergence in the estimated reserve 

sizes is attributed in [57] [58] to differences in reserve sizing methods utilized in different research. There is 

no common approach for calculating reserve requirements [59], so the question of how to estimate the required 

reserves to accommodate short-term variations at different wind power penetration levels is still open. The 

effects of wind variability on operational reserves are most noticeable in the time range of 10–15 minutes 

[41][60], therefore having a significant impact on secondary power reserves [43]. The dispatch captures 

variability over larger time scales than the dispatch period, therefore reserves must only cover variability during 

the dispatch period [59]. To overcome this issue, this paper proposes an improved reserve estimation 

methodology. The standard deviation multiplier is used to cover almost every incidence of wind fluctuation 

with a given degree of certainty. After performing a long-term analysis of short-term variations in wind 

generation with increasing penetration over five years, using various metrics from [18][19], the historical data 

available are used to create secure operating reserves since longer data sets with higher quality are essential to 

provide far more detail about the expected variations in wind power [61][16]. In addition, the best-fitted 

probability distribution function (PDF) to short-term wind variations will be studied, as it is more important 

than ever to model this variability with increasing shares of wind generation. The basic goals and structure of 

this paper are as follows: In Section 2, the paper begins with an overview of the characteristics of power ramps 

and the metrics used in measuring wind power variations, before applying these metrics to a practical case 

described in this section using real data recorded from aggregated wind farms between 2015 and 2020. This 

section also demonstrates the advantages of the probabilistic/statistical method over the other methods in 

reserve estimations. Second, in Section 3, the paper discusses the results of studying short-term variations, as 

well as modelling these variations by fitting various probability distribution functions (PDFs) to get the best-

fitted one. In addition, the paper proposes a method for estimating the required reserve at different confidence 

levels using the standard deviation multiplier for these variations, and the estimated reserves are evaluated. 

Finally, in Section 4, the paper summarizes the major findings and highlights the contribution. 

 

 

2. POWER RAMPS 

 

2.1. Characteristics of Power Ramps 

The power ramps may be up or down, and the ramp is defined as a ramp event when it has a sharp 

change in power within a short time scale [62], and the threshold value of its magnitude is selected to reveal 

the magnitude of power change at a defined time interval, which is hard to manage and can lead to grave 

problems in the next few hours or days [63], so it is user-defined based on the system operators' input [64] and 

is therefore differing between power systems [11]. The magnitude of ramp event is generally indicated for 

wind generation as a proportion of installed capacity or in megawatts. The time interval (Δt) used to identify 

the ramp in minutes/hours is determined by the user. Given the differences in capacity and available flexibility 

with which these events are handled across various power systems, no standard definition for the ramp event 

has been agreed upon to date [65][66]. Because the power signals for load/net-load are more stable than those 

for wind/PV, lower threshold values are given to load/net-load ramp events than to wind/PV ramp events. From 

the perspective view of the network operators, the down-ramps that occurred in the output power of wind/PV 

are often more difficult to control than up-ramps that could be handled with adjustment to schedules of other 

generators or, if necessary, by cutting wind/PV production. While the power system operators must adjust for 

the shortfall of wind/PV when downward ramps take place, by boosting production from the remaining 

generators available or by inserting additional generators to cover that deficit and maintain a balanced load. 

So, the threshold value of the ramp-down was chosen smaller than the ramp-up. For PV generation, diurnal up-

ramps that are expected from sunrise to midday and expected down-ramps, which are taking place from midday 

to sundown should not be characterised as ramp events [67]. 

 

2.2. Ramp Metrics 

The variability analysis can describe wind fluctuations that took place during the studied time to be 

employed by the grid operators to commit or dispatch the proper generation even in cases of considerable 

prediction errors [68]. The following metrics will be used in describing the power ramps within 15 minutes 

time intervals using the historical readings: 
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a. Ramp characteristic indicators (RCIs) 

The electricity systems continuously increase RG's installed capacity, impacting the ramping 

behaviour of RG. RCIs have been utilized to compare the ramping behaviour of RG in a power system across 

different years, and they can be used also in comparing the power ramping characteristics in different regions, 

where the statistical parameters of power ramps over a defined time period ∆t are divided by the average 

installed RG capacity over the year as follows: 

 

𝑅𝐶𝐼𝑚𝑎𝑥+/− =
∆𝑝𝑚𝑎𝑥+/−

𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑉𝑅𝐺 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(1) 

 

𝑅𝐶𝐼𝑅𝑅 =
𝑅𝑎𝑚𝑝𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 (𝑅𝑅)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑉𝑅𝐺 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(2) 

 

𝑅𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒 = ∆𝑝𝑚𝑎𝑥+ −  ∆𝑝𝑚𝑎𝑥− (3) 

 

Where +/↑ refers to the upward ramp, -/↓ refers to the downward ramp, ∆𝑝𝑚𝑎𝑥  is the maximum value 

of ramps over a defined time period, and  𝑅𝐶𝐼𝑚𝑎𝑥,𝑅𝑅 is the RCIs for the values of maximum and ramping range 

(RR). For the average ramp (∆𝑝𝑎𝑣𝑔) and standard deviation (σ), the RCIs are calculated as follows: 

 

𝑅𝐶𝐼𝑎𝑣𝑔+/− =
∆𝑝𝑎𝑣𝑔+/−

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑉𝑅𝐺 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(4) 

 

𝑅𝐶𝐼𝜎+/−
=

𝜎+/−

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑉𝑅𝐺 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(5) 

 

b. Coefficient of Variation (CV): 

It measures the spread of a dataset and compares the variability in the various distributions to illustrate 

the degree of variability with respect to the mean value [69][70], dividing the standard deviation by the average 

gives the CV that is calculated for both types of power ramps as follows: 

 

𝐶𝑉↑↓ =
𝜎 +/− 

∆𝑝𝑎𝑣𝑔+/−

 (6) 

 

In the time frame investigated, if the CV value is less than one, the variation is modest and the average 

value reflects the period's ramps. If the CV value is higher than one, the variation is high and the average in 

that period does not accurately reflect the power changes. The CV may also be used to compare the variability 

of various power systems. If the average value is positive, it signifies that throughout the investigated time the 

upward ramp was more prevalent, whereas a negative value indicates the ramp-down type was more prevalent. 

  

c. Ramp Regularity Factor (RRF): 

It is calculated by dividing the average value of ramps over the investigated time period by the 

maximum of the same type. 

 

𝑅𝑅𝐹 ↑↓=
∆𝑝𝑎𝑣𝑔+/−

∆𝑝𝑚𝑎𝑥+/−

  , 0˂𝑅𝑅𝐹˂1 (7) 

 

When the RRF is near to one, it indicates that the fluctuations are relatively constant as the difference 

between the average and the maximum values is small, while the values around 0 demonstrate that an unusually 

high ramp in this period is highly probable since the gap between the average and maximum values is large 

and the average does not properly reflect the power ramps in this interval. Accordingly, the power system 

operators should take the required precaution. 

 

d. Ramp Intensity Factor (RIF): 

It is used to assess ramp strength by dividing the ramp value (Δp ) in an investigated time period by 

the highest preceding ramp value in that time period with the same direction. The values of RIF that are near 0 

reflect minor ramps which may be disregarded, whereas values near 1 represent significant ramps. Hence, it 

could be used to categorize ramps. 
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𝑅𝐼𝐹 =
𝛥𝑝 +/− 

∆𝑝𝑚𝑎𝑥+/−

 0 ≤ 𝑅𝐼𝐹 ≤ 1 (8) 

 

The RIF is time-dependent, depending on Δt. when calculating RIF for each observational time t, the 

degree of ramp strength, in this case, is a function of t and Δt, as the RIF depends on a localized maximum 

value of preceding ramps at this observational time (𝑅𝐼𝐹𝑡 ↑↓ (𝑡, Δt)). Whilst when using the RIF to characterize 

monthly, seasonal, or yearly ramps over the investigated time period Δt, the degree of ramp strength is 

measured in regard to a globally maximum value of preceding ramps at this period. The RIF can also be used 

in measuring the intensity difference of the locally maximum ramp values at each observational time t 

compared to the globally maximum value that occurred over the same period for each type of ramp. If ∆𝑝𝑚𝑎𝑥𝑡  

is the maximum ramp value at an observational time t and ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑 is the maximum ramp value over a 

number of days studied, the RIF for locally maximum ramp values (𝑅𝐼𝐹𝑚) is expressed as follows: 

 

𝑅𝐼𝐹𝑚↑↓ =
∆𝑝𝑚𝑎𝑥𝑡+/−

ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑+/−

, 
0 ≤ 𝑅𝐼𝐹𝑚

≤ 1 
(9) 

 

e. Maximum Ramp Ratio (MRR): 

The ratio of the maximum values of both types of ramps over the investigated time period, with the 

maximum downward value divided by the maximum upward value. From the standpoint of grid operators, 

downward ramps in wind/PV are not easy to control compared to upward ramps, while the upward ramps in 

load/net-load are not easy to control compared to downward ramps. Hence, the highest ramps values of both 

types over the investigated time period are compared to obtain the MRR, as follows: 

 

MRR =
∆𝑝𝑚𝑎𝑥−

∆𝑝𝑚𝑎𝑥+

 (10) 

 

2.3. Reserve Estimation Methods  

The methods for estimating the required reserves differed greatly. The reserve calculation methods 

can be classified as empirical, deterministic, and probabilistic as follows:  

 

a. Deterministic  

The reserve is set so that the system would be capable of withstanding the loss of the largest generating 

unit, transmission line, or HVDC connections with other interconnected systems. In most power systems, it is 

calculated based on the largest generating unit (N-1), or even simultaneous loss of some power generating units 

(N-k). 

 

b. Empirical  

The empirical method is used to determine reserve requirements based on historical observations [42]. 

For example, the so-called ‘square root formula’ or ‘empirical formula’ has been used in continental Europe 

[71][72]. The reserve needs have been calculated depending on operators’ expertise and set assumptions based 

on their practices [73]. Any empirical method is necessarily restricted to variations or events that have 

happened before. The empirical methods are insensitive to the shares of wind power and can result in higher-

risk operational conditions for power systems with a high wind power penetration. 

 

c. Statistical/Probabilistic  

The power systems are currently moving toward statistical and probabilistic methods in reserve 

calculation that are based on the statistical characteristics of events in the power system due to the increase in 

RG shares. Therefore, both operational practice and integration analysis use the statistical analysis of wind 

power time series for reserve estimation. [41][56][74]. There is a major gap between the probabilistic approach 

and the other two methods. The deterministic method has the lowest complexity and data requirements but can 

ensure mainly security. The latter benefit may come at the disadvantage of an excessive amount of reserves. 

Finally, the deterministic method is not necessarily appropriate for various emerging risks, including those 

induced by VRG [75][45], and cannot be scaled to different time horizons. The last limitations refer even to 

the empirical method that is, by definition, "looking back". The use of empirical approaches often includes the 

possibility of missing such hazards that exist but have not yet been encountered. Probabilistic methods need 

more intensive data and computational efforts [76]. Nevertheless, they can deal with multiple and emerging 

risks, and they are particularly well-suited for stochastic effects such as RG forecast errors and variability. 

Moreover, they can determine the residual risk level, which permits informed decisions on the balance between 

security and costs. 
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2.4. Case Study 

Belgium plans to increase rapidly the RG shares for achieving its decarbonization goals, especially 

from wind generation, instead of nuclear plants, which will be phased out within four years and make up about 

a third of all installed generating capacity. The decommissioning plan in Figure 1 demonstrates the proposed 

phase-out time for each nuclear reactor, where the shutdown date for the latter reactor, D2, is set for December 

2025 [77]. As a result, wind capacity increased by 154.58% from 1834.71 MW at the end of 2015 to 4,670.83 

MW at the end of 2020. In 2020, RG (just wind and solar power) contributed to 18.6% of total electricity 

generation, up 31% from 2019. The distribution of onshore wind assets in Belgium is presented in Figure 2, 

the size of the bubbles symbolizes the installed capacity [77][47]. Onshore wind is expected to grow by 120-

360 MW per year until 2032, reaching 4.2-6.6 GW. Due to a lack of large open spaces and the need to keep 

setback distances because of noise pollution from wind turbines, onshore wind turbines are located as illustrated 

in [78] across more than 150 sites in small groups with 2.4 GW in 2020. As a result, despite their higher cost 

when compared to onshore wind farms, offshore wind farm construction has increased, making Belgium among 

the top five countries globally for total offshore wind installations in 2020. 2.262 GW, made up of 394 offshore 

wind turbines, has already been installed in the North Sea, taking up a total area of 238 km² and having the 

capacity to meet up to 10% of Belgium's total energy needs. Along with this increase in installed offshore 

capacity, there has also been an increase in capacity per turbine. Figure 3 shows the current offshore wind 

installations in the north sea and depicts a new 285 km² region made up of three zones that represent expected 

offshore wind expansions over the following years, with an additional capacity of 2 GW, hence, the total 

offshore wind capacity will reach 4.4 GW by 2028 [79][80]. Despite the fact that Belgium did not meet its 13% 

renewable energy share in energy objective for 2020, data demonstrate that the country is on the correct path 

and that meeting its 2030 objectives will not be difficult. The COVID-19 pandemic, which forced the 

government to extend the deadlines for commissioned projects while Belgium went through two rounds of 

extreme lockdown, may be the cause for not meeting the 2020 objectives [81]. The COVID-19 pandemic may 

be to blame for the 7% decrease in overall load compared to the preceding five years' average. The electricity 

consumption throughout the first phase of the lockdown was 25% lower than usual at some periods of the day. 

[77]. However, there were 119 hours in 2020 when renewable energy provided more than half of the consumed 

electricity, which has never happened previously. Moreover, nuclear power supplied 39.1% of demand, down 

from 48.7% in 2019. The majority of this decline was offset by RG [82][47]. 

Wind speeds at hub heights (above 70 m) for wind turbines typically range between 8.4 and 10.2 m/s 

on average [83]. The geographic distribution of Belgium's average wind speed is shown in Figure 4. Since the 

offshore wind speed is higher than that of onshore, the output power of the accompanying generator is also 

higher [84]. Additionally, the offshore winds do not significantly change with height and are more predictable 

and consistent than onshore winds, which somewhat reduces the level of wind power intermittency. Onshore 

wind turbine capacity factors in Belgium in 2019 were 30%, which is nearly half of the offshore wind turbine 

capacity factors of 53%. The power variations may be increased or decreased depending on the spatial 

distribution of wind capacity. The time scales and separation between wind farms have an impact on the 

correlation of wind power output. Longer-term variations in wind power from various sites have a high 

correlation, and as the correlation increases, the required reserve increases. Short-term variations in wind power 

from various sites are uncorrelated and random [85][86]. Considerable forecasting errors frequently occur, 

even with hourly forecasts, and have an impact on reserve needs. In [87], the authors reviewed how capacity 

adequacy regulations are applied to wind generation in different countries. In Belgium, Loss Of Load 

Expectation, or LOLE, is used to express the requirements for the goal level of system adequacy, which has 

been set to 3 h/year and 20 hours once every 20 years [58]. The wind power effect indirectly on the capacity 

market through adequacy assessment to determine the volume of strategic reserves that is done annually using 

a probabilistic analysis (Monte Carlo simulation), in which historical wind speeds and hourly dispatch models 

for various scenarios are used to calculate the volume needed to meet the LOLE target. Strategic reserves are 

distinct from and in addition to operating reserves. A strategic reserve is a committed volume of capacity that 

is maintained in reserve outside of the energy-only market. If certain requirements are satisfied, such as a 

scarcity of supply in the spot market or a price settlement above a particular electricity price, the reserve 

capacity is only used. In [58], the challenges, the recent statistics, and the future condition of wind and solar 

energy as the main intermittent RES used in Belgium were reviewed. Three types of reserves exist in Belgium. 

The primary reserve, known as the Frequency Containment Reserve (FCR), is responsible for maintaining the 

frequency within the range of 49.8 to 50.2 Hz. Its response time must be less than 30 seconds. The secondary 

reserve, known as the Automatic Frequency Restoration Reserve (aFRR), is designed to relieve pressure on 

the FCR by regulating the frequency to 50 Hz. Every ten seconds, all the power plants involved in the aFRR 

provision receive the set-point signal, which is derived from continuous measurements of the difference 

between import and export balances. Additionally, tertiary reserve, or manual Frequency Restoration Reserve 
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(mFRR), is utilized to alleviate the strain on the aFRR reserve, its response time ranging from a few minutes 

to 15 minutes. mFRR activates when aFRR gets saturated. A variety of sources, including operational 

generating units, non-operating units with short startup times, and distribution and transmission network 

customers, can provide the tertiary reserve [58]. However, Belgium's capacity mechanism is now being 

reviewed.  

Applying the ramp metrics discussed above, the variability of the output power recorded every 15 min 

from 2015 to 2019 of aggregated wind farms (onshore and offshore) in Belgium will be studied. Also, the best 

fit probability distribution to these short-term variations during this period will be studied, and the multiplier 

of the standard deviation of these variations will be investigated to estimate the reserve needs that cover these 

variations within a given degree of certainty. 

 

 
Figure 1. Belgian nuclear plants' phase-out schedule 

 

 
Figure 2. Geographical distribution of Belgium's installed onshore wind capacity [77][47] 
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Figure 3. Reserved areas for Belgium's existing and planned offshore wind farms [80] 

 

 
Figure 4. Map of Belgium's annual mean wind speed [88]. 

 
 

3. DATA AVAILABILITY 

The datasets analysed during the current study of aggregated wind farms' output power recorded every 

15 minutes in Belgium are available in [Wind-power generation (elia.be)] [89]. 

 

 

4. RESULTS AND DISCUSSION 

4.1. Analysis of Power Ramps Within 15 Minutes at Each Observational Time t Over the Five Years  

For the majority of observation times, the values of CV are about equal and greater than one, 

demonstrating the high variability of the output power within this short-time-interval; thus, it is not correct to 

rely on the average ramp value at these observation times, as it does not describe correctly the occurred ramps, 

see Figure 5. The values of CV↑ increase in the late evening and range from 0.88 to 1.85 over the five years, 

with average values ranging from 1.11 to 1.176, whereas the values of CV↓ range from 0.879 to 2, with average 

values ranging from 1.107 to 1.182. Hence, the CV values range and their average values for both types of 

ramps over the five years are about equal and did not change even with the increase in the installed capacity. 

The RRF↑ percentages across all observation times over the five years range from 4.42% to 25.59%, with 

average percentages ranging from 13.62 to 14.86%, whereas RRF↓ percentages over the five years range from 

3.95% to 25.7%, with average percentages ranging from 13.1 to 14.53%, see Figure 6. Therefore, the RRF 

values range and their average values for both types of ramps over the five years are about equal. Hence, while 

the installed capacity increased, the RRF values did not change. The low RRF values near zero indicate that 

the probability of occurrence of unforeseen high ramps is high, and also illustrate the high wind generation 

variability within this short-time interval so that the average ramp value does not constitute the actual variation. 

https://www.elia.be/en/grid-data/power-generation/wind-power-generation
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Figure 7(a) shows the RIFm↑ values at each observation time over the five years, which vary from 14.1% to 

100%, with average percentages ranging from 30.4% to 52.6% and having high values in the late evening and 

early morning. In Figure 7(b), the RIFm↓ values vary from 14.27% to 100%, with average percentages ranging 

from 29.67% to 49.28%. The intensity of the local maximum values for the two ramps types varies greatly 

between times of observation, and this is reflected in the range of RIFm. 

In the most of observation times in Figure 8, the MRR values over the five years seem fairly close to 

each other, but the range is different. However, the average percentages of MRR over the five years are about 

equal and greater than 100% (106.5%-119.5%), implying that the downward ramps have higher maximum 

values than upward ramps to some extent. The results of applying the ramp metrics at all observation times in 

the five years are summarized in Table 1, demonstrating the range and the average percentage of each metric.  

 

  
(a) (b) 

Figure 5. Comparison of CV at each time of observation for each year from 2015 to 2019 (a) CV↑  (b) CV↓ 

 

  
(a) (b) 

Figure 6. Comparison of RRF at each time of observation for each year from 2015-2019 (a) RRF↑  (b) RRF↓ 

 

  
(a) (b) 

Figure 7. Comparison of RIFm at each time of observation for each year from 2015-2019 (a) RIFm↑ (b) RIFm↓ 
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Figure 8. Comparison between MRR values at each time of observation for each year from 2015 to 2019 

 

While the average values and the standard deviations of both types of ramps across all the observation 

times studied in Figures 9-11 increase as the capacity of the wind installations increases, RCIs for the five years 

are approximately equal, see Figures 12, 13. Figure 9(a) shows that the average ramp values at all observation 

times are around zero which confirms the results in [50]. The average ramp values tend to be positive between 

10:30 and 22:30, indicating that the upward ramps occur mostly in this period, and tend to be negative in the 

other periods, indicating that the downward ramps occur mostly in these periods, which shows the changes in 

output power of wind between up and down ramps throughout the day long. The relative frequency (RF) for 

each type of ramp in Figure 17 confirms this result. The comparison between the average values and the 

standard deviations of both types of ramps shows that the standard deviation values are equal to or slightly 

greater than the average values, demonstrating the high level of variability in wind power within this short 

period; thus, the average ramp values do not characterize the actual ramps. 

The maximum values of both types of ramps and RR increase as the installed wind capacity increases 

as shown in Figures 14, 16(a), but the corresponding RCIs approximately remain constant, see Figures 15, 

16(b). The results reveal that the maximum values of both types of power ramps within 15 minutes can exceed 

25% of the capacity of the wind installations. 

In Figure 17(a), the numbers of upward ramps over the five years studied are nearly equal across all 

observation times studied, but increase between 10:30 and 22:30, where the relative ramp-up frequency 

exceeds 50% during this period. While in Figure.17(b), the total numbers of downward power ramps nearly 

have the same values in most observation times but their numbers decrease during the period between 10:30 

and 22:30, as the relative ramp-down frequency falls below 50% during this period. This reveals that the 

number of downward power ramps exceeds the number of upward power ramps in the morning, while in the 

evening, the number of upward power ramps exceeds the number of downward power ramps. This is because 

wind speeds are lower in the morning and as the temperature rises during the day, wind speeds also rise due to 

pressure differences and thermal convection. Based on a dataset for just two years, this daily cycle was noticed 

in the long-term ramps (more than 2h) in [11], whereas there was no clear diurnal pattern in the short-term 

ramps. A rapid change in the number of power ramps occurred between 3:00 AM and 3:30 AM, from a large 

number of downward ramps at 3:00 AM to a high number of upward ramps at 3:30 AM, as seen also by the 

average ramp values shown in Figures 9(a),10, and 12. This rapid change appeared also in [50] at 2:34 AM 

when short-term fluctuations in the output power of wind farms in Japan were studied. This was due to a steep 

decline in wind generation when the wind speed surpassed the generator's cutout speed, which is typically set 

to 25 m/s. While the ranges and average values of the studied ramp variables increase by increasing the capacity 

of the wind installations, RCIs illustrate that these variables nearly have fixed percentages of the average 

installed wind capacity and can be estimated in the planning stage when increasing the share of wind 

generation, see Table 1.  
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(a) (b) 

Figure 9. Comparison of the average ramp values and the standard deviation of ramps at each time of 

observation for each year from 2015-2019 (a) Average ramp values  (b) The standard deviations 

 

  
(a) (b) 

Figure 10. Comparison between the average values of both types of ramps at each time of observation for 

each year from 2015 to 2019 (a) The average values of upward ramps  (b) The average values of downward 

ramps 

 

  
(a) (b) 

Figure 11. (a) The standard deviation of upward ramps  (b) The standard deviation of downward ramps 
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(a) (b) 

Figure 12. Comparison of RCIavg at each observation time for each year (2015-2019)  (a) RCIavg+  (b) RCIavg- 

 

  
(a) (b) 

Figure 13. Comparison of RCIσ at each time of observation for each year from 2015-2019 (a) RCIσ+  (b) 

RCIσ- 

 

  
(a) (b) 

Figure 14. Comparison of the maximum values of ramps at each observational time for each year from 2015 

to 2019 (a) The maximum values of upward ramps  (b) The maximum values of downward ramps 
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(a) (b) 

Figure 15. Comparison of RCImax at each time of observation over the five years (a) RCImax+  (b) RCImax- 

 

 

  
(a) (b) 

Figure 16. (a) Comparison of the ramping range at each time of observation for each year from 2015 to 2019 

(b) Comparison of RCIramping range at each observational time for each year from 2015 to 2019 

 

 

  
(a) (b) 

Figure 17. Comparison of the relative frequency of ramps at each observational time for each year from 2015 

to 2019 (a) The relative ramp-up frequency  (b) The relative ramp-down frequency 
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Table 1. The range and average percentages of ramp metrics across all times of observation in the five years 
Metric 2015 2016 2017 2018 2019 

Avg. Range Avg. Range Avg. Range Avg. Range Avg. Range 

From To From To From To From To From To 

RIFm↑ 43.07 23.39 100 52.68 25.74 100 41.65 16.97 100 30.46 14.1 100 47.06 20.41 100 

RIFm↓ 49.28 26.45 100 47.14 22.74 100 29.67 14.27 100 46.42 23.38 100 43.49 23.76 100 

RCIRR 16.42 8.91 26.65 14.84 9.32 26.72 15.55 8.70 32.52 14.94 8.06 31.80 17.32 9.73 32.89 

RCImax↑ 8.41 4.57 19.52 7.15 3.50 13.58 7.58 3.09 18.21 7.67 3.56 25.22 8.74 3.79 18.57 

RCImax↓ 8.01 4.30 16.25 7.69 3.71 20.39 7.97 3.83 26.85 7.27 3.65 15.60 8.58 4.69 19.74 

RCIavg↑ 1.11 0.85 1.49 0.99 0.75 1.22 0.98 0.72 1.29 0.95 0.79 1.29 1.06 0.81 1.55 

RCIavg↓ 1.09 0.83 1.49 0.99 0.74 1.47 0.96 0.75 1.33 0.93 0.65 1.45 1.04 0.77 1.80 

RCIσ↑ 1.23 0.86 2.07 1.12 0.76 1.58 1.14 0.69 1.77 1.10 0.81 2.07 1.26 0.77 1.97 

RCIσ↓ 1.2 0.83 1.75 1.15 0.74 1.87 1.13 0.75 2.12 1.06 0.71 1.75 1.22 0.85 1.99 

CV↑ 111.1 88.82 158.0 112.2 90.12 144.4 115.4 92.62 169.99 115.7 88.24 185.3 117.6 93.7 157.5 

CV↓ 110.7 87.9 139.3 115.5 93.10 165.3 118.2 94.68 200.4 113.8 88.1 149.8 116.8 94.49 159.1 

RRF↑ 14.48 6.86 23.73 14.86 6.97 24.18 14.22 5.71 25.59 13.87 4.42 24.98 13.62 6.16 24.63 

RRF↓ 14.53 6.82 22.02 14.01 5.51 23.82 13.25 3.95 22.54 13.99 7.09 25.70 13.10 5.89 21.75 

MRR 106.5 27.4 313.96 116.7 38.64 322.6 119.5 26.61 473.4 107.2 18.42 270.2 112.2 28.63 312.0 

 

 

3.2. Monthly Analysis of Power Ramps Over the Five Years  

Table 2 shows the range and the average percentages of ramp metrics for both types of ramps within 

15 minutes time intervals across all months in the five years, which illustrates that these variables nearly have 

fixed percentages of the average installed capacity, therefore they can be estimated in the planning stage when 

increasing the share of wind generation. The results of CV↑ for each month in the five years illustrate that all 

months have approximately equal values except to some extent July 2018. The average percentages of CV↑ 

over the five years are equal and exceed 100% (111.86%-118.58%). The percentage of CV↑ across all months 

over the five is between 91.46% and 176.17%, with all months in 2019 above 100%. Also, the CV↓ values 

over the five years are about equal and their average percentages are equal and more than 100% (110.54%-

119.66%). The percentage of CV↓ across all months over the five is between 95.51% and 143.77%, with all 

months in 2016 above 100%. Accordingly, the five years are nearly similar in range and average of CV values 

for both types of ramps. The CV values of most months are more than one, indicating the high wind variability 

and the average ramp value in these months can not be used to express the actual ramps. 

For both types of ramps, the range and the average values of RRF in the five years are equal. These 

low percentages of RRF in all months indicate that an unusually high ramp is highly probable since the gap 

between the average and maximum values is large and the average does not properly reflect the occurred ramps. 

Accordingly, adequate reserves should be provided for those severe, unexpectedly ramps. 

The intensity degree of the highest ramp varies greatly between months, as the percentage of RIFm↑ 

across all months in the studied years ranges from 26.04% to 100%, with an average percentage between 

46.59% and 78.66%, and all the studied years are above 65% except 2018 (46.59%). The RIFm↑ percentage of 

100% repeated twice in July and once in March, June, and October. While RIFm↓ percentages range from 

34.24% to 100%, with average percentages between 49.84% and 69.83%, and all the studied years are above 

63% except 2017 (49.84%). The RIFm↓ percentage of 100% repeated twice in February and once in January, 

October, and November. 

The range and average values of MMR across all months in the five years are roughly equal, with 

MRR ranging from 45.86% to 207.93%, with an average percentage in the five years between 90.7% and 

117.3%. The MRR in July and August is less than 100% over the five years, indicating the maximum downward 

ramps is less than that of upward ramps. For seasonal analysis, the MRR over the five years is less than 100% 

in the summer, and the highest values for up and down ramps are quite convergent in the fall. 

Compared to other seasons, the RCIavg values of both types of ramps over the five years are high in 

the fall (their percentages >1%), especially in November. In [50], the maximum ramp values in November 

were larger than in the other months. The RCIσ percentages are more than 1% in most months and their 

percentages are slightly more than that of RCIavg over the five years for both types of ramps, see Table 2. 

The RCImax↑ percentages across all months in the five years are between 6.57% and 25.22%, with 

average percentages between 10.51% and 14.01%, while the RCImax↓ percentages are between 5.83% and 

26.85%, with average percentages between 10.75% and 13.03%. The range and average percentages of both 

types of RCImax are about equal. The RCImax↑ percentages over the five years are not less than 10% in August 

and all months of 2019 except May. The RCImax↓ percentages over the five years are not less than 10% in 

October and November. The RCIRR percentages over the five years are between 12.4% and 39.76%, with 

average percentages between 21.27% and 26.32%.  
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Table 2. The range and average percentage of ramp metrics across all months in the five years 
Ramp 

Metrics 

 
2015 

  
2016 

  
2017 

  
2018 

  
2019 

 

Avg. Range Avg. Range Avg. Range Avg. Range Avg. Range 

From To From To From To From To From To 

RCIRR 24.37 18.76 31.86 21.27 17.19 26.91 24.64 17.83 39.76 22.70 12.40 36.79 26.32 19.12 35.09 

MRR 95.25 57.24 141.9 103.1 69.52 153.9 117.3 51.42 207.9 103.1 45.86 146.2 90.74 62.60 179.2 

Upward Power Ramps 

RCImax 12.79 9.18 19.52 10.51 8.53 13.58 11.61 7.00 18.21 11.86 6.57 25.22 14.01 9.25 18.57 

RCIavg 1.11 0.90 1.41 1.00 0.81 1.28 0.98 0.75 1.31 0.95 0.73 1.13 1.07 0.87 1.40 

RCIσ 1.24 1.04 1.59 1.12 0.91 1.32 1.14 0.89 1.51 1.10 0.72 1.35 1.26 0.98 1.57 

CV 111.9 91.46 128.4 112.6 97.60 125.7 116.4 94.26 139.7 116.4 97.32 176.2 118.6 105.9 136.7 

RRF 9.21 5.93 13.17 9.61 7.32 13.31 8.99 6.14 13.68 9.53 2.91 15.31 7.83 5.48 10.62 

RIFm 65.64 47.04 100.0 78.66 62.84 100.0 65.15 38.47 100.0 46.59 26.04 100.0 74.68 49.81 100.0 

Downward Power Ramps 

RCImax 11.58 7.85 16.25 10.75 7.36 16.31 13.03 9.19 26.85 10.84 5.83 15.60 12.31 7.36 19.74 

RCIavg 1.09 0.87 1.41 0.99 0.77 1.29 0.96 0.73 1.28 0.94 0.68 1.12 1.05 0.88 1.38 

RCIσ 1.20 1.01 1.65 1.13 0.85 1.42 1.13 0.89 1.44 1.05 0.74 1.31 1.22 0.91 1.57 

CV 110.5 95.51 121.5 114.1 99.56 129.1 119.7 99.27 143.8 113.4 99.06 142.4 116.9 99.37 134.8 

RRF 9.70 6.10 14.08 9.54 6.10 13.86 7.94 3.34 12.18 9.07 5.86 12.88 8.99 5.30 12.38 

RIFm 69.83 48.31 100.0 67.08 45.12 100.0 49.84 34.24 100.0 66.68 37.36 100.0 63.22 37.29 100.0 

 

3.3. Yearly Analysis of Power Ramps Over the Five Years  

Although the installed wind capacity over the five years is nearly doubled, comparing ramp metrics 

percentages in 2015 and 2019 reveals that they have very close percentages for all ramp metrics except the 

MRR, see Table 3. The values of RIFm are presented in Table 3 as a multiplier of the standard deviation (𝜆σ), 

as the yearly value of RIFm is one. For upward ramps, the values of  𝜆 range from 11.09 to 21.66, while they 

range from 12.49 to 22.51 for downward ramps. These nearly fixed percentages of ramp metrics over the five 

years aid in dealing with wind variability and uncertainty in power system operation and planning. The results 

also demonstrate that the maximum power ramp during this short time interval may exceed 25% of the average 

capacity of wind installations although the percentages of the average power ramps are about 1%, this appears 

clearly in the percentages of RRF which are less than 8%. The percentages of CV over the five years exceed 

100%, demonstrating the high variability of power during this short period. 

 

Table 3. The yearly results of ramp metrics over the five years 
Ramp Metrics 2015 2016 2017 2018 2019 Average 

RCIRR 35.77% 29.89% 45.05% 40.82% 38.30% 37.97% 

MRR 83.25% 120.08% 147.47% 61.86% 106.32% 103.80% 

Upward Power Ramps 

RCImax 19.52% 13.58% 18.21% 25.22% 18.57% 19.02% 
RCIavg 1.11% 1.00% 0.99% 0.95% 1.07% 1.02% 

RCIσ 1.26% 1.13% 1.16% 1.12% 1.28% 1.19% 

CV 113.22% 113.49% 117.67% 117.40% 120.14% 116.38% 
RRF 5.70% 7.36% 5.41% 3.78% 5.74% 5.60% 

RIFm (𝜆 σ) 14.6 σ 11.09 σ 14.85 σ 21.66 σ 13.66 σ 15.17 σ 

Downward Power Ramps 

RCImax 16.25% 16.31% 26.85% 15.60% 19.74% 18.95% 

RCIavg 1.08% 0.99% 0.96% 0.94% 1.05% 1.00% 
RCIσ 1.21% 1.15% 1.15% 1.08% 1.25% 1.17% 

CV 112.08% 116.68% 120.34% 114.82% 118.62% 116.51% 

RRF 6.67% 6.06% 3.56% 6.01% 5.32% 5.52% 

RIFm (𝜆 σ) 12.49 σ 13.28 σ 22.51 σ 13.63 σ 14.99 σ 15.38 σ 

 

3.4. Fitting PDF For Short-Term Wind Variations 

The goodness of fit tests examines how well each distribution function matches the data. The results 

assist to select the best model for the data. EasyFit 5.5 software is a data analysis tool that contains a large 

number of different distribution types (over 60), which enables selecting the probability distribution that best 

matches the data. The following goodness of fit tests are supported by the program: Kolmogorov-Smirnov, 

Anderson-Darling, and Chi-Squared. Table 4 presents the results of the goodness of fit tests for the best-fitted 

probability distributions to variations of wind power within 15 minutes for each year from 2015 to 2019, while 

Table 5 shows the results of fitting these variations by the normal distribution. The results illustrate that the 

best-fitted PDFs to wind variations are Laplace PDF and Error PDF, whereas the rank of fitting the wind 

variations by a normal distribution varies from 9 to 15 over the five years and according to these tests, fitting 

these variations by a normal distribution is rejected.  
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Table 4. The results of the goodness of fit tests for the best-fitted probability distributions to variations of 

wind power within 15 minutes from 2015 to 2019 
Year Best fit 

PDF 
Parameters Goodness of fitting 

Kolmogorov-
Smirnov 

Anderson-Darling Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

2015 Laplace =0.01064  =0.08953 0.01006 1 0.43034 1 11.481 1 

Error k=1.0528  =132.95  =0.08953 0.01454 2 1.2298 2 22.878 2 
2016 Laplace =0.01108  =-0.20296 0.01529 1 1.3971 1 19.694 2 

Error k=1.0  =127.66  =-0.20296 0.01529 2 1.3971 2 19.694 1 

2017 Laplace =0.0092  =0.33484 0.02699 1 3.3532 1 45.681 1 
Error k=1.0  =153.65  =0.33484 0.02699 2 3.3532 2 45.681 2 

2018 Laplace =0.00763  =-0.25495 0.02384 1 2.7586 1 22.162 2 

Error k=1.0  =185.46  =-0.25495 0.02384 2 2.7586 2 22.162 1 
2019 Laplace =0.00581  =6.1644E-5 0.0203 1 2.4569 1 26.105 2 

Error k=1.0  =243.26  =6.1644E-5 0.0203 2 2.4569 2 26.105 1 

 

Table 5. The results of the goodness of fit tests for fitting the normal distribution to variations of wind power 

within 15 minutes from 2015 to 2019 
Year Parameters of normal distribution Goodness of fitting 

Kolmogorov-Smirnov Anderson-Darling Chi-Squared 

Statistic Rank Result Statistic Rank Result Statistic Rank Result 

2015 =132.95  =0.08953 0.0685 11 Reject 47.738 11 Reject 446.71 11 Reject 

2016 =127.66  =-0.20296 0.07422 12 Reject 57.724 10 Reject 538.13 9 Reject 
2017 =153.65  =0.33484 0.08053 15 Reject 62.511 13 Reject 664.75 15 Reject 

2018 =185.46  =-0.25495 0.08284 14 Reject 60.198 12 Reject 565.45 15 Reject 

2019 =243.26  =6.1644E-5 0.07655 9 Reject 62.46 12 Reject 596.44 11 Reject 

 

The reserve required to cover these short-term variations within a given degree of certainty over the 

five years is measured as a multiplier of the standard deviation of these variations. Table 6 presents the 

multiplier of standard deviation for different confidence levels over the five years and also presents these 

confidence levels as a percentage of average installed wind capacity. As shown in Table 6, the 3σ rule does not 

cover 99.7% of the short-term variations, and it just covers from 98.19%-98.38%, confirming the results 

obtained by rejecting the coverage of short-term wind variations by the normal distribution. The multiplier of 

standard deviation for achieving a confidence level of 99.7% over the five years is between “4.71-5.11”. While 

for achieving a confidence level of 99.9%, it is between “6.12-6.72”. If the confidence level decreases to 99%, 

the multiplier is between “3.46-3.68”. The standard deviation of these variations as a percentage of average 

capacity of the wind installations over the five years is between “1.45-1.65%”. Historical patterns of measured 

output power from wind farms are used to estimate reserves. Accordingly, the multiplier of standard deviation 

for each confidence level over the five years is within a very narrow band and also the standard deviation of 

short–term variation as a percentage of the average capacity of wind installations. As a result, the amount of 

operational reserve caused by wind can be calculated as a function of the capacity of wind installations using 

the average value of the multiplier over the five years (𝛌avg 5y) for each confidence level. Therefore, the required 

reserve for short-term wind variation at different confidence levels can be estimated in 2020 as follows: 

 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = λavg 5y  ∗  𝜎 

 

(11) 

𝜎 = C ∗ average installed capacity 

 

(12) 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = λavg 5y  ∗ C ∗ average installed capacity 

 

(13) 

 

Where C represents the average standard deviation percentage over the five years. Comparing the 

estimated reserve in 2020 with that calculated, as shown in Table 7, illustrates that the percentage error at 

different confidence levels is less than 10% (5.3%-9.2%).  

Figure 18 depicts the nonlinear relationship between the required reserve at various confidence levels and the 

installed wind capacity, and it also demonstrates that the required reserve increases as the capacity of wind 

installations increases.  
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Table 6. The standard deviation of short-term wind variations as a reserve measure 
year 2015 2016 2017 2018 2019 

Average installed 

capacity (MW) 

1849.58 1960.91 2439.07 2922.09 3506.33 

σ 30.597 (1.65%) 29.717 (1.52%) 36.78 (1.51%) 42.345 (1.45%) 57.79 (1.65%) 

3σ 98.38% (4.96%) 98.19% (4.55%) 98.27% (4.52%) 98.37% (4.35%) 98.28% (4.94%) 

99% 3.47σ (5.74%) 3.68σ (5.58%) 3.518σ (5.31%) 3.465σ (5.02%) 3.582σ (5.9%) 
99.7% 4.719σ (7.81%) 5.09σ (7.71%) 4.94σ (7.45%) 4.768σ (6.91%) 5.11σ (8.42%) 

99.99% 6.12 σ (10.12%) 6.195σ (9.39%) 6.21σ (9.36%) 6.544 (9.48%) 6.724σ (11.08%) 

 

Table 7. Estimation of the required reserve at different confidence levels for short-term wind variations by 

using the standard deviation as a reserve measure 
Standard deviation and Confidence levels Average from 2015-2019 2020 Error% 

Estimation (MW) Calculation (MW) 

σ 1.556% 63.133 65.01 2.89% 

3σ 4.668% 189.4 195.04 2.89% 

99% 3.543σ 223.68 236.23 5.3% 
99.7% 4.9254σ 310.955 332.65 6.5% 

99.99% 6.3586σ 401.44 442.23 9.2% 

 

 
Figure 18. The relation between the required reserve at different confidence levels and the installed wind 

capacity 

 

 

5. CONCLUSION 

The increasing shares of wind generation have led to more variations and ramp events in netload, thus 

acquiring more information about such variations is necessary for the power system operators. The linkage 

between ramp events and meteorological phenomena is highly dependent on the studied case, in addition, a 

large proportion of these events has not yet been linked to meteorological phenomena. 

The actual output power variability of aggregated wind farms in a short period (15 minutes) has been 

studied over five years from 2015 to 2019 using ramp metrics, which demonstrated that the output power over 

the five years nearly has similar ramping behaviour, although the share of wind generation is nearly doubled. 

Therefore, the ramping behaviour can be estimated in the planning stage when increasing the share of wind 

generation, as these nearly fixed percentages of ramp metrics can facilitate dealing with wind variability and 

uncertainty in power system operation and planning. The results reveal that the highest values of both types of 

ramps within 15 minutes can exceed 25% of the capacity of wind installations although the percentage of the 

average power ramps is about 1%. The seasonal analysis demonstrated that the maximum ramp ratio (MRR) 

over the five years is less than 100% in the summer, indicating the maximum value of downward ramps is less 

than that of upward ramps, whereas the highest values for both ramp types are relatively convergent in the fall. 

For both types of ramps, the values of the ramp characteristic indicator for the average value (RCIavg) over the 

five years are high in the fall, especially in November. The comparison of the average values and the standard 

deviation of both ramp types has shown that the standard deviation values are equal to or slightly greater than 

the average values, so the percentages of coefficient of variation (CV) over the five years exceed 100%, 

demonstrating the high variability in wind power within this short period; thus, the average values do not 

describe the real ramps.  

The probability distribution of short-term wind power variations that are observed in current system 

operation is important for modelling the variations that can be expected in future scenarios. For modelling these 

variations, the various shapes of probability distributions have been examined. The results illustrate that the 
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best-fitted PDFs to wind variations are Laplace PDF and Error PDF, whereas the rank of fitting the wind 

variations by a normal distribution varies from 9 to 15 over the five years and according to the goodness of fit 

tests, fitting these variations by a normal distribution is rejected. The multiplier of the standard deviation of 

short-term variations is used for measuring the required reserve for these variations. The results demonstrated 

that the 3σ rule does not cover 99.7% of the short-term variations, and it just covers 98.19%-98.38%, 

confirming the results obtained by rejecting the coverage of short-term wind variations by the normal 

distribution that has resulted in a reserve underestimation at a given confidence level. The multiplier of standard 

deviation for achieving a confidence level of 99.7% over the five years is between “4.71-5.11”. While for 

achieving a confidence level of 99.9%, it is between “6.12-6.72”. If the confidence level decreases to 99%, the 

multiplier is between “3.46-3.68”. The standard deviation of these variations as a percentage of average 

capacity of the wind installations over the five years is between “1.45-1.65%”. Therefore, the multiplier of 

standard deviation for each confidence level over the five years is within a very narrow band and also, the 

standard deviation of short–term variations as a percentage of the average capacity of wind installations. Using 

the average value of the multiplier over the five years (𝛌avg 5y) for each confidence level, the required reserve 

for short-term wind variations at different confidence levels has been estimated. Comparing the estimated 

reserve with that calculated has illustrated that the percentage of error at different confidence levels is less than 

10% (5.3%-9.2%). The paper also illustrated that the required reserve at various confidence levels increases 

nonlinearly as the capacity of wind installations increases. Finally, this method is based on high-resolution 

historical data being available and the data should be updated on a regular basis with increasing wind 

penetration level, e.g. once a year, to capture the stochastic characteristics of recently measured wind power 

and to incorporate any smoothing effects. This also means that wind generation was already operational at the 

time of the study. Time series with a relevant resolution of up to 10-15 minutes are necessary to study short-

term variations in wind generation. 
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