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 In the burgeoning field of Artificial Intelligence (AI) and its notable subsets, 

such as Deep Learning (DL), there is evidence of its transformative impact in 

assisting clinicians, particularly in diagnosing scoliosis. AI is unrivaled for its 

speed and precision in analyzing medical images, including X-rays and 

computed tomography (CT) scans. However, the path does not lack obstacles. 

Biases, unanticipated outcomes, and false positive and negative predictions 

present significant challenges. Our research employed three complex 

experimental sets, each focusing on adapting the U-Net architecture. Through 

a nuanced combination of feed-forward neural network (FFNN) 

configurations and hyperparameters, we endeavored to determine the most 

effective nonlinear regression model configuration for predicting the Cobb 

angle. This was done with the dual purpose of reducing AI training time 

without sacrificing predictive accuracy. Utilizing the capabilities of the 

PyTorch framework, we meticulously crafted and refined the deep learning 

models for each of the three experiments, focusing on an FFFN dropout rate 

of p=0.45. The Root Mean Square Error (RMSE), the number of epochs, and 

the number of nodes spanning three hidden layers in each FFFN were utilized 

as crucial performance metrics while a base learning rate of 0.001 was 

maintained. Notably, during the optimization phase, one of the experiments 

incorporated a learning rate scheduler to protect against potential pitfalls such 

as local minima and saddle points. A judiciously incorporated Early Stopping 

technique, triggered between the patience range of 5-10 epochs, ensured model 

stability as the Mean Squared Error (MSE) plateau loss approached 

approximately 1. Consequently, the model converged between 50 and 82 

epochs. We hypothesize that our proposed architecture holds promise for 

future refinements, conditioned on assiduous experimentation with an array of 

medical deep learning paradigms. 
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1. INTRODUCTION  

Scoliosis is characterized by vertebral rotation and lateral curvature that deviates from the typical 

vertical alignment of the spine [1]. On a posterior-anterior radiograph, a definitive diagnosis of scoliosis 

requires a spinal angulation of at least 10° accompanied by vertebral rotation. The diverse causes of scoliosis 

include congenital, neuromuscular, syndrome-related, idiopathic, and secondary conditions. Clinicians 

predominantly diagnose idiopathic scoliosis as the most prevalent form. In severe cases, scoliosis can cause 
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life-threatening complications. For instance, an excessive curvature of the spine may obstruct the thoracic 

cavity, limiting lung function. 

The introduction of Artificial Intelligence (AI), specifically its subset Machine Learning (ML), has 

the potential to revolutionize medical diagnostics. ML enables computers to refine predictions based on 

previous discrepancies, utilizing vast biological datasets to improve healthcare [2]. Essentially, ML can 

enhance a machine's task execution prowess with suitable datasets. AI can guarantee that vital clinical 

indicators are not overlooked by assisting in interpreting X-rays, MRIs, and CT scans. Nevertheless, it is 

essential to recognize that AI's role in medical diagnostics is supplementary. It aids clinicians, particularly 

radiologists, without replacing their knowledge. The final diagnosis is the exclusive domain of medical 

professionals. 

In the pursuit of advancing and improving Cobb angle detection for scoliosis, researchers have 

extensively used AI techniques. These investigations demonstrate AI's adaptability and potential impact on the 

healthcare paradigm. Convolutional Neural Networks (CNN) were used in [3] to evaluate spinal alignment 

using moiré patterns extracted from photographs. These patterns are the result of the imaging sensor's limited 

resolution. They predicted the locations of 17 vertebral bodies in 10,788 images using the AlexNet CNN model. 

The mean absolute error (MAE) of the model is closely aligned with the analyses of the experts, based on a 

comparison between the model's outputs and their analyses. However, factors such as the clinician's ability to 

interpret images and the limitations of image acquisition and equipment affected the accuracy of the model. 

The intraobserver and interobserver error of 3 to 10° inherent to traditional Cobb angle measurement 

techniques was emphasized in [4]. These patterns are the result of the imaging sensor's limited resolution. They 

predicted the locations of 17 vertebral bodies in 10,788 images using the AlexNet CNN model. The mean 

absolute error (MAE) of the model is closely aligned with the analyses of the experts, based on a comparison 

between the model's outputs and their analyses. However, factors such as the clinician's ability to interpret 

images and the limitations of image acquisition and equipment affected the accuracy of the model. 

Scoliosis screening using portable ultrasound was implemented in [5], reducing patients' exposure to 

radiation-laden MRIs and X-rays. Inception v1 (GoogleNet) was trained on their dataset of 2,752 ultrasound 

images, with an additional 747 images set aside for testing. The model's consistent and reliable performance 

suggested the potential for ultrasound-based spinal detection, though expanding the dataset could further refine 

accuracy. Similarly, the Mask R-CNN model was deployed in [6] to measure the Cobb angle from chest X-

rays. With a dataset of 248 X-ray images from lung cancer patients, they identified vertebral bodies and the 

respective endplates of each vertebral section. Two radiologists manually cross-verified the model's results, 

underscoring the potential of a computer-aided approach. However, training the CNN on a more extensive 

dataset, especially of standard spinal curve radiographs, could enhance outcomes. 

An automated technique using anteroposterior (AP) X-ray images was proposed in [7]. Using U-Net, 

Dense U-Net, and Residual U-Net deep learning CNN models, they segmented vertebrae from 35 AP spinal 

X-ray images and estimated the Cobb angle. Residual U-Net exhibited the best segmentation results among the 

three, reflecting manual evaluations. The limitation of this method was its emphasis on Cobb angle calculation 

rather than the identification and classification of spinal deformities. A deep learning keypoint detection 

technology was developed by [8] that demonstrated high reliability in automated Cobb angle measurement, 

especially when the angle did not exceed 90°, offering the advantage of locating multiple curves in scoliosis 

cases simultaneously in a short period. However, the study acknowledged the need for verification in more 

cases in the future. A deep learning algorithm was introduced in [9] with a three-dimensional (3D) depth sensor, 

considering the influence of garments, which showed a high correlation with actual Cobb angles and offered a 

valuable alternative for scoliosis examination with underwear, addressing the psychological burden associated 

with naked body imaging in children and adolescents. On the other hand, a method for locating vertebral center 

points was proposed in [10] and measuring the Cobb angle based on deep learning, which exhibited good 

reliability compared to traditional manual measurement methods, indicating its effectiveness in quick scoliosis 

detection. However, the paper did not extensively discuss the limitations or potential areas of improvement for 

the proposed method. 

Deep transfer learning was utilized in [11] to detect scoliosis and spondylolisthesis, achieving high 

diagnostic accuracy without requiring any measurements, thereby streamlining the diagnostic process. 

However, the study did not delve into the potential limitations or challenges of the approach. A convolutional 

neural network was introduced in [12] for automated Cobb angle measurement in adolescent idiopathic 

scoliosis, demonstrating up to 93.6% accuracy and excellent reliability compared to clinicians' measurements. 

This method holds promise for clinical application, although its adaptability to varied clinical settings remains 

to be explored. SpineHRNet was developed in [13], a neural network capable of predicting endplate landmarks 

and computing Cobb angles from smartphone-acquired scoliosis radiograph images, showcasing its potential 

for telemedicine and auto-diagnosis. However, the study's applicability across different smartphone devices 
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and image qualities warrants further investigation. Collectively, these studies underscore the potential of deep 

learning in enhancing scoliosis diagnosis, while also highlighting areas necessitating further research. 

While AI's capabilities are vast, obstacles remain. Its output quality is inextricably tied to the training 

data, making it susceptible to biases introduced by non-representative data. Overfitting, in which an excessively 

complex model memorizes rather than learns, can inhibit performance on new data [14]. In addition, AI 

predictions can manifest as false positives and false negatives. These inaccuracies, which result from data 

biases, overfitting, or obsolete models, require cautious interpretation. Therefore, this paper aims to design and 

evaluate a deep learning architecture for early scoliosis detection, balancing prediction accuracy with efficient 

training time, by developing a regression model to predict Cobb angle values from medical images. We will 

assess the performance of our model using mainly regression metrics. This paper is organized as follows: 

Section 2 delves into the fundamentals of scoliosis, the Cobb angle, and the intricacies of deep learning 

frameworks and hyperparameters. Section 3 introduces and outlines the proposed U-Net architecture. Results 

and discussions are presented in Section 4, and the paper concludes with Section 5. 

 

2. SCOLIOSIS AND DEEP LEARNING 

This section provides a comprehensive overview of the foundational concepts relevant to our 

investigation. Following an explanation of the nature and implications of scoliosis, we examine the Cobb angle 

and its significance in depth. In addition, we explore the nuances of deep learning frameworks, elucidating 

their applicability and significance. In addition to shedding light on the complexities of hyperparameters, this 

section lays the groundwork for subsequent discussions on model architecture and evaluations. 

The human spine, depicted in Figure 1, is a crucial anatomical structure responsible for bearing the 

body's weight and safeguarding the spinal cord and its encompassed nerves. The human spine comprises 33 

vertebrae, which are categorized into five distinct regions: the cervical (C1–C7), thoracic (T1–T12), lumbar 

(L1–L5), sacrum (S1-S5), and coccyx (Co1–Co4). The top 24 vertebrae are individual and movable, giving the 

spine essential flexibility. Conversely, the remaining 9 vertebrae are static; the sacral vertebrae merge to 

constitute the sacrum, while the coccygeal vertebrae typically unite post-adolescence to form the coccyx [15]. 

 

 
Figure 1. Vertebral Column [15] 

 

2.1. Scoliosis and Cobb Angle 

Scoliosis, derived from the Greek word for "crookedness," is characterized by a deviation from the 

normal vertical alignment of the spine [16]. This deviation manifests as a lateral curvature accompanied by a 

rotation of the vertebrae within that curve [1]. When viewed from the front or the back, the spine should ideally 

appear straight and centered over the pelvis. In individuals with scoliosis, however, the spine displays a 

pronounced lateral curve, either to the right or left. Scoliosis is indicated by a curvature greater than 10°, which 

gives the spine a C- or S-shaped appearance, as shown in Figure 2(a). There are numerous causes for the onset 

of scoliosis, including neurological disorders, muscular abnormalities, and other syndromes. 
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(a) 

 
(b) 

Figure 2. Scoliosis and Cobb angle [7]: (a) Normal spine and scoliosis, (b) Cobb angle measurement 

 

Clinicians use imaging tests such as X-rays, CT scans, and MRIs to quantify the degree of spinal 

curvature when diagnosing and assessing scoliosis. Cobb's angle, a technique developed by the American 

orthopedic surgeon John Robert Cobb, is the most common method for measuring this angle. In 1966, the 

Scoliosis Research Society (SRS) acknowledged this method as the standard for quantifying scoliosis [7]. As 

shown in Figure 2(b), the procedure involves measuring the angle between tangents drawn to the upper and 

lower endplates of the vertebrae with the greatest degree of inclination at the curve's extremities. Table 1 

summarizes the classifications based on the Cobb angle measurements. 

 

Table 1. Cobb Angle Classification 
Cobb angle Classification 

0° - 10° Spinal curve 

10° - 20° Mild scoliosis 

20° - 40° Moderate scoliosis 

> 40° Severe scoliosis 

 

2.2. Deep Learning Frameworks 

The second generation of Google's open-source deep learning framework, TensorFlow, is an evolution 

of its predecessor, DistBelief. It embodies the tech titan's core principles for artificial intelligence systems [17]. 

TensorFlow's adaptability across diverse platforms, ranging from handheld devices such as smartphones and 

tablets to vast distributed systems involving hundreds of computers and various computational devices such as 

GPU cards, is one of its defining characteristics. It maintains its position as the most popular deep learning 

framework due to several distinguishing characteristics, such as unrivaled performance, true portability, and 

support for multiple languages. 

PyTorch, a Python-based package, possesses two revolutionary features. It facilitates GPU-assisted 

tensor computations, making it a viable alternative to NumPy in many situations. Second, it features a dynamic 

computation graph that gives developers the freedom to design complex neural networks using the simplicity 

of Python. In stark contrast, TensorFlow employs a static computation model in which, once a neural network 

is created, it must be rebuilt from scratch for any modifications [17]. PyTorch's implementation of Reverse-

mode auto-differentiation enables programmers to modify network behavior on the fly without cumbersome 

overhauls. This flexibility reinforces PyTorch's status as one of the most rapidly evolving deep learning tools. 

PyTorch's dynamic computation graph is a boon for researchers and developers interested in iterative 

and experimental modeling. This adaptability permits network modifications in real time and can result in 

quicker prototyping and more intuitive model modifications. In addition, the seamless transition between CPU 

and GPU computations allows developers to optimize performance based on available hardware resources. 

Lastly, integrating Python, a widely adopted programming language in the scientific and machine learning 

communities, ensures an easier learning curve and immediate familiarity for many users. Given these benefits 

and PyTorch's ecosystem's rapid development, it stands out as the best option for this research. 

 

2.3. Deep Learning Hyperparameters  

Neural networks have demonstrated their efficacy in various applications; however, their propensity 

for overfitting renders them unsuitable for some modeling tasks. Training a network, which begins with a 

random state and requires voluminous data, can be viewed as a brute-force technique. The deployment of these 

networks necessitates meticulous model architecture, algorithmic design, and hyperparameter tuning. 
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Typically, hyperparameters are selected based on prior experience and network training knowledge. 

Nonetheless, the empirical nature of these decisions, devoid of solid logical justification, can result in 

suboptimal outcomes, producing merely adequate hyperparameters instead of the optimal set. 

Before training a machine learning model, essential hyperparameters must be set. They can affect the 

model's architecture, such as the number of hidden layers and activation functions, and the efficiency and 

precision of training, such as the learning rate of stochastic gradient descent (SGD), batch size, and optimizer 

selection [18]. 

Learning Rate (LR) determines the magnitude of model weight adjustments made during Stochastic 

Gradient Descent (SGD) [19]. Typically, it is manually adjusted throughout training to achieve optimal results. 

A variable LR during training, also known as LR scheduling or LR decay, is sometimes more effective than a 

fixed LR. This adaptive method employs learning algorithms to adjust the LR based on model performance or 

specific criteria [20, 21]. 

The learning rate profoundly impacts the training of deep learning models. It governs the steps to 

optimize the loss function with the model's weights. The optimization algorithm adjusts weights iteratively 

according to the gradient of this loss function. Larger learning rates result in larger adjustment steps, which 

may cause optimal weight values to oscillate or overshoot. In contrast, extremely low rates may trap the model 

in suboptimal solutions, known as local minima. Consequently, striking the proper balance is crucial. 

By default, frameworks like PyTorch utilize a fixed LR. However, finding the optimal rate can be 

difficult. Convergence may be hindered if the convergence rate is too high, particularly at the end of training. 

A common strategy is to begin with a larger LR and then reduce it as the model approaches an accuracy plateau 

[22]. StepLR, MultiStepLR, OneCycleLR, CosineAnnealingLR, and CosineAnnealingWarmRestartsLR are 

among the schedulers for dynamic LR adjustments offered by PyTorch. 

Regularization mitigates overfitting, a common concern in large, intricate neural networks. By adding 

a penalty term or "noise" to the loss value, models can be prevented from merely memorizing training data, 

fostering better generalization. The regularization term's addition is mathematically represented as: 

 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑙𝑜𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚 (1) 

The concept is to modify the computed loss value by adding noise to the original loss value. It is 

crucial because overfitting is a problem in which the model cannot generalize the training data and instead 

begins to "memorize" it. This can be detected as the training loss decreases while the validation loss increases 

during training. By introducing some tolerable noise, it is hoped that the model is not overly dependent on 

training data alone for accurate prediction. 

Two commonly used regularization techniques are ℒ1 and ℒ2. The ℒ1 method, called Lasso 

Regression, penalizes the sum of absolute weight values and is shown in Eq. (2). 

 𝑤∗ = ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝑗
𝑀
𝑗=0 )

2
+ 𝜆 ∑ |𝑊𝑗|𝑀

𝑗=0
𝑁
𝑖=0  (2) 

In contrast, L2 or Ridge Regression penalizes the square sum of weights and is shown in Eq. (3). 

 𝑤∗ = ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝑗
𝑀
𝑗=0 )

2
+ 𝜆 ∑ 𝑊𝑗

2𝑀
𝑗=0

𝑁
𝑖=0  (3) 

 

where 𝜆 is the regularization hyperparameter determining the amount of noise added to the weight. Larger 𝜆 

simplifies the structure of deep learning because most weights are nearly equal to zero, resulting in less 

information (weight update) being passed from one layer of the neural network to the next. Lessening𝜆  

diminishes the ℒ1 or ℒ2 regularization effect. 

Dropout is a strategy for randomly selecting neurons not used during training with a predetermined 

probability, making the network less sensitive to the precise weights of neurons [23]. In other words, some 

nodes in each layer will be nullified (weights will be set to zero) based on a predetermined probability. It is 

then said that the neural network becomes condensed or less complex, which reduces overfitting. Estimates 

indicate that 20 to 50 percent of neuron deactivation may occur during each step of the weight update 

procedure. A high dropout rate will oversimplify the model, whereas a low value will have little effect. 

Regularization is integral to deep learning, ensuring accurate and generalizable models. By understanding and 

effectively utilizing these techniques, researchers and practitioners can harness the full power of neural 

networks. 

 

3. PROPOSED DEEP LEARNING ARCHITECTURES 

This study will exploit the potential of a hybrid deep learning algorithm incorporating both the 

Convolutional Neural Network (CNN) and Feed Forward Neural Network (FNN) to establish a robust 

execution system (FFNN). Figure 3 depicts the comprehensive flow of the proposed algorithm. 
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Figure 3. Summary of Research Methodology 

 

This algorithmic procedure is divided into six sequential steps to ensure clarity and progression: 

• Data Acquisition & Collection: This preliminary phase entails collecting the necessary data for training 

and validating the model. The data may be sourced from various datasets or platforms depending on the 

project's objectives. 

• Data Preprocessing: In this phase, raw data is transformed into a format more conducive to analysis. This 

entails dealing with missing values, normalizing data, augmenting images (if applicable), and separating 

the dataset into training, validation, and test sets. 

• Network Design: Here, the deep learning model's architecture is established. Regarding layers, nodes, and 

activation functions, the hybrid combination of CNN (to process spatial hierarchies in data, especially 

images) and FFNN (for generalized learning tasks) will be mapped out. 

• Training and Validation: The designed network is trained using the previously prepared training dataset 

during this critical phase. The validation set iteratively evaluates the model to ensure that it does not overfit 

and that its learning applies to unseen data. 

• Testing: The model is tested after achieving satisfactory performance metrics during validation. It is 

exposed to an unseen test dataset to evaluate the model's predictive abilities in real-world scenarios. 

• Performance Evaluation: In this final phase, the model's efficacy is determined using the preferred 

evaluation metrics, which, depending on the problem statement, may include accuracy, precision, recall, 

F1-score, or any other pertinent metrics. 

 

3.1. Dataset and Data Preprocessing 

Deep learning algorithms thrive on large labeled datasets, essential for recognizing patterns and 

producing accurate predictions. This research utilized a dataset of grayscale x-ray images, each associated with 

one of three Cobb angles: Proximal Thoracic (PT), Mid Thoracic (MT), and Thoracolumbar (TL) (TL). The 

study utilized a dataset of 481 anterior-posterior spinal X-ray images provided by [24], all exhibiting varying 

degrees of scoliosis, provided by local clinicians. Focusing on 17 vertebrae of the thoracic and lumbar spine, 

68 landmarks were manually annotated on the corners of each image. Based on their position in the original 

image, the scale for the landmarks was set to 0–1. The dataset was separated into a training/validation set 

(Trainset) of 431 images and a testing set (Testset) of 50 images, with no overlap of patients between the two 

sets. Using these subsets, the model was trained, validated, and tested to evaluate its performance in scoliosis 
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detection. In addition, some X-ray images were obtained from the IIUM Kuantan Hospital during algorithm 

development. 

Effective deep learning requires meticulous data preprocessing, which can substantially improve 

model results. A custom dataset class was created to manage the necessary preprocessing for this research. The 

x-ray images, which were in various jpg dimensions and contained RGB channels, were initially resized. For 

compatibility with the U-Net architecture, these images were scaled to a standard (1, 572, 572) dimension, with 

1 indicating a grayscale channel and 572×572 denoting the image's width and height. The subsequent steps 

involved normalizing each image's Z-score based on its standard deviation and mean. The next step includes 

transforming each image into a float32-type PyTorch tensor. 

The training dataset was split into an 80:20 ratio, with 20 % designated for validation, which was 

essential for a preliminary objective evaluation of the model's performance. The 481-instance training dataset 

was subdivided into 384 instances for training and 97 instances for validation. The training subset was shuffled 

to promote unbiased learning and optimize the training procedure; this ensures that the model learns from 

various instances, thereby enhancing generalization. In contrast, neither the validation nor the 128-item testing 

subsets were mixed. The latter serves as a pristine reserve for the final evaluation of the model following 

training. 

 

3.2. Deep Learning Architectures Design 

The neural network under consideration is bifurcated into two primary components: the Convolutional 

Neural Network (CNN) and the Feed Forward Neural Network (FFNN). The CNN segment utilizes the U-Net 

architecture for biomedical image segmentation, as shown in Figure 4. Configured to accept an input of 

dimensions (1, 572, 572), which corresponds to a 1-channel image of size 572×572 pixels, it generates an 

output of dimensions (2, 388, 388). Nevertheless, the version utilized in this experiment is not a standard U-

Net but an enhanced version. Dropout layers have been strategically incorporated after each downsampling 

and upsampling stage to improve model generalization and prevent overfitting. Concurrently, batch 

normalization layers are incorporated into the encoder subprocess of U-Net to ensure that inputs to subsequent 

convolutional layers remain normalized. 

 

 
Figure 4. U-Net Architecture for Image Segmentation [25] 

 

Table 2. Feed Forward Neural Network Architecture 
FFNN begins 

Linear Feed Forward 1 Input = 301088 (Flattened U-Net) Output = 128 

Batch Normalization 

ReLU 

Dropout 

Linear Feed Forward 2 Input = 128 Output = 32 

Batch Normalization 

ReLU 

Dropout 

Linear Feed Forward 3 Input = 32 Output = 8 

Batch Normalization 

ReLU 

Dropout 

Linear Feed Forward 4 Input = 8 Output = 3  

(3 Cobb angles) 

FFNN ends 
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The CNN is complemented by a custom-built FFNN that interfaces seamlessly with the CNN output. 

This network comprises four feed-forward layers, each adorned with batch normalization, the ReLU activation 

function, and dropout layers. The only exception to this rule is the final layer, which lacks these enhancements. 

As shown in Table 2, a thorough examination of the FFNN's architecture reveals the following:: 

• The initial layer accepts the U-flattened Net's output, corresponding to 301,088 input nodes on a 

2×388×388 grid. However, the data is immediately compressed, reducing the number of output nodes to 

128. 

• The second layer continues this consolidation pattern. This layer reduces its output to 32 nodes using the 

128 nodes from the preceding layer as input. 

• As we progress to the third layer, the input is the 32 nodes from the previous layer, which undergo another 

compression cycle; the output nodes are now number 8. 

• In the final layer, the system takes the output of the third layer's eight nodes and reduces it to three nodes. 

These three nodes are illustrative because they predict the crucial Cobb angles: PT, MT, and TL. 

 

3.3. Hyperparameters Design 

The learning progression of the deep learning model is guided by a base learning rate (base lr) of 

0.001. This rate affects how the model updates its parameters to reduce the Mean Squared Error (MSE) loss, a 

metric chosen for its effectiveness in regression tasks. MSE measures the squared deviations between observed 

and predicted numerical values. This model is optimized using the Adam optimizer, which offers adaptive 

learning rates for parameters, resulting in improved convergence and optimization. Initialized with the 

specified base lr, the optimizer also incorporates weight decay. This mechanism imposes a mild penalty on 

model weights during training, thereby encouraging the development of more generalized solutions. 

The primary phases of training procedures are training and validation. The model operates in "train" 

mode during the training phase, permitting weight and bias adjustments. It computes a forward pass to predict 

outcomes for each data batch, determines the associated loss, and then adjusts the weights based on the 

gradients derived from the loss. In the meantime, the validation phase calculates the validation loss by iterating 

through the validation data and comparing it to the model's predictions while the model is in evaluation mode. 

The number of epochs (num epochs) and the patience level for early stopping are important training 

parameters. The latter indicates when to terminate training if validation loss does not improve over several 

epochs. Metrics such as the training and validation losses and the learning rate values are recorded in lists for 

subsequent analysis as training progresses. In addition, a tracking mechanism is in place to determine and store 

the optimal model state based on the lowest observed validation loss. 

Over the specified epochs, the training loop repeats, updating and validating as it cycles. If the model 

fails to demonstrate improved performance after a predetermined number of epochs (as specified by the 

patience parameter), the training process is terminated early. Finally, the total training duration is determined 

by subtracting the start and end times. 

The optimal model, as determined by its lowest validation loss during training, is loaded and evaluated 

using the test dataset during the testing phase. The state of this model, referred to as the best model, is loaded 

from "best training 8.pt," which contains the best-obtained weights and biases. The model is then transferred 

to the appropriate device, typically a GPU, to ensure computation efficiency. Testing then commences, with 

the model set to evaluation mode via the best model.eval() to prevent any parameter modifications. Using its 

forward pass, the model processes the input images and predicts target angles. Then, these predictions are 

compared to actual values, and the test loss is aggregated across batches. The final step is calculating the 

average test loss, which provides insight into the model's performance on unseen data. 

Evaluation of performance is essential, but nonlinear regression models, such as the one used in this 

study, lack the straightforward inference procedures of linear regression models. Nevertheless, linear 

regression metrics can provide insight into the model's performance by plotting predicted values versus actual 

values. In this context, the Root Mean Squared Error (RMSE) is used to evaluate the model's performance. 

While Mean Squared Error (MSE) accurately measures the difference between predicted and actual values, 

Root Mean Squared Error (RMSE) is preferred. This is because MSE values can become excessively high, 

making comparisons difficult. By taking the square root, the magnitude of the prediction error becomes more 

interpretable. 

 

4. RESULTS AND DISCUSSION  

In this section, we delve into the experimental setup, investigate a variety of neural network 

architectures, and thoroughly discuss the findings and their implications. 
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4.1. Experimental Setup 

We utilized the NVIDIA GTX GeForce 1660 SUPER graphics card as the primary hardware resource 

for the experimental framework. This card is renowned for its powerful computational capabilities, making it 

ideal for data-intensive tasks such as training deep learning models and processing high-resolution data. The 

GTX GeForce 1660 SUPER, which serves as the backbone of our experimental platform, ensures rapid 

computations, drastically reducing the time required for iterative processes and model evaluations. 

We chose JupyterLab as our interactive development environment for software. The user-friendly 

interface of JupyterLab enables researchers, academics, and data scientists to integrate live code execution with 

rich text narratives, mathematical equations, and dynamic visualizations. This combination of live code and 

rich media facilitates a holistic analytical approach, enhancing the interactivity and insight of experiment 

documentation, data visualization, and result interpretation. 

Combining the immense computational power of the GTX GeForce 1660 SUPER with the 

adaptability of JupyterLab yields a state-of-the-art setup. This configuration accelerates the experimentation 

phase and improves the reproducibility and dissemination of findings. This arrangement is especially 

advantageous in academic and collaborative research environments where clarity, transparency, and efficacy 

are paramount. 

 

4.2. Experimentation Profiles 

In this section, we delve into the details of three distinct experimental configurations, each 

encapsulated by Table 3. The cornerstone of all three configurations is the U-Net architecture, a renowned 

neural network structure pivotal for image segmentation tasks. The U-Net’s significance stems from its ability 

to meticulously capture intricate details and adeptly reconstruct target outputs from compressed feature 

representations. 

Upon receiving the input, the U-Net in each experiment processes it to yield feature maps. These maps 

are then flattened, converting them into a one-dimensional structure. Following this transformation, the 

flattened outputs are smoothly incorporated into their corresponding Feed-Forward Neural Networks (FFNN). 

The FFNN takes the helm at this stage, utilizing the features extracted by the U-Net for further processing and 

eventually generating the final results. 

A noteworthy point of distinction lies between Profile A and Profile C. While they are architecturally 

akin, variations in their hyperparameter configurations set them apart, as explicitly outlined in Table 4. This 

nuanced differentiation is instrumental in understanding the unique characteristics and outcomes of each 

experimental profile. 

Table 3. FFNN Experimentation Profiles 
 Profile A Profile B Profile C 

Linear Feed 

Forward 1 

Input = 301088 
(Flattened U-

Net) 

Output = 128 
Input = 301088 
(Flattened U-

Net) 

Output = 64 
Input = 301088 
(Flattened U-

Net) 

Output = 128 

Batch Normalization 

ReLU 

Dropout 

Linear Feed 

Forward 2 
Input = 128 Output = 32 Input = 64 Output = 16 Input = 128 Output = 32 

Batch Normalization 

ReLU 

Dropout 

Linear Feed 

Forward 3 
Input = 32 Output = 8 Input = 16 Output = 4 Input = 32 Output = 8 

Batch Normalization 

ReLU 

DropOut 

Linear Feed 

Forward 4 
Input = 8 

Output = 3  

(3 Cobb angles) 
Input = 4 

Output = 3  

(3 Cobb angles) 
Input = 8 

Output = 3  

(3 Cobb angles) 

 

Table 4. Hyperparameter Configurations 
 Profile A Profile B Profile C 

criterion (loss func.) Mean Squared Error 

optimizer ADAM 

number of epochs 50 75 1000 
base learning rate 0.001 

patience 10 5 10 

learning rate scheduler No Cosine 
Annealing Warm 

Restarts 

No 

weight decay 5e-6 
FFNN Dropout p value 0.45 
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4.3. Experiments on Profile A, B, and C 

For the Profile A experiment, the best possible model based on the lowest validation loss is loaded in 

this experimental evaluation. After extensive analysis, the calculated testing loss is determined to be 1.1978, 

using the Mean Squared Error (MSE) loss function. This carefully chosen evaluation metric, known for its 

capacity to quantify the differences between predicted and actual values, enables a thorough evaluation of how 

well the model performed on the unseen test dataset, confirming the reliability and validity of the reported 

results. The learning rate is maintained at 0.001 throughout all 50 epochs. 

In an effort to refine the prediction accuracy of the PT and TL Cobb angle values from the Profile A 

experiment, the Profile B strategy integrates three essential modifications: the incorporation of learning rate 

scheduling, a reduction in hidden nodes within the Feed Forward Network (FFN) to curtail overfitting, and an 

extended number of training epochs. As a result, Profile B achieved a slightly improved testing loss of 1.1402 

using the Mean Squared Error (MSE) loss function, indicating a closer alignment between predicted and actual 

values. The experiment employed the Cosine Annealing Warm Restarts learning rate scheduler, which fuses 

learning rate annealing with cyclical learning rates. The model can explore diverse solutions by periodically 

resetting the learning rate to its original value, thus avoiding plateaus and suboptimal outcomes during 

optimization. Specifically, after every 4 epochs, the learning rate is refreshed, transitioning from its base value 

of 0.001 to its minimum value of 0.00023. 

The maximum number of epochs in the Profile C experiment is set at 1000, with an early stopping 

mechanism and a patience level of 10. Unlike previous profiles, this experiment does not incorporate a learning 

rate scheduler. As a result, the testing loss further diminishes to 1.1252, with the Mean Squared Error employed 

as the loss function. The learning rate is consistently maintained at 0.001 throughout the training. Notably, the 

training process ceases around the 81st epoch due to the early stopping criteria, signifying that the model failed 

to register any substantial improvements over 10 consecutive epochs. 

 

 
(a) Profile A 

 
(b) Profile B 

 
(c) Profile C 

Figure 5. Loss versus epoch for Profile A, B, and C experiments. 

 

Figure 5(a) shows that the training and validation loss converged by the final epoch in the Profile A 

experiment. However, there were noticeable fluctuations in validation loss during the initial 15 epochs. These 

oscillations can be attributed to the network's regularization strategy, which introduced noise by altering node 

weights, momentarily impacting the training and validation losses. By employing image normalization (z-score 

normalization) and batch normalization, the model's loss converged rapidly within the first 5 epochs, signifying 

the consistent scaling of learning features. Beyond the 20th epoch, the loss reduction rate decelerated, a typical 

pattern in machine learning training. The slowing down indicates the model reaching a local minimum in the 

loss function and potentially becoming trapped there due to a set, modest learning rate. Despite this, the early 

stopping condition (with a patience of 5) was not triggered, as the model consistently found a new lowest 

validation loss approximately every 4 epochs throughout its 50 epoch duration. 

In the Profile B experiment, as depicted in Figure 5(b), the training and validation loss trajectories 

closely mirror those observed in the Profile A experiment. However, a notable distinction is the reduced initial 

epoch losses in Profile B compared to its predecessor. The noticeable spike in validation loss around the 8th 

epoch can be attributed to the regularization effect. As the training progresses, early stopping mechanisms 

come into play just before the final epoch, resulting from the validation loss failing to improve over five 

consecutive epochs. Similar to the Profile A experiment, the training and validation losses exhibit marginal 

reductions before converging to an approximate loss of 1. 

As depicted in Figure 5(c), the training and validation losses exhibit a minimal divergence throughout 

the training process. Unlike the noticeable fluctuations observed in the Profile A and B experiments, the 

validation loss in Profile C remains relatively stable. Interestingly, the initial losses in the first epoch closely 

mirror those in the Profile B experiment. Consistent behavior and the minimal disparity between training and 

validation losses are promising indicators. They suggest that the model in Profile C achieves a balanced 
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representation, avoiding underfitting and overfitting, which is essential for robust and generalizable 

performance. 

 

4.4. Comparison of Predicted and Ground Truth Angles 

Table 5 shows a discernible trend in the RMSE values across the three profiles when examining the 

PT, MT, and TL angles. Specifically, the RMSE for the PT angle exhibits a consistent decline from Profile A 

through to Profile C, indicating improved accuracy in predicting this particular angle. Conversely, the MT 

angle presents a different scenario, with its RMSE consistently escalating across all three experiments, 

signaling a challenge in its precise prediction. For the TL angle, the progression is a bit more nuanced; there is 

an initial decrease in the RMSE moving from Profile A to Profile B, suggesting an enhancement in prediction 

accuracy. However, this is followed by a slight uptick when transitioning to Profile C, though the reasons for 

this minor regression would warrant further investigation. 

 

Table 5. RMSE for each profile experiment 
 Proximal Thoracic (PT) Mid Thoracic (MT) Thoracolumbar (TL) 

Profile A 4.5938 2.0329 2.6203 

Profile B 4.4552 2.0478 2.5526 
Profile C 4.3924 2.0493 2.5809 

 

 

4.5. Relation between training and validation losses to epochs 
Table 6 provides insightful trends regarding the relationship between the number of epochs and the 

resultant loss across Profiles A to C. Notably, as the number of epochs increases through these profiles, there 

is a subtle decline in training loss, suggesting that the model slightly benefits from extended training. 

Conversely, the validation loss exhibits an opposing trend. Instead of benefiting from the increased number of 

epochs, the validation loss consistently rises across the profiles. This divergence in patterns between training 

and validation losses might indicate that while the model is becoming adept at fitting the training data, it might 

be at the risk of not generalizing well to unseen data, a classic indication of overfitting. Further investigation 

and potential corrective measures might be necessary to address this discrepancy. 

 

Table 6. Final epochs of every profile and its training and validation loss 
 Training Loss Validation Loss 

Profile A (Epoch 50/50) 1.0183 0.9995 
Profile B (Epoch 68/75) 1.0048 1.0018 

Profile C (Epoch 82/1000) 1.0051 1.0038 

 

 

4.6. Discussion 

Table 5 illustrates the model's improved ability to predict the PT angle, as well as subsequent 

enhancements in the TL and MT angles. The data suggests that increasing the number of epochs improves the 

accuracy of PT angle predictions, but this advantage is not shared by MT angle predictions. The effect of 

learning rate scheduling on the model's overall performance appears to be relatively negligible. The consistent 

nature of the training and validation losses may be indicative of the model's struggle to escape local minima or 

saddle points during gradient descent computations, as suggested by this observation. Our model demonstrates 

a commitment to improving the precision of Cobb angle measurements, a challenge also addressed by [8] 

through the comparison of manual and automated methods. The high reliability and automation of 

measurements in their study highlight the potential and necessity for advancements in this field, thereby 

highlighting the importance of our research endeavors. 

The correlation between the number of epochs and the resulting losses across the various profiles is 

examined in greater detail in Table 6. The transition from Profile A to Profile C signifies a subtle emergence 

of overfitting, as evidenced by a decrease in training losses and an increase in validation losses. This pattern is 

indicative of the model's increasing aptitude for predicting the training dataset, juxtaposed with a diminishing 

efficacy on unseen validation data. It is essential to note, however, that the difference in losses between Profiles 

A and C remains negligible, indicating the model's consistent convergence to a nearly identical minimum loss 

over a range of 50 to 82 epochs. 

The results of Profiles A through C collectively illustrate the complexities and difficulties inherent in 

accurately predicting Cobb angle values. Given the nonlinear nature of the regression problem and the intricate 

patterns and relationships that characterize such scenarios, the task is extremely challenging. These 

complexities add multiple layers to the modeling process, necessitating a nuanced and meticulous approach to 

model creation and refinement. 



                ISSN: 2089-3272 

 IJEEI, Vol. 11, No. 3, September 2023:  883 – 895 

894 

Our findings, along with the insights of [8], highlight the ongoing difficulties and the need for 

continued innovation in the field of Cobb angle prediction. The pursuit of more accurate and trustworthy 

methods continues to be of paramount importance, with the potential to significantly impact the diagnosis and 

treatment of scoliosis. 

 

5. CONCLUSIONS AND FUTURE WORKS  

In this exhaustive study, we embarked on a complex journey to elucidate the predictive ability of 

various neural network models on Cobb angle values, a task made more difficult by the nonlinear regression 

characteristics of neural networks. We investigated the effects of varying epochs, learning rate scheduling, and 

neural architectures on model performance using three distinct profiles: A, B, and C. Even though increasing 

epochs improved predictions for the PT angle, it was not beneficial for all angle types, particularly the MT 

angle, as indicated by our findings. In addition, the study emphasized the nuanced role of learning rate 

scheduling, whose impact appeared somewhat muted, possibly due to difficulties in escaping local minima 

during gradient descent. The onset of overfitting, particularly during the transition from Profile A to C, was a 

significant finding throughout our experiments. Such overfitting nuances are crucial, highlighting the model's 

prowess in predicting training data but revealing its reluctance when confronted with unknown validation 

datasets. Despite these variations, all models converged to a nearly identical minimal loss, indicating consistent 

performance across profiles. This paper highlights the complexities and subtleties of nonlinear regression in 

predicting Cobb angle values. While significant progress has been made in comprehending the various 

influencing factors, it is evident that the search for the optimal predictive model remains difficult. We believe 

that our findings provide a solid basis for future research, with the potential to inspire innovations in neural 

network architectures and training strategies tailored to complex regression scenarios. 
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