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 Pulsed eddy current (PEC) is an advanced Non-Destructive Testing (NDT) 

technique that uses transient waveform for their coil excitation. It has the 

advantage of gathering different depth information in a single excitation 

process, thus provide the solution towards the drawbacks by both single and 

multi-frequency eddy current testing. In this work, experimental and 

simulation investigations on PEC were conducted to establish the correlation 

between PEC signals and different defect i.e. crack, depths. Initial FEM 

simulation work has provided understanding of the underlying phenomena of 

the PEC results through the visualisation of the induced eddy current and 

defect interaction in the SS 304 sample. Features from the differential 

magnetic field transient profiles have provided information of the crack in 

terms of its depth and location. The understanding of the PEC responses and 

results can be extended for future work in quantitative evaluation of defect in 

conductive samples by PEC. 
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1. INTRODUCTION  

Eddy current testing is one of the Non-Destructive Testing (NDT) methods which is based on 

electromagnetic principles and has been effectively been used on electrically conductive samples. It allows 

the inspection of surface breaking as well as subsurface defects, due to the interaction between the induced 

eddy currents with the defects [1]-[3]. In eddy current testing, the excitation frequency is selected based on 

the sample and the depths of the defects to be detected. In general, the coil use in eddy current testing is 

operated by a single frequency sinusoidal excitation and the signal is presented on an impedance plane 

diagram [4].  

To enhance the inspection capability in eddy current testing, the multi-frequency excitation has been 

introduced [5],[6]. However, the limitation of eddy current penetration in both single and multi-frequency 

eddy current testing has become the main drawback in its application [7]. To counteract this limitation, the 

pulsed eddy current (PEC) technique has been introduced. This technique is based on pulsed (square or 

rectangular) excitation current and provides new perspectives for the detection and characterisation of defects 

in test samples through the measurement of transient response of the magnetic field [8]. 

The wideband pulse in PEC excitation consists of a series of frequency components leading to 

richness of information gathered about the defect [9]-[11]. The technique has the advantage that it is 

equivalent to a multitude of single frequency with simultaneous injection of sinusoidal inputs [12],[13]. In 
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PEC, the signals are represented in the time domain, rather than the more familiar impedance plane diagram, 

as is the case for conventional eddy current testing. One of the advantages of PEC over conventional ET is 

the replacement of pick up coils with magnetic field sensor. Magnetic sensor offers the high broadband 

sensitivity over a wide band of frequencies. In this paper, Hall sensor was used due to its ability to provide a 

high sensitivity to distinguish a small differences of defects’ depth. Although PEC is a popular research 

technique, so far it has not been widely accepted in industry, mainly due to the difficulty to interpret and 

quantify the inspection signals [14].  

In order to get better understanding of the PEC results especially for the quantitative evaluation of 

defects, simulation and experimental works are conducted to establish the correlation between PEC signals 

and different defect i.e. crack, depths. Such investigations would be very helpful in understanding and 

interpreting the PEC responses though the transient profiles of the magnetic flux density from the eddy 

current and crack interaction in the sample. This will facilitates not only forward problem but also inverse 

solution [15] for 3D reconstruction [16] and pattern recognition [17] of defects through the establishment of 

linkages between experiment and simulation [18]. 

The paper is organized as a follows: Section 2.0 presents the model setup and results for PEC 

simulation; Section 3 presents the PEC system and experimental results; Section 4 provides the conclusion of 

this work. 

 

 

2. VISUALISATION AND CORRELATION OF PEC RESPONSES 

2.1. Simulation Model and Setup 

A series of finite element method (FEM) numerical modelling simulations are conducted to build 

the relationship between the acquired magnetic field transient profiles and the induced eddy currents with 

different crack geometrical characteristic i.e. depth. Through the simulation, the underlying phenomena of 

PEC can be understood and the acquired results can be explained through the visualisation of the induced 

eddy currents inside the tested sample. To implement this study, a PEC coil was modelled with dimensions of 

18 mm outer diameter, 12.5 mm inner diameter, 35 mm height with 350 turns of wire, and is current driven 

with a rectangular waveform of 1A amplitude to generate a varying magnetic field.  

A 20 mm thick stainless steel sample with different crack depths of 2 mm, 4 mm, 6 mm, 8 mm and 

10 mm were introduced in the study. A relative thick sample is used to enable good visualisation of the 

simulated induced eddy currents and thus observe the difference in the net transient magnetic field profiles.In 

the time-stepping FEM, the transient magnetic field profiles were acquired when the coil is positioned above 

the crack opening. The time step of the pulse waveform is 10 ms with 5 ms excitation pulse width and pulse 

repetition frequency is 100 Hz. All simulations were performed using COMSOL. Figure 1 shows the layout 

of the coil and the stainless steel sample having a defect, modelled as a 3D problem. 

 

 

  
 

Figure 1. 3D model of the PEC coil and stainless steel 

with a defect 

 

Figure 2. Net magnetic field, xB acquired at different 

crack depths 

 

 

For a cylindrical PEC coil located over a conductive sample, the magnetic field, within the vicinity 

of the sample is given by equation 1. 

 

z

e

zx BBB     (1) 
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where Bx denotes the magnetic field at x-component,
e
zB  is the field produced by the coil and zB  is the field 

change caused by the sample. 

 

2.2. PEC Transient Profiles 

Figure 2 shows the acquired transient profiles for different crack depths. These are the resultant net 

magnetic field from the interaction between the primary magnetic field coming from the coil and the 

secondary magnetic field produced by the induced eddy current inside the stainless steel sample. Crack with 

10 mm depth exhibits the highest followed by the 8 mm, 6 mm, 4 mm and 2 mm, in the respective order. The 

results show that as the depth of the crack increases, the amplitude of the respective profiles increases. 

As we know, the acquired xB  is in close relation with the induced eddy current density as well as its 

distribution. Therefore, in order to fully understand the underlying phenomena of the PEC results, the 

visualisation of the induced eddy current with different crack depths were acquired from the simulation. The 

cross section view of the stainless steel sample for every crack depths are presented in Figure 3. This signals 

were acquired at steady state of transient signal at 2.5 ms. From the visualisation provided by the simulation, 

it can be observed that the eddy current density is changing with different crack depths. The presence of a 

crack inside the stainless steel sample will perturb the flow of the induced eddy currents and changes its 

overall density at that particular area. With the increase of crack depths, the flow of the eddy currents will 

increasingly be perturbed thus results in reduced in eddy current density as shown in Figure 3a to Figure 3e. 

This in turn increase the net xB acquired from the sample by the PEC coil with increase crack depth, as 

presented in Figure 2. 

 

 

  

  

 
 

Figure 3. Simulated visualisation of eddy current density at different crack depth of a) 2 mm, b) 4 mm, c) 6 

mm, d) 8 and e) 10 mm 

 

 

3. METHODOLOGY 

3.1. PEC Crack Depth Evaluation 

A PEC system consists of a function generator, power amplifier, power supply and a PEC coil is 

used to conduct the PEC investigation towards different crack depths. Figure 4 presents the illustration and 

the developed PEC system for the work. The power supply supplies the voltage to power the magnetic 

sensor. The function generator provides the rectangular input current to drive the excitation coil. In this work, 
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a waveform with a 5 ms pulse width is used for the excitation. For the signals processing, all the signals 

acquired by the sensor will be transferred, displayed and processed using the computer which equipped with 

a data acquisition card. 

 

 

 

 

(a) (b) 

 

Figure 4. (a) Schematic diagram of a PEC system; (b) The PEC system developed for the work 

 

 

Figure 5 provide the details of the PEC coil associated with the system. The PEC coil has the 

dimensions of 16 mm outer diameter, 10.5 mm inner diameter, 30 mm height and 300 turns of copper wire 

which is wound on a ferrite core (Figure 5a). A magnetic sensor (Hall SS490) is utilised and placed at the 

centre of the ferrite core, which function as a sensor to acquire the magnetic field.  

 

 

 
 

Figure 5. Schematic diagram of PEC coil 

 

 

The sample under investigation is a 5 mm in thickness stainless steel 304 plate containing open to 

surface cracks (EDM machined) with depths, d = 0.15 mm, 0.20 mm, 0.25 mm, 0.30 mm, 0.35mm, 0.40 mm, 

0.50 mm and having an opening of 2 mm. This relative thin sample provides a challenge in differentiating the 

difference in depths for the defect. For the experiment and simulation works the signals were acquired when 

the probe is positioned above the crack opening with a lift-off of 2 mm. Figure 6 shows the stainless steel 

sample with cracks having different depths used in the experiment. 

 

 

 
 

Figure 6. Stainless steel plate containing EDM machined cracks with different depths 
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The magnitude of change in the acquired net xB  is relatively small, especially with cracks within 

thin samples. To observe the change of the field with the change of the crack depths, the differential net 

magnetic field profile, xB  were obtained by taking the difference between the transient net xB  from a 

reference signal and of that of the stainless steel sample at each crack depth. The xBΔ  for all crack depths can 

be mathematically defined as follows: 

 

xmxrefx BBB Δ  (2) 

 

where xrefB  is the reference magnetic field, xmB  is the net magnetic field acquired from the stainless steel 

sample and represents the cracks with depths = 0.15 mm, 0.20 mm, 0.25 mm, 0.30 mm, …, N mm. 

Figure 7a presents the acquired transient xB  profiles by the PEC coil from the experiment. The 

results show a good agreement with the simulation (section 2.1), whereby as the depth of the crack increases, 

the amplitude of the respective profiles increases. It can be seen from the figure, xB  for air has the highest 

amplitude compared to other acquired PEC signals. Subsequently, xB  for each crack with different depth 

were attained against air, which act as the reference signal. The xBΔ  profiles for all crack depths are plotted 

and presented in Figure 7b.  

 

 

  
(a) (b) 

 

 

Figure 7. Stainless steel plate containing cracks with different depths 

 

 

Features from the plotted xBΔ  profiles can be extracted to provide quantitative information of the 

defect. Such features are the peak value and the time-to-peak of the xBΔ  profiles as shown in Figure 7b. The 

peak value and the time-to-peak can be correlated to the crack depth and the location of the crack within the 

thickness of the sample [19]-[21]. Consequently, it can be observed that the peak values of the resultant xBΔ  

(Figure 7b) are reducing with the increase of crack depths. On the other hand, the time-to-peak for each crack 

depths occurred at the same specific time i.e. 0.07 ms. Since all cracks introduced in this work are open to 

surface type of defect, thus the cracks are detected to be at the same particular location. 

 

4. CONCLUSION 

This paper has presented the work on PEC technique and the correlation between acquired PEC 

signals with cracks having different depths in a stainless steel plate sample. Through the FEM simulation, the 

underlying phenomena of the PEC responses and the relationship between the acquired magnetic field 

transient profiles with the induced eddy currents have been explained. The visualizations of the induced eddy 

currents from the simulation provide forward solution for PEC investigation and thus the inverse approach 

for crack quantification through the acquired magnetic field transient profiles. Good agreement between the 

results from the FEM simulation and experiment conducted through the developed PEC system may benefits 

future work on PEC for real-time quantitative defect evaluation by an inverse algorithm. 
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