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 In floating point arithmetic opearations, multiplication is the most required 

operation for many signal processing and scientific applications. 24-bit length 

mantissa multiplication is involved to obtain the floating point multiplication 

final result for two given single precision floating point numbers. This 

mantissa multiplication plays the major role in the performance evaluation in 

respect of occupied area and propagation delay. This paper presents the design 

and analysis of single precision floating point multiplication using karatsuba 

algorithm with vedic multiplier with the considering of modified 2x1 

multiplexers and modified 4:2 compressors in order to overcome the 

drawbacks in the existing techniques. Further, the performance analysis of 

single precision floating point multiplier is analyzed in terms of area and delay 

using Karatsuba Algorithm with different existing techniques such as 4x1 

multiplexers and 3:2 compressors and modified techniques such as 2x1 

multiplexers, 4:2 compressors. From the simulation results, it is observed that 

single precision floating point multiplication with karatsuba algorithm using 

modified 4:2 compressor with XOR-MUX logic provides better performance 

with efficient usage of resources such as area and delay than that of existing 

techniques. All the blocks involved for floating point multiplication are coded 

with Verilog and synthesized using Xilinx ISE Simulator. 
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1. INTRODUCTION 

In many applications like signal and numerical processing, floating point arithmetic operations are 

mostly used. The floating point number standard is defined by IEEE [3] for different formats like single-

precision and double-precision. In floating-point operations, multiplication process is the complex one and 

performance deciding block. Hence, efficient implementation of floating-point multipliers is the major concern. 

Over the last few decades, a lot of work has been done at both algorithmic level and implementation 

level done to improve the performance of floating point computations [13]-[15]. Several works have also 

focused on implementation in FPGA platforms [11],[20]. In spite of tremendous efforts, this arithmetic is still 

often the bottleneck in many computations. 

The mantissa multiplication is the main part of the floating-point multiplication with respect to performance. 

For the single precision numbers 24-bit length of the mantissa, and generally multipliers need more hardware 

[1]-[2]. In this work, an attempt has been made to develop an approach for the mantissa multiplication of 

floating point numbers for single precision has been presented which permits to use a lesser amount of 

complexity and rich in performance. 

 

The contribution of this paper can be summarized as follows: 

• First, Single precision floating multiplier using Karatsuba algorithm is designed using Vedic multiplier 
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and analyzed with different techniques such as Multiplexers and Compressors for area-efficient 

implementation of Single Precision Floating-Point Multiplier. 

• Further in multiplication process, full adder block is replaced with modified 2x1 multiplexers and 

modified 3:2 & 4:2 compressor techniques wherever addition is done with full adder to improve the 

performance of the multiplication block. 

• Furthermore, performance analysis is summarized for proposed single precision floating point 

multiplication. 

The respite of the paper is systematized as follows: Section 2 explains the implementation of the 

floating-point multiplication, design approach of karatsuba algorithm is discussed in Section 3, karatsuba 

algorithm using existing techniques are described in Section 4. In Section 5, karatsuba algorithm using 

proposed techniques are designated, simulation results are discussed in section 6. 

 

 

2. FLOATING POINT MULTIPLICATION 

The floating-point binary format are defined by IEEE-754 standard which is used for representing 

floating point numbers [12]. This standard specifies the format for single and double precision numbers i.e., 

32-bit and 64-bit respectively. FPU arithmetic computations comprise addition, subtraction, multiplication, 

division and inverse etc. Generally, arithmetic operations of floating point numbers involves the mantissa, 

exponent and sign parts of the operands and then combining them after rounding and normalization. Brief 

overview of the computational flow of this arithmetic operation is given below. 

Floating point multiplication is like normal multiplication with, excluding that it entails a complex 

mantissa multiplication which needs 24-bit large multiplier. which stances restriction on the performance of 

the hardware design. It can be figured in the subsequent steps [3]: 

• XOR operation of the MSB bits to acquire the sign bit of the final  product. 

• Addition of the exponents parts of the given numbers. 

• Multiplication of mantissas parts of the given numbers. 

• Rounding operation is performed for final mantissa product. 

• Final step is to normalize the acquired result to regulate exponent and mantissa parts. 

 

Figure 1 illustrates the floating-point multiplication process through flow chart. It requires the 

calculation of exponent, mantissa and sign individually. Each of these are discussed below [5],[9]: 

 

 

 
 

Figure 1. Floating point multiplication procedure using flow chart [3] 



IJEEI ISSN: 2089-3272  

 

Resource Efficient Single Precision Floating Point Multiplier Using Karatsuba .... (K V Gowreesrinivas) 

335 

2.1. Floating Point Multiplication 

• The logical XOR of the sign-bit of both operands gives the output sign: Out = in1 ⊕ in2 

• The addition of both input exponents is given by final output exponent and then modify it by Base. 

Out1 = Exp_in1 + Exp_in2 – 127 (SPFPM) 

Out2 = Exp_in1 + Exp_in2 – 1023 (DPFPM) (1) 

 

• Generally for any given floating-point number the base is drawn using this expression: (2exponent bits−1 

− 1). 

• The output of the mantissa multiplication is Z = (-1S) *2(E-Bias) *(1.M) 

• If there is an additional carry generated after multiplication, the product result is right shifted by 1-bit and 

the exponent result is incremented by one to make the result normalized. 

• Rounding is required in order to trim back the 106-bit mantissa multiplication result to 53-bit only. This can 

be done as per IEEE standard [16]-[17]. 

 

 

3. DESIGN APPROACH OF KARATSUBA ALGORITHM FOR MULTIPLICATION 

The Karatsuba algorithm for floating-point multiplication follows divide and conquer method. The 

basic steps for this algorithm are discussed below [10]. Let us consider two floating point numbers W and X : 

the below steps will explain how the algorithm follows to perform multiplication: 

• Firstly, Divide each mantissa part into three parts such that each part should have equal number of bits i.e., 

8-bits namely A0, A1, A2 and B0, B1, B2 for the inputs A and B commonly.  

• The procedure for Karatsuba multiplication is interpreted using equations which are drafted below. This 

perception utilizes appropriate amount of adder blocks in places of few multipliers to improve the hardware 

efficiency. 

 

A = A2 22n + A1 2n + A0  (2) 

 

B = B222n + B12n + B0 (3) 

 

AB = A2 B2 24n + (A2 B1 + A1 B2)23n + [(A2 B0 + A0 B2) + A1 B1]22n + (A0 B1 + A1 B0)2n                      

+ A0 B0  (4) 

 

• From the equation (4), it is observed that Karatsuba algorithm needs 9 multipliers and 8 adders to get result.  

• In this, to perform mantissa multiplication vedic multiplier is used with different techniques like 

multiplexers and compressors [6], [4].  

Figure 2 illustrates, multiplication of two 24-bit mantissa numbers using Vedic multiplier with Ripple 

Carry addition. 

 

 

 
 

Figure 2. 24-bit mantissa multiplication using vedic multiplier  
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3.1. Vedic Multiplier 

Vedic multiplier is developed based on Urdhava Triyakbhayam sutras. Partial products creation can 

be done using vertical and crosswise manner and then parallel addition of these partial product is done by using 

different available adders. In this paper, mantissa bits of both the numbers are multiplied using Vedic multiplier 

which works on the principle of UT. The partial products creation and their summation are produced in one 

step and which minimize the carry feeding from LSB to MSB. Because of this speed of the multiplier is 

improved as compared to the available multipliers [7]-[9]. 

Figure 3 illustrates the single precision floating point multiplication of two 24-bit numbers using 

Vedic multiplier with Ripple Carry Adder using multiplexers. 

 

 

 
 

Figure 3. 24-bit mantissa multiplication using vedic multiplier with multiplexers 

 

 

4. EXISTING WORK 

The various existing techniques are listed below: 

• Ripple Carry Adder is used for partial products addition in Vedic multiplier which is used in Karatsuba 

algorithm. 

• Next, in place of Ripple Carry Adder multiplexers are used for partial products addition in Vedic 

multiplier which is used in Karatsuba algorithm. 

• Finally, different 3:2 techniques with XOR-Mux and XOR-XNOR-Mux logics are used for partial 

products addition in Vedic multiplier which is used in Karatsuba algorithm. 

• Finally, performance constraints of all existing techniques are discussed in this paper. 

 

4.1. Karatsuba Algorithm with RCA using Full Adder based Multiplication 

The Ripple Carry Adder with full adder is used to perform partial product addition. In Karatsuba 

algorithm, multiplication is used RCA for addition.  

 

4.2. 4x1 Multiplexer based SPFP Multiplication using Karatsuba Algorithm 

Full adder block is planned using two 4x1 multiplexers to complete partial product addition which is 

shown in Figure 4. From the Figure 4, A, B,C are considered as three inputs, among these three B,C inputs are 

acts as selection lines for both multiplexers and I0,I1,I2,I3 are input values to multiplexer. Out of these four 

inputs two input lines in first multiplexer I0, I3 is tied to A value and I1, I2 are tied to Ᾱ for generating sum 

output. For, second multiplexer I1, I2 are tied to A input value and I0 is connected to logic 0 value and I3 

connected to logic 1 value. 
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Figure 4. Full-adder using 4x1 multiplexer 

 

 

4.3. Karatsuba Algorithm with 3:2 Compressor based multiplication 

In multiplication, different types of compressors are used to add the partial product addition to improve 

the performance capability [15]. Compressors are usually involved to reduce the critical path which is important 

to improve the performance at the stage of reduction of the partial products. The symbolic representations of 

3:2 compressors using XOR-Mux and XOR-XNOR-Mux logics are shown in Figure 5  

and Figure 6.  

 

 

 
 

Figure 5. 3:2 Compressor using XOR-Mux logic 

 
 

Figure 6. 3:2 Compressors with XOR-XNOR-Mux Logic 

 

 

5. PROPOSED WORK 

 The contribution of this paper is involved in improving the performance of the single precision 

floating point multiplication. In this, Karatsuba algorithm is analyzed and to further improvement of this 

algorithm, different modified techniques are used in multiplier part. Brief outline of the modifications in 

mantissa multiplication part are discussed below: 

• Firstly, mantissa multiplication for single precision numbers is completed with modified multiplexers 1 and 

2 models using two 2x1 Multiplexers. Adder in the above-mentioned multiplication is replaced with 4x1 

multiplexer and 2x1 multiplexer to improve the area and speed. 

• Mantissa multiplication for single precision numbers is performed using modified 4:2 compressor 

techniques with XOR-MUX and modified 2x1 multiplexers. And also, it is done with XOR-XNOR-MUX 

and 2x1 multiplexers to improve the area and speed 

• Performance Constraints of proposed techniques are summarized and conclusion is drawn. 

In next section, detailed explanation is given for each proposed model designed with multiplexer and 4:2 

compressor logics. 
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5.1. Modified 2x1 Multiplexer based Multiplication 

In this, multiplexers are replaced in place of full adder to add partial products. Full adder block is 

designed using two 2x1 multiplexers which are explained using Figure 7 and Figure 8. From Figure 7, outputs 

of the XNOR, XOR with A, B are the inputs to the first multiplexer and it gives sum output. Outputs of the 

AND and OR of A, B are the inputs to the second multiplexer and it bounces final carry. Here, common select 

line for both multiplexers is cin. 

 

 

 
 

Figure 7. Full adder using modified 1 2x1 multiplexer 

 
 

Figure 8. Full adder using modified 2 2x1 multiplexer 

 

 

The performance comparison is done for modified models of multiplexer based single precision 

floating point multiplication with respect to area and delay. 

 

5.2. Modified Compressor based Multiplication 

In this, compressors are replaced in place of full adder to add partial products to achieve better results 

in terms of delay and power. To design 4:2 compressor two types of modules are involved: XOR-XNOR-Mux 

block and XNOR-MUX. The representation of 4:2 compressors using both the logics are shown in Figure 9 

and Figure 10. 

 

 

 
 

Figure 9. 4:2 Compressor with XOR-MUX logic 

 
 

Figure 10. 4:2 Compressor with XOR-XNOR-Mux logic 

 

 

6. SIMULATION RESULTS 

The modules involved in floating point multiplication are implemented by using Verilog-Hardware 

Description Language. All blocks are simulated and synthesized on FPGA targets with Xilinx ISE. In this, 

karatsuba algorithm with vedic multiplier using different existing and proposed techniques are considered for 

simulation and synthesis. Further, the performance comparison is done for those different existing and 

proposed techniques in view of delay and area. 

 

6.1. Simulation Results of SPFPM using Existing and Proposed Techniques 

Figure 11-14 depicts, that the device utilization summary in terms of number of slices and LUTs, 

delay and performance comparison analysis for different existing and proposed techniques of Single Precision 

Floating Point multiplication. From the graphs it is concluded that 4:2 compressor with XOR-Mux provides 

improved results in the point of both parameters i.e. number of slices and 4-input LUTs. 
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Figure 11. Device utilization summary of KA with vedic using different existing and proposed techniques 

 

 

 
 

Figure 12. Delay analysis of KA with vedic using different existing and proposed techniques 
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Figure 13. Delay summary of KA with vedic using different existing and proposed techniques 

 

 

6.2. Performance Comparison of Efficient Techniques 
 

 

 
 

Figure 14. Performance comparison of KA with vedic using different improvised techniques 
 
 

6.3. Comparison Analysis 

From Table 1, it is noticed that SPFPM using karatsuba algorithm with vedic multiplier with the 

consideration of 4x1 MUX achieves better results in terms of area. But karatsuba algorithm with vedic 

multiplier with consideration of modified 2 2x1 MUX provides better results in terms of delay than that of Full 

adder and Multiplexer based Single Precision Floating Point Multipliers. 
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Table 1. Area and Delay of SPFPM KA with Vedic using FA and Multiplexers (existing and proposed) 

Single Precision Floating Point Multiplication 
No.of 4-

input LUTs 

No.of 

Slices 
Delay (ns) 

Karatsuba Algorithm 

With Vedic using Mux/ 
FA 

Modified 2 2x1 MUX 839 477 34.57 
Modified 1 2x1 MUX 854 483 55.32 

4x1 MUX (existing) 819 465 55.86 

Full-Adder (existing) 840 476 54.27 

 

 

From Table 2, it is noticed that SPFPM using karatsuba algorithm with vedic multiplier with 

consideration of 4:2 compressor using XOR-MUX provides better results in terms of delay and area. 

 

 

Table 2. Area and Delay of SPFPM using Compressors 

Single Precision Floating Point Multiplication 
No.of 4-input 

LUTs 
No.of Slices Delay (ns) 

Karatsuba Algorithm 

using Vedic with 3:2 
and 4:2 compressors 

3:2 compressor using  

XOR-MUX (existing) 
919 497 56.99 

3:2 compressor using  

XOR-XNOR-MUX (existing) 
955 540 56.98 

4:2 compressor using  
XOR-MUX (proposed) 

630 322 16.85 

4:2 compressor using  

XOR-XNOR-MUX (proposed)  
642 364 18.61 

Conventional 4:2 (existing) 677 342 23.34 

 

 

From Table 3, it is illustrated that SPFPM using karatsuba algorithm with vedic multiplier with 

consideration of 4:2 compressor with XOR-Mux logic provides better results in view of area and delay. 

 

 

Table 3. Area and Delay Comparison of SP-Floating Point Multiplier with KA using Proposed Models  

Single Precision Floating Point Multiplication 
No. of 4-input 

LUTs 

No. of 

Slices 
Delay (ns) 

KA with Modified 2 2x1 Mux 839 477 34.57 
KA with 4:2 compressor with XOR-MUX logic 630 322 16.85 

KA with 4:2 Compressor with XNOR-MUX logic 642 364 18.61 

Ref [7] 1073 977 16.18 
Jain [20] 2270 1269 18.78 

 

 

7. CONCLUSION 

In this paper, floating point multiplication for single precision numbers is developed by using 

Karatsuba algorithm with vedic multiplier with different existing like full adder, using multiplexers and 4:2, 

3:2 compressors and proposed techniques such as modified 2x1 multiplexers and modified 3:2, 4:2 

compressors. Further, the performance comparison analysis is done among these techniques in terms of area 

and delay. From the simulated results, it is inferred that single precision multiplication using karatsuba 

algorithm with 4:2 Compressor with XOR-MUX logic combination provides better results in terms of area and 

delay than that of other techniques. 
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