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 According to WHO data, the prevalence of respiratory disorders is increasing, 

exacerbated by a shortage of skilled medical professionals. Consequently, 

there is an urgent need for an automated lung sound classification system. 

Current methods rely on deep learning, but limited lung sound data resulted in 

low model accuracy. The widely used ICBHI 2017 dataset has an imbalanced 

class distribution, with a normal class at 52.8%, wheezing at 27.0%, crackles 

at 12.8%, and combined wheeze and crackles at 7.3%. The imbalance of the 

dataset may affect the model's efficiency and performance in classifying lung 

sounds. Given these data limitations, we propose a hybrid model, combining 

residual attention network (RAN) and vision transformer (ViT), to construct 

an effective respiratory sound classification model with a small dataset. We 

employ feature fusion techniques between convolutional neural network 

(CNN) feature maps and image patches to enrich lung sound features. 

Additionally, our preprocessing involves bandpass filtering, resampling 

sounds to 16 kHz, and normalizing volume to 15 dB. Our model achieves 

impressive ICBHI scores with 97.28% specificity, 92.83% sensitivity, and an 

average score of 95.05%, marking a 10% improvement over state-of-the-art 

models in previous research. 
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1. INTRODUCTION  

In biology, respiration is a fundamental attribute shared by all living organisms, a facet prominently 

exemplified in mammals through the intricate mechanism of lung function. The lungs stand out as pivotal 

organs within the human physiological framework, as the World Health Organization (WHO) statistics show 

a staggering global health burden. With approximately 10 million individuals afflicted by tuberculosis (TB), 

65 million grappling with chronic obstructive pulmonary disease (COPD), 334 million contending with asthma, 

and an alarming toll of 3 million lives succumbing to the grim specters of TB, lung cancer, and COPD, these 

maladies manifest as significant contributors to global mortality rates [1]. In light of these challenges, it is 

crucial to watch and assess the health of our lungs closely, identifying any issues that might affect breathing, 

including carefully listening to breath sounds using a stethoscope, which is a key method in lung check-ups 

[2].  

Adventitious lung sounds (ASL), encompassing phenomena such as wheezes and crackles, stand as 

critical indicators of a spectrum of pulmonary disorders, including but not limited to asthma [3], COPD [4], 

interstitial lung disease [5], bronchiectasis [6], heart failure [7], and pneumonia [8]. The distinctive crackles 

manifest as explosive breathing sounds emanating from fluid bubbles within the trachea or bronchial tubes. In 
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contrast, wheezing manifests as a high-pitched, whistle-like resonance resulting from the passage of air through 

constricted airways [9].  

Currently, the challenge is that only healthcare professionals with training can pick up on these 

sounds. Meanwhile,  the need for more specialists in this field adds a layer of complexity, potentially slowing 

down the ability to promptly identify the specific illness of one person with respiratory disorders. Automated 

examination of respiratory sounds can mitigate these limitations and facilitate the implementation of 

telemedicine applications for monitoring patients beyond traditional clinical settings, with the potential 

involvement of less-specialized personnel, such as community health workers. 

The active investigation of algorithmic approaches for detecting lung disorders based on respiratory 

sounds has increased, especially with the advent of digital stethoscopes [10], [11]. Many studies on this subject 

focus on detecting aberrant respiratory sounds, such as wheezing and crackles. At the same time, initial studies 

emphasized the use of manually crafted features and conventional machine learning techniques [12]-[14]. In 

recent times, there has been a predominant focus on methods rooted in deep learning [4], [15], [16]; common 

features used to train deep learning models in lung sound detection systems are the Mel-spectrograms [17], 

[18], and The Mel-frequency cepstral coefficients (MFCCs) [19], [20] which are compiled into 2D data which 

is then trained with image level classification.  

The deep learning models employed in prior research for lung sound classification included 

supervised learning convolutional neural networks (CNNs) [16], [21], [22], recurrent neural networks (RNNs) 

[20], [23], and hybrid models combining CNNs and Long Short-Term Memory (LSTM) [24]. Recent work 

conducted by Wu et al. [25] utilized feature fusion techniques that combine 3 features, including the 

spectrogram, the Mel spectrogram, and MFCCs, then utilized the CNN model with skip connection and resulted 

an ICBHI score of 88.5%. Research conducted by Mang et al. [26] used voice cochleogram features to improve 

time-frequency representation to optimize CNN; they got an ICBHI score of 85.1%. Bhushan et al. [27] 

proposed a CNN-LSTM self-attention model to classify respiratory sounds and got an ICBHI score of 57.02%. 

Then, Moummad et al. [28] used contrastive learning techniques to classify respiratory sounds. However, the 

implementation of the vision transformer (ViT) model in previous research still needs to be improved. The use 

of transformer models for audio classification tasks, namely the audio spectrogram transformer (AST) [29], 

has been carried out with satisfactory results. Ariyanti et al. [30] used the AST model for respiratory sound 

classification and utilized the Mel spectrogram feature, and they got an ICBHI score of 69.3%.  

ViT has a larger receptive field compared to CNNs, which generally use 3×3 kernels, which are 

limited to only local neighborhood capture local representation because the size of the receptive field is very 

important to construct a contextual visual understanding [31]. The integration of CNNs and ViT architectures 

is driven by the intention to harness the complementary strengths of both models. CNNs are recognized for 

their efficiency in capturing local patterns and spatial hierarchies, particularly in smaller images, due to their 

translation equivariance and weight-sharing properties. On the other hand, transformers, exemplified by ViT, 

come with multi-head attention, and excel in modeling long-range dependencies but are often deemed data-

hungry, presenting challenges in scenarios with limited datasets. The combination aims to create a hybrid 

model that can generalize well on smaller datasets, providing a flexible and efficient solution that balances the 

strengths of CNNs and transformers [32]. In a prior study conducted by J. Neto et al. [33], the combination of 

CNN and ViT was explored using a dataset comprising breathing sounds. In their research, they integrated a 

convolutional block attention module (CBAM) as the convolutional block. They adopted data-efficient image 

transformers (DeIT) as the transformer block, and the research still gets an ICBHI score that is still 

unsatisfactory at 57.36%.  

In this paper, we propose a lung sound classification model using a combining network of RAN and 

ViT. RAN has the ability to generate attention features by utilizing the soft mask branch and trunk branch 

mechanisms. The mask branch consists of two main processes, namely fast feed-forward sweeps and top-down 

feedback. The feed-forward step quickly collects overall information from the entire image, while the top-

down feedback step integrates the global information with the initial feature map. With this mechanism, RAN 

is able to generate low-noise features. RAN also has better capabilities in the case of image net data 

classification, where RAN with attention-92 settings gets a top-error of 19.5% and a top-5 error of 4.8% [34], 

compared with CBAM with the ReNetXt101+CBAM combination setting, the top-1 error was 21.07%, and 

the top-5 error was 5.59 [35].  

Works on developing lung sound classification model implementing the deep learning models used 

the ICBHI 2017 dataset [36], [37], which consists of 6,898 respiratory cycles consisting of 1,864 wheezing 

sounds, 886 crackles, 506 combinations of wheezing and crackles, and 3,642 normal sounds. There needs to 

be more than this dataset to train a deep learning network. Therefore, in this work, we also enriched the dataset 

by using simple audio augmentations such as pitch shifting, time shifting, time stretching, and pitch stretching. 

Then, this dataset was fed to the proposed network, using a combination of RAN and ViT to allow more 

effective utilization of the limited lung sound dataset. 
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The main contributions of our work are: 

• Proposing a fusion technique of lung sound features between the CNN feature map and image patch to 

enrich features. 

• Proposing a hybrid model that results from training in combined RAN and ViT to build an effective 

respiratory sound classification model with a limited dataset. 

• Demonstrating RAN-ViT performance on the ICBHI 2017 dataset using specificity and score metrics 

that outperform other state-of-the-art approaches. 

The rest of this article describes the dataset preparation and proposed network in Section 2. Then, the 

simulation result and model performance are discussed in Section 3. Finally, Section 4 sums up the findings. 

 

2. METHOD  

This section describes the respiratory sound dataset obtained from the ICBHI 2017, the proposed 

model by combining RAN and ViT, the training setting, and model validation. The discussion is clearly 

described in the following subsections. 

 

2.1.  Dataset Preparation 

In this study, we used the ICBHI 2017 dataset [36], [37], which is a very popular dataset for building 

machine learning and deep learning models capable of classifying respiratory sounds. The dataset contains 

6,898 breathing cycles, including 3,642 normal sounds, 1,864 crackles, 886 wheezing sounds, and 506 sounds 

of both (crackles and wheezing) consisting of a total of 5.5 hours of recordings; the number of audio samples 

consists of 920 recordings and 126 patients. Figure 1 shows the distribution of imbalance for each class in this 

ICBHI dataset. 

 
Figure 1. ICBHI dataset class distributions 

 

There are two types of files in the ICBHI dataset, namely files with .wav and .txt extensions. The file 

with the .wav extension contains a recording of the patient's breathing sounds, while the .txt file contains an 

annotation of the breathing sounds. Each respiratory sound file has an annotation file that indicates whether 

the sound is in the category of wheeze, crack, both, or normal. This annotation file has four columns, namely 

the start time column (the time the breath starts), the end time column (the time the breath ends), the crack 

column (a crack sound marker with a value of 1 and 0 if there is no crack sound), and the is wheeze column 

(wheeze sound marker with a value of 1, and 0 if there is no wheeze sound). For example, Figure 2 shows the 

data preparation process before undergoing the data preprocessing process. In this process, the sound in the 

.wav file will be splitted and divided according to the annotation in the .txt file. 

Figure 2. ICBHI dataset preparation process 
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Figure 3. ICBHI dataset preprocessing process 

 

As illustrated in Figure 2, for the example of a breathing start time of 0s and a breathing end time of 

3s. If the crack and wheeze sound values are 0 or there are no crack and wheeze sounds during breathing, then 

the sound is categorized as a normal sound class. If the crack sound is 0 and the wheeze sound is 1, then the 

sound is classified as the wheezing sound class. Conversely, if the crack sound is 1 and the wheeze sound is 0, 

it is classified as the crack sound class. If both crack and wheeze have a value of 1, then they are categorized 

as both sound classes. After the sounds are splitted based on their annotations, the files will be saved in the 

folder corresponding to each sound class. 

After the data preparation process, the next step is the preprocessing process. This ICBHI dataset has 

a non-uniform sampling rate and power volume and still has a lot of noise, such as people talking, alarm sounds, 

and other objects. Therefore, we do some preprocessing that makes the data more uniform and low noise. 

Preprocessing to achieve consistency, we harmonize the sampling rates of the dataset recordings, which 

initially range from 4 kHz to 44.1 kHz, by setting all recordings to 16 kHz and setting the volume of all 

recordings to 15 dB. To handle the noise in the recording, we used a bandpass filter with a low cutoff of 50 Hz 

and a high cutoff of 1500 Hz. The detailed process at this preprocessing stage is shown in Figure 3. 

 

2.2. Proposed Model 

We propose a model that can produce training models with good results even though the dataset is 

small and unbalanced. In this study, we created a CNN-Transformer hybrid model, which can take advantage 

of the advantages of each model, as shown in Figure 4. The CNN model of RAN has the ability to produce 

low-noise feature maps and attention features, and it can capture local neighborhood context [34]. The Residual 

Attention Network is composed of stacked Attention Modules, each featuring two distinct branches: the mask 

branch and the trunk branch. The mask branch generates attention masks to emphasize critical features and 

suppress less relevant ones, while the trunk branch processes feature and seamlessly integrates with any modern 

network architecture, enhancing its flexibility and performance [34]. Pre-activation Residual Units, ResNeXt, 

and Inception are utilized as foundational of RAN, the trunk branch processes the input 𝑥 to produce an output 

𝑻(𝒙), while the mask branch employs a bottom-up top-down structure to generate a mask 𝑴(𝒙) of the same 

size. This mask softly weights the output features 𝑻(𝒙), mimicking the feedforward and feedback attention 

process. Neuron control gates are implemented similarly to Highway Networks, resulting in the final module 

output. The output of Attention Module of RAN (𝑯) is: 

 

𝑯𝒊,𝒄(𝒙) =  𝑀𝑖,𝑐(𝑥) ∗  𝑇𝑖,𝑐(𝑥) (1) 

where i ranges over all spatial positions and 𝑐 {1, … , 𝐶} is the index of the channel. 

 

In Attention Modules, the attention mask functions not only as a feature selector during forward 

inference but also as a gradient filter during backpropagation. Within the soft mask branch, the gradient of the 

mask with respect to the input features is expressed as. 

 

𝜕𝑀 (𝑥, 𝜃)𝑇(𝑥, ∅)

𝜕∅
= 𝑀(𝑥, 𝜃)

𝜕𝑇 (𝑥, ∅)

𝜕∅
  

(2) 
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Where 𝜃 represents the parameters of the mask branch, and ∅ corresponds to the parameters of the trunk branch. 

This characteristic enhances the robustness of Attention Modules against noisy labels, as the mask branch helps 

prevent incorrect gradients, caused by noisy labels, from affecting the updates of the trunk branch parameters. 

 

Transformer model that we use on this work captures global neighborhood context using ViT, which 

is successful with the AST [29] model, which produces good accuracy for audio data classification, which has 

the ability to multi-head attention and a large receptive field so that it can capture global context on data 

features. The self-attention mechanism is a crucial component of Transformers, designed to explicitly capture 

interactions among all elements within a sequence. In this context, the sequence refers to the patches of an 

image mel spectrogram, which has been divided into 16 × 16 segments. Essentially, a self-attention layer 

updates each element of a sequence by gathering global information from the entire input sequence. Let’s 

denote a sequence of n entities (𝑥1 ,  𝑥2 , … , 𝑥𝑛 ) by 𝑿  𝑅𝑛×𝑑 where d is the embedding dimension to represent 

each patch image (sequence entities). The purpose of self-attention is to capture the interactions between all n 

entities by representing each entity based on the global contextual information. This is achieved by introducing 

three learnable weight matrices to transform the Queries (𝑾𝑄𝑅𝑛×𝑑𝑞), Keys (𝑾𝐾𝑅𝑛×𝑑𝑘), and Values 

(𝑾𝑉𝑅𝑛×𝑑𝑣), where 𝑑𝑞 =  𝑑𝑘  . The input sequence X is f irst projected onto these weight matrices to get 𝑸 =

𝑿𝑾𝑞 , 𝑲 = 𝑿𝑾𝑘 and 𝑽 =  𝑿𝑾𝑣. The output 𝒁𝑅𝑛×𝑑𝑣  of the self attention layer is: 

 

𝒁 = 𝑠oftmax (
𝑄𝐾𝑇

√𝑑𝑞

) 
(3) 

 

 

Figure 4. Feature fusion technique to combine RAN and ViT 

The first process carried out in the model we propose is converting data that has been previously 

processed by removing some noise and resampling it into data in the form of a Mel spectrogram representation. 

Mel spectrogram is a technique based on the human sensory system and applied to the depiction of time-

frequency audio input [38]. We use a window size setting for the FFT of 2048 and an overlap of 128. We use 

the help of the Librosa framework to generate a Mel spectrogram image from the representation of the 

respiratory sound signal that has been previously preprocessed. We resized the Mel spectrogram to 224×224 

pixels because the input for RAN is 224×224, and the RAN model setting was RAN attention-92. 

The previously produced Mel-spectrogram image then undergoes a feature fusion process consisting 

of two stages. In the first stage, the Mel-spectrogram image is fed into the RAN attention92 model, which 

produces a feature map with a size of 7×7. The proposed RAN model had the fully connected layer removed. 

The resulting feature map is then enlarged using bilinear interpolation techniques to the original Mel-

spectrogram size. The interpolation results are then broken down into patches with a size of 16×16 pixels, 

producing 196 image tokens. In the second stage, the Mel-spectrogram image is directly cut into the same patch 

size as in the previous process without going through the RAN model. It also generates 196 mel-spectrogram 

image tokens. The two sets of tokens, each from the two stages, are then combined by concatenation to form 

392 tokens. This combination then becomes input for the ViT model in the classification process. The details 

of this process regarding feature fusion are explained in Figure 5. 
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Figure 5.  Overview of the proposed model RAN and ViT combination 

 

The previously diffused features resulted in 392 tokens, which will serve as input to be fed into the 

ViT model. The ViT model we use in this study is the vanilla ViT version with customized configurations, 

including a head attention count of 8, multi-layer perceptron (MLP) dimension of 1024, linear projection 

dimension of 1024, and head dimension of 64. The 392 tokens are then piped into the encoder transformer of 

the ViT model, which then undergoes a classification stage in the last MLP layer. This process allows the ViT 

model to understand and extract complex features from the token representations given earlier, leading to more 

accurate decision-making in the classification stage. 

 

2.3. Training Setting 

The training process was conducted in sequential steps to ensure reproducibility and efficiency, 

utilizing a dual-GPU configuration. First, the PyTorch Lightning framework was used to implement the model, 

leveraging the DistributedDataParallel (DDP) strategy for synchronous training across two GPUs. This 

approach efficiently distributed computations and gradients, enabling faster training times and scalability. The 

specific steps involved in the training process are as follows: 

 

1. Hardware Setup: Two RTX 3070 GPUs with 8 GB of VRAM each were used to accelerate the 

training process. RAM 32 GB, CPU Intel i7. 

2. Batch Size Configuration: A batch size of 32 was selected to maximize GPU memory utilization 

without compromising computational efficiency. 

3. Optimizer Selection: The AdamW optimizer was employed, with three variations of the learning 

rate (0.0001, 0.003, and 0.005) to identify the optimal value for stable learning. 

4. Learning Rate Scheduling: The StepLR scheduler was applied, with a step size of 20 epochs and 

a gamma factor of 0.2. This adjustment gradually reduced the learning rate, ensuring improved 

convergence and training stability. 

5. Training Duration: The model was trained for a total of 150 epochs, enabling the optimizer to 

reach convergence without overfitting. 

6. Loss Function: Cross-entropy loss was used to handle the multi-class classification task, ensuring 

proper optimization of the model's predictions. 

For more detail about implementation on training proses, the following is the psudocode the training 

process as show on Algorithm 1. 
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Algorithm 1: Training Process  

Input: Dataset D, batch size N, LightningModule M, optimizer O, trainer T, accelerator 

(GPU), devices (2), RAN x ViT architecture, Mel spectrogram representation, epochs=150 

 

Output: Trained model M. 

1: Initialize Environment 

2: Preprocess Data: 

3:  1. Remove Noise and Resample data. 

4:  2. Convert data to Mel spectrogram representation: 

5:   Window size for FFT = 2048, overlap = 128 

6:   Resize Mel spectrogram to 224×224 pixels using Librosa. 

7: Define RAN x ViT Architecture: 

8:  1. Stage 1: Process through RAN Attention-92: 

9:   Input Mel spectrogram to RAN → Generate 7×7 feature map 

10:   Remove fully connected layer in RAN 

11:   Upscale feature map to 224×224 using bilinear interpolation 

12:   Split resized feature map into 16×16 patches → Generate 196 tokens 

13:  2. Stage 2: Direct Tokenization of Mel spectrogram: 

14:   Split original Mel spectrogram into 16×16 patches → Generate 196 tokens 

15:  3. Feature Fusion: 

16:   Concatenate tokens from Stage 1 and Stage 2 → Total 392 tokens 

17:  4. ViT Encoder: 

18:   Input 392 tokens to ViT encoder with the following configurations: 

19:    Head attention count = 8, MLP dimension = 1024, linear projection = 

1024, head dimension = 64 

20:  5. Classification: Use last MLP layer in ViT for final classification. 

21: Detail Train Model Process (vanila): 

22:  for k in {1, 2, …, epochs} do: 

23:   for i in {1, …, batches in D} do: 

24:    x, y ← Sample batch from D 

25:    y_pred ← M.forward(x) 

26:    loss ← Compute Cross-Entropy Loss(y_pred, y) 

27:    Backpropagation and optimization step 

28:   end for 

29:  end for 

30: Initialize Trainer (Pytorch lighning module): T ← Trainer(accelerator=’gpu’, 

devices=2, max_epochs=epochs, strategu:”ddp”) 

31: Train Model: T.fit(M, D) 

32: return trained model M. 

 

 

 

2.4. Model Validation 

      We evaluated our model using the ICBHI dataset [32], in which our model classifies 4 classes of breathing 

sounds provided in the dataset, namely normal, crackles, wheeze, and both. We divided the dataset with 60% 

training data settings, and 40% testing data, then we evaluated the results of the model performance using the 

metrics commonly used on the ICBHI dataset from eq (1), eq. (2), and eq. (3). 

𝑆𝑒 =
𝑃𝑐 + 𝑃𝑤 + 𝑃𝑏

𝑁𝑐 + 𝑁𝑤 + 𝑁𝑏

 
(4) 

where 𝑆𝑒 is the ICBHI sensitivity score, 𝑃𝑐, 𝑃𝑤, and 𝑃𝑏  respectively is the number of crackles, wheeze, and both 

classes correctly classified, and 𝑁𝑐, 𝑁𝑤 and 𝑁𝑏 is total number of samples of crackles, wheeze, and both classes, 

respectively. 

𝑆𝑝 =
𝑃𝑛

𝑁𝑛

 
(5) 
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where 𝑆𝑝 is the ICBHI specificity score, 𝑃𝑛 is number of normal classes correctly classified, and 𝑁𝑛 is total 

number of normal classes. 

𝑆𝑐 =
𝑆𝑒 + 𝑆𝑝

2
 

(6) 

where 𝑆𝑐 is the average ICBHI score. 

 

3. RESULTS AND DISCUSSION  

 

In this section, we discuss the results of each process step to achieve the results and performance of 

our proposed model. The first step is preprocessing data that has been prepared previously and has been split 

according to the annotation. The second is training the network. And lastly testing the model performance.  

 

3.1.  Preprocessing Result  

This process involves using a preprocessing pipeline with a band-pass filter to remove noise from the 

sound, then resamples the sound to 16 kHz, and finally normalizes the volume to 15 dB. The results of the 

sound samples that have gone through this preprocessing stage produce a Mel-spectrogram that is clean from 

noise, as shown in Figure 6. 

 

 

 
Figure 6.  Dataset preprocessing pipeline 

 

In the audio processing, a Mel-spectrogram image is initially generated, ensuring a clean 

representation by eliminating noise. This image is then resized to a standardized size of 224×224 pixels before 

being fed into a RAN model. The RAN model plays a crucial role in extracting high-level features by focusing 

on patterns indicative of specific sounds. The resulting feature map produced by the RAN serves as a refined 

representation, highlighting dominant frequencies and key characteristics that facilitate easier classification of 

distinct sounds. The generated Mel-spectrogram image encompasses a frequency range from 0 to 8,192 Hz, 

allowing the network to distinguish the distinctive characteristics of the dominant frequency associated with 

each sound. The intensifying yellow hues in the image signify the presence of a highly prominent frequency at 

specific points in time. According to the American Thoracic Society [39], distinct frequencies characterize 

different ASL. Wheezing sounds, for instance, exhibit a frequency range of 400–2,500 Hz throughout 80 µs. 

In contrast, crackle sounds manifest at 60–350 Hz within a shorter time frame of 15 µs than wheezing sounds. 

On the other hand, normal lung sounds fall within the frequency range of 200–800 Hz, as outlined by the same 

authoritative source. 

Figure 7 displays the results of the feature map generated with RAN. This feature map reflects the 

characteristics of each type of sound. In normal speech, the feature map gives more weight to the frequency 

range (128–512 Hz). Likewise, in crack sounds, the feature map is focused on low frequencies (60–256 Hz), 

according to the appearance of crack sounds at that frequency, as seen in the feature map image. Meanwhile, 

the wheezing sound is focused on the frequency range (256–1,024 Hz). 
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Figure 7. RAN features map after interpolation process 

3.2.  Network Performance 

 

The features generated by RAN are divided into image patches with a size of 16×16 pixels. These 

patches are then merged with Mel-spectrogram images patched with the same size, namely 16×16 pixels. As a 

result, 28 image tokens are formed, which are subsequently input into the transformer encoder. This encoder 

is then trained with the settings explained in the training configuration above. Testing is conducted by trying 

three learning rate levels, with other settings remaining constant, such as the AdamW optimizer, cross-entropy 

loss, batch size of 32, and 150 epochs. The learning performance is shown in the learning curve in Figure 8. 

 

 
(a) 

 

 
(b) 

Figure 8. Learning curve model: (a) training accuracy and (b) training loss 
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The learning curves in Figure 8 show the best performance of the combined network of RAN and ViT 

with hyperparameters of learning rate 0.0001, a training accuracy rate of 99.91 %, and a validation accuracy 

rate of 99.17%. The training curve shows that the model has a stable performance and no fluctuating values. 

Combining RAN with ViT and utilizing the feature fusion technique performs better when trained on a learning 

rate of 0.0001. The entire training process required a total time of 31,152.68 seconds (~8.65 hours) when 

utilizing the dual-GPU configuration. The trained model consists of 105,435,350 parameters and produces a 

model size of 988.3 MB. The average GPU utilization during training was 85 %, peaking at 93%. CPU 

utilization averaged 30%, peaking at 45%, and RAM utilization averaged 15.67 GB. For inference, which was 

performed on 32 samples, the total time required was 27.8 seconds. The GPU utilization during inference 

averaged 50%, peaking at 60%.  

 Our proposed model excels in capturing both local and global contexts within the Mel-spectrogram 

features of respiratory sounds. The RAN model production of low-noise map features ands attention filters, 

followed by their fusion with the Mel-spectrogram patch, enhances the guidance of the ViT model. It allows 

the enriched feature set, which includes the Mel-spectrogram patch, to integrate features from RAN. Given 

ViT reputation as a data-hungry model, the feature-level fusion system significantly improves the ViT model 

performance and reliability, especially when trained with a relatively limited dataset from ICBHI. 

 

3.3.  Model Testing 

We validated our model using the ICBHI metric of specificity, sensitivity, and an average score, 

respectively, 𝑆𝑝,  𝑆𝑒, and 𝑆𝑐. We used the testing data and got the highest rate at 𝑆𝑝 of 97.28%, 𝑆𝑒 of 92.83%, 

and of 𝑆𝑐 95.05%. From the confusion metric in Figure 9, the proposed model can classify each class in the 

testing data well. We also compared previous research's state-of-the-art (SOTA) models, as provided in Table 

1. Based on the comparison, the model we are proposing has an increase of 10% in terms of 𝑆𝑐, which is higher 

than other SOTA models.  

Figure 9. Model confusion matrix.  

 

Table 1. The performance of the proposed model with other the state-of-the-art models 

Method 

ICBHI Scores 

𝑆𝑒 (%) 𝑆𝑝 (%) 𝑆𝑐 (%) 

DeIT + CBAM [33] 36.41 78.31 57.36 

CNN+CBA+BRC+FT [16] 40.1 72.3 56.2 
CNN-LSTM + Focal Loss [24] 60.29 84.26 68.52 

AST [29] 52.1 86.4 69.3 

M-SCL [28] 82.24 88.62 85.43 
Cochleogram features + VGG16 [26] 53.45 68.71 61.08 

Proposed model 92.83 97.28 95.05 

    

 

To evaluate the performance of the proposed model more comprehensively, we assess it using class-wise 

metrics, including sensitivity, precision, and F1-score. These metrics provide a detailed analysis of the model's 

ability to correctly predict each class, as well as its robustness in handling imbalanced class distributions. The 

confusion matrix results were analyzed, and the class-wise metrics are presented in Table 2. 
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Table 2. Class-wise Metrics for the Proposed Model 

Class 

Metrics   

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

(%) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

 (%) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 
(%)

 

  

Normal 97.28 89.14 93.03   
Both 91.39 97.78 94.48   
Wheezing 89.54 93.85 91.64   
Crack 97.77 96.96 97.36   

 

The sensitivity (or recall) measures the model ability to correctly identify all positive instances of a 

particular class, with the 'Normal' class achieving 97.28%, indicating that most 'Normal' instances were 

correctly predicted. Precision evaluates the model's capability to avoid false positives by predicting a class only 

when it is confident, with the 'Both' class recording the highest precision at 97.78%, reflecting the model's 

strong ability to avoid misclassifications in this category. F1-score, the harmonic mean of sensitivity and 

precision, provides a balanced measure of the model's accuracy, where the 'Crack' class achieved the highest 

F1-score at 97.36%, demonstrating exceptional performance in identifying and classifying this class correctly. 

The overall results show that the proposed model performs consistently well across all classes, particularly 

excelling in detecting 'Normal' and 'Crack' classes with high sensitivity and precision. However, the slightly 

lower sensitivity for the 'Wheezing' class (89.54%) highlights room for improvement in detecting all instances 

of this class. Overall, the proposed model effectively handles the class imbalances present in the dataset and 

demonstrates strong generalizability for respiratory sound classification tasks. 

 

4. CONCLUSION  

This article introduces a hybrid model that combines the strengths algorithm of RAN and ViT. 

Notably, this hybrid model demonstrates effectiveness even when working with limited lung sound datasets. 

Our proposed model establishes a new state-of-the-art (SOTA) RAN and ViT combination network trained 

and tested on the ICBHI dataset for 4-class classification. The model shows outstanding performance with 𝑆𝑒 

of 92.83%, 𝑆𝑝 of 97.28%, and 𝑆𝑐 of 95.05%, showcasing a notable improvement of 10% over existing works. 

The proposed hybrid model combining Residual Attention Network (RAN) and Vision Transformer (ViT) 

demonstrates strong performance but has some limitations. The model is very complex and large, which 

increases computational demands, impacts training and inference time, and may limit deployment on resource-

constrained devices. Additionally, the small and imbalanced dataset may affect its generalizability, and the 

sensitivity for the "Wheezing" class is slightly lower than for other classes. Future work could focus on creating 

a more efficient and lightweight model, using larger and more diverse datasets, optimizing the model for real-

time use, and improving preprocessing techniques. Integrating additional data sources to enhance accuracy and 

applicability, along with efforts to make the model more interpretable, would also be beneficial. 
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