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 The article deals with the synthesis of band-pass filters (BPF) for the design of 

microwave filtering devices, by using non-homogeneous lines (NL) with the 

selection of the appropriate wave impedance W. For this purpose, equivalent 

NL substitution circuits were created in the region of resonant and anti-

resonant frequencies, and four-pole matrices of the transmission line were 

determined, whose matrix of impedances and admittances does not have 

partial poles, and the transmission admittance and transmission impedance do 

not have zeros. BPF prototypes were synthesized with two parallel plumes 

based on a closed homogeneous line and one plume based on three NLs. A 

band-pass filter with an extended blocking band was implemented, and its 

amplitude-frequency characteristics were obtained. The use of NLs as 

resonators allows the choice of wave impedance to increase the blocking band 

of the BPF compared to the BPF on resonators based on homogeneous lines. 
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1. INTRODUCTION  

The development of radio communication and broadcasting systems is largely determined by the 

efficiency of using radio frequency resources, the possibility of expanding working frequency bands and 

simultaneously narrowing protective frequency bands between channels, as well as ensuring a wide range of 

quality parameters of modern telecommunication services [1]. Frequency selection devices (filters) are the 

most important component of the channel-forming and group equipment of wireless transmission systems and 

largely determine the characteristics of the entire radio transmission system in general. At the same time, these 

devices must have minimal losses in the bandwidth, the widest blocking band, and minimal weight and size 

indicators [2, 3]. Taking into account the fact that the technical characteristics of radio technical devices depend 

significantly on the parameters of the filters, the intensive development of new types of filters that work in 

ultra-high frequency ranges is actively continued [4, 5]. 

When designing various microwave devices, transmission lines with constant wave impedance 

(homogeneous lines HL), which have periodic amplitude-frequency characteristics, are widely used, which 

causes the presence of parasitic channels for receiving filters and matching devices [6]. There is clearly a need 

to develop more advanced filter structures suitable for integration with modern telecommunications equipment. 

To a large extent, you can get rid of this drawback when using NL by selecting the appropriate wave impedance, 

the value of which depends on the current length. To design filter-matching devices for any purpose, you need 

to know the matrix of the NL, considered as a four-pole. In this case, with a known NL matrix, any method of 
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synthesizing filters or matching circuits can be used. Therefore, the main task when using NL as a filter element 

is to determine the four-pole matrix of the transmission line [7]. 

In the general case, the problem of determining any four-pole matrix does not have a closed exact 

solution, since the processes in NL are described by second-order differential equations, the solution of which 

is expressed in quadratures only in some particular cases. As a result, the definition of exact final expressions 

for the elements of matrices of four-poles based on the NL is possible for individual special cases, which does 

not allow for realizing the potential of the NL. 

The analysis of recent studies shows that today several groups of methods for the synthesis of 

broadband filtering devices are used simultaneously. 

Most often, in the synthesis of distributed filters and matching circuits, classical analytical methods 

are used, which involve the construction of filters based on resonators interconnected by impedance or 

conductivity inverters [8-10]. This method allows you to implement the frequency response with a minimum 

number of resonators and is suitable mainly for the construction of filters with active constant loads. Thus, a 

method of direct synthesis of coupled symmetrical resonator filters with source-load coupling was developed 

[11]. If the active load depends on the frequency, then the construction of filters will be performed only in a 

narrow range of frequencies (the relative bandwidth is units of percent). Also, the use of classical methods for 

homogeneous lines has disadvantages related to the fact that it is impossible to obtain arbitrary transmission 

characteristics [12], one must rely on time-consuming parametric studies to obtain the design parameters of the 

device. 

The use of the method of characteristic parameters in the construction of distributed filters is now 

rarely used due to the complexity of calculating the characteristic impedances of filter elements built on the 

basis of uniform lines with included concentrated non-homogeneities. The study of the influence of the 

microwave devices' design parameters on the electrical characteristics of filter lines and matching lines should 

take into account the deviation of the wave impedance from the nominal values. 

Match the amplitude-frequency characteristics of the filters with the load, possible when using 

elements of NL. This is done by selecting the appropriate impedance of the line, which improves the appearance 

of the amplitude-frequency characteristics and allows you to avoid the parasitic receiving channels of filters 

[13]. 

However, today a small number of NLs for which the solutions of telegraph equations are known are 

described, which limits the elemental basis for the construction of microwave telecommunication systems and 

prevents the development of devices with the necessary amplitude-frequency characteristics [13]. At present, 

exact solutions of telegraph equations are known for lines that are most widely used in practice, with an 

exponential change in wave impedance, with parabolic and hyperbolic wave impedance [14-16]. In the case of 

other types of lines, numerical methods are used [17], the disadvantage of which is the partial character of the 

obtained results. 

The experience of using 3D printing to create the structure of microwave components, which are then 

covered with metal to build a conductive layer, provides wide opportunities for practical application of the new 

element base for the construction of microwave devices [18, 19]. The proposed 3D printing methods reduce 

the cost of components, which does not depend on the complexity of the product and are lighter compared to 

conventional metal ones. 

The purpose of the article is to expand the element base of heterogeneous lines for the design of 

microwave filter-matching devices. 

 

2. RESEARCH METHOD  

In this section presents the conclusion of the determination of the NL conductivity matrix. Substitution 

circuit in the region of resonant frequencies is presented and described. The issues of formation and 

mathematical description of the substitution circuit of anti-resonant frequencies have been separately 

developed. 

 

2.1.  The Determination of the NL Conductivity Matrix 

To determine the four-pole NL matrices, it is proposed to use the properties of the line as a four-pole 

with a compact residue [20], the matrix of impedances and admittances of which does not have partial poles, 

and the transfer conductivity and transfer impedance do not have zeros. This allows you to find all elements of 

the matrix of impedances and admittances by the input impedance of an open line (the input conductivity of a 

closed line).  

Let's use this method to determine the conductivity matrix of the NL with wave impedance 
2

0( )W W ch a =  , where τ is the current delay time, α is a positive number, W0 is the wave impedance at the 

beginning of the line. In this case, the element y11 of the conductivity matrix Y is: 
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Equating the denominator to zero, we find the poles 
k kp j=  for conduction y11: 
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Following [3], we find the transfer conductivity: 

12 2
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1
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1 k
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k k
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Where stL  is the static inductance of the line: 

0 0

2

0 0

( ) .

t t

SI

W W
L W d d that

ch a a
=   =  =

                                                  (4) 

From here we find the transfer conductivity: 

12
2 2

0

2 2

1
.y

sh p a tW p

chat p a

− =
+

+

                                                                (5) 

Note that at the 0p → conductivity (
12y− ) tends to the conductivity of the static inductance stL , and 

at the 0 → conductivity is 
12

0

1
y

W shpt
− → , that is, in the limiting case, we have the conductivity of a 

homogeneous line with a wave impedance W0 and a delay time t. 

Find the element y22 of the matrix of conductivities. To do this, we use the condition of compact 

residue of the elements of the admittance matrix of a non-homogeneous line [14]. 

( )
2

( ) ( ) ( )

11 22 12 0m m mk k k− =                                                                   (6) 

Where ( ) ( ) ( )

11 22 12, ,m m mk k k are the residues of the elements 
11y ,

22y ,
12y . 

Residues are coefficients in the expansion of a fractional-rational function into a sum of simple 

fractions and for lossless circuits are determined by the expression [14]. 

( ) ( )
, 1,2; 1,2; 1,2,...

( )

m m
ij

m

P p
k i j m

Q p
= = = =


                                         (7) 

Where P is the function numerator polynomial, Q is the denominator polynomial, pm are the roots of 

the denominator. 

By residues and poles, the elements of the matrix of conductivities (impedances) of lossless circuits 

are determined [21]. In particular, if the conductivities have a pole at zero, as in our case, then the elements of 

the admittance matrix can be represented as (for different elements yij the polynomials P and Q are different) 

[14]: 
(0) ( )

(0)

2 2
1

2( ) 1
, 1,2; 1,2;

( )

m

ij ij

ij ij

m m st

k kP p
y i j k
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

=

= = + = = =
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In view of what has been said, we find the residues y11. To do this, we write y11 in the form: 
2 2 (0) ( )

11 11
11 2 22 2

1
0

2 2

( ) 2
.

( )

m

m m

ch p a tP p k k
y

Q p p PpW sh p a t

p a
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=

+
= = = +

+ +
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                           (9) 

In our case: 
2 2

2 20

2 2
( ) , ( ) .

W psh p a t
Q p P p ch p a t

p a

+
= = +

+
                                  (10) 

We find the residues for: 

m mp j p=  = , 

2

2 2 , 1,2,...m

m
a m

t

 
 = + = 

 
.  
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Similarly, we define the residues of the element y12. Given that: 
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find (p=pm): 
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Thus, the transfer conductivity and the element y22 of the conductivity matrix take the form: 
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The residues ( )

22

mk  are found from the compactness condition (6) ( )
2

( ) ( ) ( )

11 22 12 0m m mk k k− = : 
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Thus, the matrix of conductivities is completely defined. Knowing the matrix of conductivities, it is 

possible to synthesize various types of filters or matching devices using known methods [15, 16], [22, 23]. 

Consider the synthesis of bandpass filters (BPF). To do this, we first determine the equivalent circuits 

of the NL in the region of the poles of the elements of the matrix of impedances and conductivities. 

 

2.2.  Substitution Circuit in the Region of Resonant Frequencies 

For lossless lines, the impedance matrix can be written as: 

       
0 0
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1 1
st
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Where stC  is the static capacitance of the line; ( )

mnk    - matrix of residues of the elements of the matrix 

of  impedances in the poles , 1,2,3,..., 1,2; 1,2p j m n =   = = = . 

11 12( )

12 22

mn

resZ resZ
k

resZ resZ

  
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 
                                                               (18) 

From (17), (18) it follows that in the region of the resonant frequency  , that is, in the region of the 

pole p j =  , there is an approximate equality: 
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Since the line is a compact four-pole: 

( )
2

( ) ( ) ( )

11 22 12 0,k k k  − =                                                                   (20) 

then matrix (19), taking into account (20), can be implemented in the form of a four-pole circuit in Figure 1. 

 

C L

n:1

1

1

2

2  
 

Figure 1. Equivalent circuit of a non-homogeneous line in the region of resonant frequencies 

 

To prove it, let's find the elements of the impedance matrix of the circuit in Figure 1. Let's imagine 

this circuit as a cascade connection of a circuit and an ideal transformer. Then the elements of the impedance 

matrix of the circuit will be written in the form [20]: 
2
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                                   (21) 

Comparing (21) with (19), we find: 
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Similarly, one can obtain the second equivalent circuit in Figure 2. 
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Figure 2. The second equivalent circuit of a non-homogeneous line in the resonant frequency region 

 

In this case, the elements of the impedance matrix, as follows from Figure 2, have the form: 

11 22 122 2 2 2 2 2 2
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Comparing (23) with (19), we obtain: 
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That is, the transformation ratio for both circuits in Figure 1, Figure 2 is the same. The difference is 

observed in the definition of inductance and capacitance of the circuit. 

 

2.3.  Substitution Circuit of Anti-Resonant Frequencies 

Under the anti-resonant frequency is understood the frequency of series resonance, that is, when the 

conductivity of the circuit without loss turns to infinity. In other words, the anti-resonance frequencies are 

determined by the input conduction poles in the plane of the complex frequency variable. 

For lossless lines, the matrix of conductivities can be written as: 
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Where stL  is the static inductance of the line; ( )

mnk    - matrix of residues of the elements of the matrix 

of conductivities in the poles , 1,2,3,..., 1,2; 1,2p j m n =   = = = . 

11 12( )
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resZ resZ
k
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 
                                                                (26) 

From (25), (26) it follows that in the region of the anti-resonant frequency  , that is, in the region 

of the pole p j =  , the approximate equality takes place: 
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In this case, as in the case of the impedance matrix, the line is a compact four-pole. 
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2
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Consider the conductivity matrix of the circuit in Figure 3. 
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To determine the elements of the equivalent circuit, we equate (29) and (27). As a result, we get: 
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Figure 3. Equivalent circuit of a non-homogeneous line in the region of anti-resonant frequencies 

 

The parameters of the second equivalent circuit in the region of antiresonant frequencies are 

determined similarly. For the circuit in Figure 4, the admittance matrix is: 

 
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Figure 4. The second equivalent circuit of a non-homogeneous line in the region of antiresonance frequencies 

 

Equating (27) and (31), we find the equivalence conditions: 
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2.4.  Filters With Parallel Resonators 

Calculation formulas for the scheme of Figure 5 [10]: 
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Where 0 1 1, ,..., ng g g +  - LPF prototype parameters; bandwidth LPF prototype; ( ), ( 1,2,..., )kB k n = - 

conductivity of the parallel oscillatory circuit. 

 

 
 

Figure 5. Generalized BPF circuit with admittance inverters [20] 

 

Let's replace the parallel circuits with irregular transmission lines (Figure 6). 

 

 
 

Figure 6. Generalized BPF circuit for NL with admittance inverters 

 

Since J-inverters (conductivity inverters) provide high- impedance loads NL, then in the region of 

resonant frequency the link "NL - inverter" has an equivalent circuit in Figure7. 

 

 
 

Figure 7. Equivalent circuit of the "NL - inverter" link in the resonant frequency region 

 

Let's find the chain matrix of the connection "ideal transformer - inverter" (Figure 7): 

1
0 0 0

.

0 0 0

j j

A n J nJ

n jJ jnJ

     
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            

                                    (34) 

Thus, the four-pole, circled by a dotted line in Figure 7, is an inverter of conductivities with an 

inversion coefficient. Therefore, in order for the circuits in Figure 5 and 6 to be equivalent, the condition must 

be met for all links of the NL - inverter. As a result, we obtain the equivalence condition for both schemes: 

, 112 23
01 01 12 23 , 1, , , ..., .

n n

n n

JJ J
J J J J J

n n n

+

+
   = = = =                                 (35) 

Therefore, formulas (33) should be used when calculating the BPF on the NL. But the inversion 

coefficients must be determined based on conditions (35). 

If we use the second equivalent NL circuit (Figure 2), then we should consider the “inverter - NL” 

links in the resonant frequency region. Chain matrix connection "inverter - ideal transformer": 
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1 0
0 0

.
1

0 0 0

jm
j

J
A J m

jJ m j J
m

 
         = =  

                

                                (36) 

 

 
 

Figure 8. Equivalent circuit of the "inverter - NL" link in the resonant frequency region 

 

Expression (20) corresponds to the conductivity inverter with the inversion coefficient
J

m


. Therefore, 

for the equivalence of the circuits in Figure 5 and Figure 6, it is necessary to fulfil the condition 
J

J
m


= , i.e. 

01 01 12 12 23 023 , 1 , 1, , , ..., .n n n nJ mJ J mJ J mJ J mJ+ +
   = = = =                         (37) 

 

3. RESULTS AND DISCUSSION  

This section presents the results of the mathematical synthesis of series resonator filters. A synthesized 

scheme of three stub prototype BPF is presented. A study of the amplitude-frequency characteristic of the BPF 

prototype was carried out. 

 

3.1.  Series Resonator Filters 

Calculation formulas for the scheme of Figure 9 [20]: 

0 1
0 01 '

0 1 1

( )
, , ,

2

j A
j

dX R x w
x K

d g g


= = =

 
 

1

, 1 '

1 1

, 1,.... 1;
j j

j j

j j

x xw
K j n

g g

+

+

+

= = −


                                                  (38) 

2 1
, 1 0 1 2'

1 1 0

, , .B n
n n

n n

R x w
K w

g g
+

+

 −
= =  = 

 
 

 

Where jx  is the parameter of the steepness of the reactance; ( ), ( 1,2,..., )kX k n =
 
- reactive impedance 

of series circuits. 

 

 
 

Figure 9. Generalized BPF circuit with impedance inverters 

 

In the scheme Figure 10, we replace the reactivity by NL. 

 

 
 

Figure 10. Generalized scheme of BPF on NL with impedance inverters 

 

From here we find the equivalent circuit of the NL-inverter link. 
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Figure 11. Link "NL- impedance inverter" and its equivalent circuit in the region of antiresonant frequency 

We find the A-matrix of the transformer-inverter connection (Figure 11): 

1 0 0
0

.
0

0 0

jK
jK

n
A n j

jn
n K

K

 
      

   = =  
             

                                     (39) 

The equivalence condition for the circuits in Figure 9 and Figure 10 is: 

01 01 12 12 23 23 , 1 , 1, , ,..., .n n n nK K K K n K K n K K n+ +
   = = = =                         (40) 

Based on the second scheme in Fig. 4, the equivalence condition can be written as: 

, 101 12 23
01 12 23 , 1, , ,..., .

n n

n n

KK K K
K K K K

m m m m

+

+
   = = = =                            (41) 

Where e(x) is error, xref is reference position and x is actual position. 

 

3.2.  Research BPF Prototypes 

According to the formulas obtained, BPF prototypes were synthesized with two parallel plumes based 

on a closed homogeneous line and one plume based on three NLs with wave impedances 0 , ( 1,2,3)
2

i

W
i i

ch a
=


 

(Figure 12, Figure 13) with the initial data: 
- relative bandwidth ω=0.05; 0.15; 0.3; 

- attenuation in the passband 2rL dB= ; 

- load conductivity 1A BY Y S= = ; 

- the center frequency of the first parasitic passband is 7 times the center frequency of the passband. 

 

Y1 Y2

YA

Y12 Y23
YB

Y´1
Y´2

Y´3

Ɵ 

 
 

Figure 12. Scheme of three stub prototype BPF: wave conductivities 
1 2 3, ,Y Y Y    of a three-stage NL change 

according to the law 
2 1

0( / ) , ( 1,2,3)i iW ch a i− =  

 

 

 
 

Figure 13. Amplitude-frequency characteristic of the BPF prototype; ω0 - center frequency of the passband, 

Vs - width of the blocking area, Lmin - minimum attenuation in the blocking area 
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As the first two resonators, we took homogeneous closed segments of transmission lines with delay 

time π/2ω0 and wave conductivities: 

1

2

66,5 ( 0,05); 20,5 ( 0,15); 9 ( 0,3);

133 ( 0,05); 41 ( 0,15); 18 ( 0,3).

Y S S S

Y S S S

=  =  =  =

=  =  =  =
 

The third resonator is formed by three NLs with the same delay times, connected in cascade (Figure 

12), with a total electrical length θ=1.178 radians and wave conductivities 

1

1
0 , 1,2,3.

2k

W
Y k

ch a

−
 
 = =
 

 

                                                                  (42) 

In this case, different values of k correspond to different values of W0. 

At ω=0,05 the delay time of each stage for different relative bandwidths are the same: 

00,4 , 0t t =     . Step impedances: 

W0 are (42): 01 02 032 , 4,8 , 9,2 .W Оhm W Оhm W Оhm= = =  

For ω=0,15 01 02 032 , 4,8 , 9,2 .W Оhm W Оhm W Оhm= = =  

For ω=0,3  01 02 035,5 , 10,8 , 16,2 .W Оhm W Оhm W Оhm= = =
 The resonators are interconnected by quarter-wave transformers (inverters) on homogeneous 

transmission lines with wave impedances W=14.3 Ohm. 

Further research is related to the development of broadband matching devices based on heterogeneous 

lines for matching complex loads of high-speed information transmission systems. 

 

 

4. CONCLUSION  

From the analysis of the obtained results it follows: 

1. When synthesizing BPF based on NL, one can use the Cohn method and other methods of filter 

synthesis. In this case, when using resonators made on the NL, one should take into account the presence of an 

additional transformer, which introduces a correction in determining the parameters of the inverters. 

2. The use of NLs as resonators makes it possible, by choosing the wave impedance, to increase the 

stopband of the BPF in comparison with the BPF on resonators based on uniform lines. In particular, if only 

homogeneous lines are used as resonators, then the first two spurious bandwidths will appear at 
0/ 3, 5.  =

 
3. As the bandwidth increases, the attenuation minimum in the blocking region decreases.

 
4. The frequency response in the area of the barrier is strongly jagged. The attenuation maximum 

occurs at the serial resonance frequencies of the parallel loops. The attenuation minima are located between 

these frequencies. Therefore, to increase the attenuation in the blocking region, it is necessary to use resonators 

with a rarefied frequency spectrum of parallel and series resonance.
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