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 Graphene is considered as a famous nanomaterial because of some 

parameters such as its large surface–to–volume ratio, high conductivity, high 

mobility, and strong mechanical and elasticity properties. Therefore, in this 

work the conductance of two dimensional bilayer graphene (BG) is 

developed using the Fermi Dirac distribution function. For bilayer graphene 

two, various stacking structures (AA and AB) have been reported, which 

have armchair edge. Quantum gradient emerged between the channel and the 

gate and carrier movement of bilayer graphene is considered as FET channel, 

which is an important property of FET. Besides, band gap energy and 

resistance of BG have been modelled in this study. The impact of 

temperature on the resistance is extensively studied. It is demonstrated that 

the resistance of BG is the function of temperature and the conductance is 

increased at higher values of temperature. 
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1. INTRODUCTION  

The growing interest in two dimensional graphene has attracted much attention attributed because of 

its unique properties such as high mobility, its large surface–to–volume ratio, high conductivity and strong 

mechanical and elasticity properties [1]-[3]. Carbon base material with low dimensional behavior has been 

explored by many researchers for it has been widely used to accommodate nowadays technology. Recent 

research on the stability of few-layer, multilayer and even bilayer graphene [2]-[4] has been a brilliant 

founding. Also, for bilayer graphene nanoribbons (BGNs) two various stacking structures (AA and AB) have 

been reported, which have armchair edge [5], [6]. This study has focused on the AB-stacked configuration 

whose band gap is 0.02 eV (which by applying vertical potential can make it to semiconductor) and is 

considered as semiconductor material, while the AA-stacked configuration is metallic [7], [8]. The atoms A2 

and B2 existing in the AB structure of bilayer graphene were on the upmost layer of BGNs having hezgonal 

carbon lattice as shown in Figure 1, but atoms A1 and B1 exist on the lowest layer of them [9]-[11]. 

If the precise electric field is utilized on BGNs, a gap will be created on its band energy. By using 

voltage, it is possible to manage the value of band gap energy [12]. On the other hand, applied electric field 

effect can be observed in the form of carrier velocity in the channel region of a FET [13]. However, 

theoretical studies on the carrier velocity of BGNs needs to be done, and velocity characteristic based on the 

BGN band structure is needed to more explored.  

Many researches and examinations have been lately conducted on GNR based FET. Fabrication too 

narrow nanowire, which has an appropriate energy band in such temperature is the most important challenge 

related to this issue [14]. These theoretical researches revealed that there is a negative relationship between 

width and the energy band gap of graphene nanoribbon. By decreasing the width of graphene, it make to 

graphene nanoribbon with only a couple of atoms of carbons, which it has a small bandgap. In the other 
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words graphene with metallic properties make to graphene nanoribbon with semiconductor properties [15]. 

They also proved that for operating the transistor at room temperature while creating the smallest band gap, it 

is crucial to have width down to sub-10nm. However, in defining the function of the materials, the significant 

influence of edge effect and width must not be ignored [16]. 

 

 

 
 

Figure 1. Schematic of AB bilayer graphene lattice configuration 

 

 

This type of graphene has a limited width, so it is proposed as a one-dimensional material in our 

model [17]. Thus, some energy gap will be created. Therefore, the carriers in GNRs will be limited into a 

system with a single dimension, which this type of graphene can be applied to set structure devices [18]. In 

such conditions, there is an influential energy gap in one dimensional graphene nanoribbon structure. Where, 

m=3p and m=3p+1, Armchair Graphene nanoribbons are semiconductors, and where m=3p+2, they are 

metallic while m signifies a number of dimmer lines and p signifies an integer as depicted in Figure 2. In 

addition, according to the available literature, there is a negative relationship between the widths of GNR and 

its energy gap mentioned before [19]. 

 

 

 
 

Figure 2. The schematic sketch of an AGNR 

 

 

GNRs can be more considered as materials for integrated circuit interconnect than copper due to 

their low noise effect, thermal conductivity and the great electrical properties. Many experts and 

technologists are interested in GNRs because of their high quality [20]. So large numbers of studies have 

been conducted in this area and the relevant areas to gain more knowledge about them and their usage in 

these areas. A very related area is the construction of graphene based nanosensor [21]. 

 

 

2. PROPOSED MODEL 

Figure 3 depicts a device sketch that includes a ballistic device attached to two contacts. It shows 

that in the two contacts there is a strong scattering according to which the thermal equilibrium is preserved, 

while no scattering is observed in the ballistic device [22], which we assumed to AB stacking in our  

model as shown in Figure 3. 
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Figure 3. Sketch of a ballistic device with two contacts that function as reservoirs of thermal equilibrium 

carriers 

 

 

A thermal equilibrium flux is injected into the device by contact 1 (the source). A number of the 

injected flux reflects from the possible barriers existing inside the device, the remaining flux passes through 

it and reach into contact 2 (the drain). Each electron incident on the contact is observed and thermalized 

making the contacts to be considered as perfect absorbers. Likewise, a thermal equilibrium flux is injected 

into the device by the drain. A number of injected flux is reflected through the possible barriers inside the 

device and the remaining of them pass through the source. Tunnelling and quantum reflections have been 

ignored in this section and electrons have been considered as semi-classical particles. It was intended to 

calculate the net current inside this device and the total density of electrons.  

So, a semi-classical description has been employed according to which the local density-of-states 

inside the device equals only the local density-if-sates of bulk semiconductor, while shifted by the local 

electrostatic potential. If the changes in the electrostatic potential were not extremely fast, the function of the 

approximation would be considered good that would make it possible to neglect the quantum effects. 

The studies illustrate that different layers of the graphene as a unique material system have an 

exceptional potential for FETs device applications [23]. In this regard, recent studies have shown that BLG 

with a gate-tunable band gap is the well-known material system for semiconductor application [24], [25]. 

Theoretically, band gap can be induced in grapheme with two methods. The first method is narrowing the 

graphene to nano-ribbon in which the band gap has a reverse relation with the width of nano-ribbon [26]. The 

second one is applying a perpendicular electric field on BLG that provides a potential difference between 

layers which opens the band gap in BLG [27]-[29]. This property makes it possible for BLG to be used in the 

future generation nano-electronic devices such as FETs. Figure 4 depicts BLG with a potential difference 

between the layers. 

 

 

 
 

Figure 4. Perpendicularly applied voltage between top and bottom layers of BLG (biased BLG) 

 

 

The unique electronic properties of BLG pave the way for its application [6]. As shown in Figure 4, 

in order to deform the BLG from a gapless system to a semiconductor material, an external voltage can be 

applied between the first and second layer to control the energy gap [5]. 

The unbiased configuration of BLG with AB stacking has a metallic performance, whereas its 

perpendicularly applied voltage configuration has a semiconductor property with a band gap shown in Figure 
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5 [30]. Energy-wave vector characteristic of biased BLG can be assumed as a parabolic function by the 

square root approximation [31]-[32]. Fermi-Dirac integral is sufficient to obtain the carrier statistic in the 

parabolic state, while in the non-parabolic function; a disparate type of Fermi integral is needed [31]. 

 

 

 
 

Figure 5. Schematic view of BLG with AB stacking near the Dirac points for: a) unbiased BLG (V = 0) and 

b) biased BLG (V≠ 0) 

 

 

AA stacking of BLG always has a metallic properties, while AB stacking of BLG under special 

position (perpendicular voltage) has semiconductor properties. So, in proposed model we focused on the 

electronic properties of AB stacking of BLG. For the biased BLG, the energy dispersion relation is given by 

[33]-[34]. 
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, V1 and V2 are the applied voltages to the first and second layers respectively 

and V is the potential difference between the two layers of BLG (V=V1−V2). The form of Fermi surface for 

(V≠0) is dissimilar from (V = 0). For the smallest band gap, wave vector of BLG as the focus of this study is 

adopted as [35]:  
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is the Fermi velocity and ћ is the reduced Planck’s constant. So, 

the energy dispersion of BLG near kg becomes [35]:  
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 is the effective mass which is a function of applied voltage between the 

two layers. The effective mass of the free electron in the crystal lattice is different from m0. Based on the 

perpendicular electric voltage; the effective mass of the free electron in the crystal lattice is either higher or 

lower than m0 for the carriers in BLG lattice. It is notable that in a solid structure, electrons move around 

randomly without any applied electric field. On the other hand, each electron can be controlled and 

accelerated using an applied electric field. Due to the high electron transport, the BLG FET channel is 

assumed to be completely ballistic. Thus, the electrons would be accelerated to achieve faster velocity.  

The Density of States (DOS) in each state of energy defines the number of states with the 

probability that the states are available to be occupied by electrons in any energy interval. Investigating the 
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electronic properties of biased and unbiased BLG can be achieved by studying the DOS, so it can be written 

as:  
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Where 
^ ^

x xk k i k j  and A parameter shows that the DOS is dependent on the size of the BLG. According 

to Equation 4, the DOS increases as V rises. 

In the conductance calculation, we need to find the number of sub-bands instead of DOS. The 

number of sub-bands, M (E), at applied energy can be considered near the wave vector, which is dependent 

on the sub band's position. By the derivation of the wave vector k over the energy E (dk/dE), the number of 

sub bands as a summation over k space is written as [36]:  
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number of BLG conducting channels is given as [36]: 
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It is known that the channel length of BLG has a strong effect on its conductivity. Based on the 

energy dispersion of Equation 3 and the effective-mass equation, we can write:  
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Considering the wave vector, we have:  
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on the Planck’s constant and electron charge in bulk graphene. Thus, it is defined and calculated for the 

minimum conductivity by
2
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Although the minimum conductance of BLG is two times as much as this quantity, the levels of up 

spin and down spin, which are located in the small channels naturally, have the energy similar to a degenerate 

level. The conductance of large channel in graphene materials will be obtained based on the ohmic scaling 

law by the Landauer formula; however, the conductance in nanoscale devices can be written by two 

parameters; firstly, conductance related to the width nonlinearly which depends on the number of sub-bands 

called quantizing parameter and secondly, interface resistance which is independent of the length. 
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Without scattering, electrons in ballistic transport behave according to the second law of Newton for 

motion of a particle at non-relativistic speeds. Thus, the electrical resistivity can be neglected in a ballistic 

channel of BLG due to the lack of scattering for electron transport [37]-[38]. In Equation 9, T (E) is the 

average probability of transmission electron in channel from one electrode to the other electrode because the 

assumed ballistic channel of this parameter is equal to one [39]. According to the number of sub-bands in 

Equation 8 and Fermi–Dirac distribution function of conductance in Equation 9, the conductance of 2D BLG 

with AB stacking can be obtained by:  
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In order to simplify the conductance of equation 10, it was assumed that g
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distribution function is inserted instead of the number of sub-bands in BLG. So it is modified by:  
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3. RESULTS AND ANALYSIS  

We have established a method of evaluating the perpendicular electric field effect on the resistance 

of BLG using potential difference values in the proposed model shown in Figure 6. Furthermore, the 

resistance-changing as a result of external electric field altering is different for various gate voltages. In other 

words, the resistance increases as the gate voltage rises. Increasing the electric field makes the larger bangap, 

so by focusing on the proposed model, it is evident that the resistance of BLG tends to increase as the band 

gap increases. The changes of BLG resistance with regard to gate voltage is shown for different values of 

bandgap in Figure 7 as well. 

 

 

 
 

Figure 6. The comparison of resistance of BLG respect to gate voltage with modelling and  

experimental data [40] 

 

http://en.wikipedia.org/wiki/Relativistic_particle
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Figure 7. Effect of external voltage on resistance of BLG 

 

 

It is also evident that the resistance of BLG for higher values of gate voltage (Vg) increases. In 

addition, resistance shows a similar action regarding the Vg for various values of perpendicular applied 

voltage. Based on the simulation results, it is concluded that the BLG band gap and resistance can be 

controlled by electric field. Moreover, the conductance decreases when the band gap is induced by applying 

an external perpendicular electric field.  

The conductance of FET channel is dependent on the graphene structure and the environment 

conditions specially temperature. As shown in Figure 8 the conductance-changing ratio as a result of 

temperature altering is different for various gate voltages as well. By focusing on proposed model, it is 

evident that temperature can affect on the conductance of BLG. In the conductance model, the declining of 

BLG conductance, when temperature increases. In addition, the conductance curve is almost symmetric near 

VCNP (VCNP is a point of Vg which conductance in that point is minimum value or is turning point), while at 

higher temperatures the conductance of BLG does not change sensible. 

 

 

 
 

Figure 8. BLG conductance for different temperature 

 

 

4. CONCLUSION  

Different layers of graphene have various electronic properties. A perpendicular external voltage has 

been applied between 1
st
 and 2

nd
 layers of bilayer graphene to provide a band gap and modify its electronic 

properties from metallic to semiconducting. In the current study, an analytical model has been proposed for 

the R-Vg characteristic and conductance of bilayer graphene-based FET. In this research, the BLG 
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conductance respect to Vg is investigated and it is notable that BG band gap and resistance can be controlled 

by applying an external perpendicular electric field. Also, increasing temperature can effect in the resistance 

of BLG unless for charge natural point. Ultimately, it is remarkable that BLG conductance for high values of 

temperature is increased. 
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