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 The widespread use of Unmanned Aerial Vehicles (UAVs), commonly known 

as drones, across various sectors, such as civilian, commercial, and military 

operations, has created significant challenges in ensuring security, safety, and 

privacy. This paper provides a comprehensive review of the latest 

advancements in drone detection systems leveraging deep learning techniques, 

covering the period from 2020 to 2024. It critically evaluates both optical 

(visible light and thermal infrared) and non-optical (radio frequency, radar, 

and acoustic) detection methodologies. The analysis includes cutting-edge 

models such as Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Generative Adversarial Networks (GANs), focusing 

on their application in drone detection. Key challenges like real-time 

processing, environmental interference, and differentiation between drones 

and similar objects are examined. Potential solutions, including sensor fusion, 

attention mechanisms, and the integration of emerging technologies such as 

the Internet of Things (IoT) and 5G networks, are discussed in detail. The 

paper concludes with future research directions to enhance drone detection 

systems' robustness, scalability, and accuracy, particularly in complex and 

dynamic environments. This review offers valuable insights for researchers 

and industry professionals working towards next-generation drone detection 

technologies. 
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1. INTRODUCTION  

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have evolved far beyond their initial 

military applications to become essential tools in various civilian and commercial sectors. Technological 

advancements have significantly enhanced their flexibility, efficiency, and affordability, making drones 

indispensable in aerial surveillance, precision agriculture, disaster management, and infrastructure inspection. 

UAVs enable efficient crop monitoring, targeted pesticide application, and the delivery of high-resolution 

imagery and real-time data, greatly enhancing agriculture productivity and disaster recovery efforts. 

Additionally, drones are becoming increasingly vital in scientific research, environmental monitoring, and 

delivery services—particularly in remote or congested urban areas—offering a safer and more cost-effective 

alternative to traditional methods. 
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However, the growing prevalence of drones has also raised significant security and safety concerns. 

Drones are increasingly misused for unauthorized surveillance, airspace violations, and smuggling activities, 

posing threats to privacy, public safety, and national security. As a result, effective drone detection systems 

have become crucial to mitigate these risks, safeguard restricted airspaces, and protect sensitive environments. 

This review addresses these concerns by examining recent advancements in drone detection technologies, 

focusing on deep learning approaches. Figure 1 illustrates the core components involved in drone detection 

systems, including key inputs (radio frequency, radar, acoustic, digital, and thermal infrared cameras), deep 

learning models (CNNs, RNNs, and GANs), and advanced detection techniques (sensor fusion and attention 

mechanisms). It also highlights the significant challenges (real-time detection, environmental effects) and 

emerging drone threats (target attacks, privacy invasion). This framework provides a roadmap for addressing 

these challenges by integrating advanced deep-learning techniques and sensor technologies. Furthermore, the 

paper explores techniques to improve detection accuracy and robustness, offering insights into the future of 

drone detection technologies. 

This review follows an integrative evaluation method guided by several key research questions: What 

methods are used to detect drones? What are the advantages and drawbacks of each method? How do 

environmental conditions impact the performance of detection models? What are the pathways to enhancing 

model accuracy and robustness? Moreover, what recommendations can be made for the future development of 

advanced drone detection technologies to create reliable and scalable systems? 

To address these questions, this review analyzes studies published between 2020 and 2024, ensuring 

a focus on the most recent advancements in deep learning applications for drone detection. Sources were drawn 

from reputable databases, including IEEE Xplore, ScienceDirect, and SpringerLink. This timeframe 

comprehensively analyzes cutting-edge technologies and methodologies, representing state-of-the-art drone 

detection. Our review also evaluates various optical and non-optical detection methods, considering their 

advantages, limitations, and potential for improvement through sensor fusion, attention mechanisms, and other 

deep learning innovations. 

 

 
Figure 1. A Comprehensive Framework for Drone Detection Systems 

 

This review offers a fresh perspective on the evolving landscape of drone detection by focusing on 

deep learning advancements since 2020. It highlights significant real-world drone threat cases and examines 

how these incidents have influenced current research trends. The review identifies persistent challenges in 

drone detection, such as differentiating drones from similar objects, operating in complex environments, and 

achieving real-time performance. To tackle these challenges, we explore cutting-edge deep learning models 

and publicly available datasets, offering a detailed examination of optical (visible light and thermal infrared) 

and non-optical (radar, radio frequency, and acoustic) approaches. Moreover, advanced techniques such as 

sensor fusion and attention mechanisms are explored for their potential to improve detection accuracy and 
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system robustness. By outlining future research directions, this review serves as a guide for researchers and 

practitioners looking to advance the field of drone detection in increasingly complex environments. 

Table 1 provides a comparative overview of the contributions made by recent review papers in drone 

detection systems. The authors of [1] reviewed anti-drone technologies up to 2020, including detection, 

identification, and neutralization methods. The work in [2] reviewed drone detection systems up to 2021, 

focusing on acoustic, radio frequency (RF), radar, visual, and sensor fusion methods, examining each method's 

advantages, limitations, and potential improvements. The reviews in [3-5] extended the scope to 2023, 

encompassing various machine learning and deep learning techniques across radar, visual, acoustic, RF, and 

hybrid sensors. In contrast, our review covers the most recent advancements from 2020 to 2024, offering a 

more up-to-date and comprehensive analysis. We focus specifically on deep learning models for drone 

detection, concentrating on foundational approaches such as CNNs, RNNs, and GANs, which are particularly 

relevant to this field. 

 

Table 1.  Summary of the contribution of this review paper to other existing review papers  

on drone systems. 
References Year Contribution 

[1] 2021 Reviewed anti-drone technologies, including detection, identification, and neutralization methods up to 
2020. 

[2] 2022 Focused on acoustic, RF, radar, visual, and sensor fusion methods for drone detection up to 2021, 

highlighting each method's advantages, limitations, and improvements using machine learning and deep 
learning techniques. 

[3] 2024 Reviewed detection and classification of drones using machine learning and deep learning techniques 
across radar, visual, acoustic, RF, and hybrid sensors up to 2023. 

[4] 2024 A comprehensive review of drone detection systems based on deep learning, covering radar, RF, 

acoustic, and visual approaches from 2014 to 2023.  
[5] 2024 Reviewed various drone detection techniques using machine learning and deep learning, including 

radar, RF, acoustic, visual, and sensor fusion, WiFi fingerprinting, 5G networks, and IoT technologies 

up to 2023. 
Ours 2024 This paper focuses on deep learning-based drone detection methods from 2020 to 2024 and categorizes 

detection approaches into optical (digital and thermal cameras) and non-optical (radar, RF, and 

acoustic) approaches. It highlights advancements in sensor fusion, attention mechanisms, and 5G and 
IoT integration for improving detection accuracy, real-time processing, and scalability. 

 

Unlike previous reviews, which provided broader overviews of deep learning models, our paper focuses 

on how these models are applied to drone detection tasks. We categorize detection methods into optical (digital 

and thermal infrared cameras) and non-optical (radar, RF, and acoustic) approaches, offering a clearer 

framework for analyzing these technologies. Additionally, we review studies on advanced techniques like 

sensor fusion and attention mechanisms, highlighting their potential to improve detection accuracy and real-

time processing. This review introduces the common challenges in drone detection and suggests innovative 

solutions and future directions for improving real-time, high-quality detection, including integrating 5G and 

IoT technologies. 

The remainder of this paper is structured as follows: Sections 2 and 3 discuss the evolving threats posed 

by drones and the critical challenges in drone detection. Section 4 overviews the fundamental deep learning 

models applied in drone detection systems. Section 5 surveys existing studies on deep learning-based drone 

detection, including publicly available datasets, while Section 6 explores methods for enhancing the reliability 

and accuracy of detection models. Section 7 highlights future research directions and critical areas for 

improvement in drone detection technologies, and Section 8 concludes the review by summarizing key findings 

and recommendations. 

 

2. UNMASKING DRONE THREATS 

As drones continue to proliferate beyond their original military applications, their use has expanded 

to various civilian sectors such as agriculture, logistics, and entertainment. However, as drones become more 

commonplace, the potential for illegal and hazardous activities has also increased. The growing threats posed 

by drones highlight the urgent need for effective detection systems. This section delves into the critical risks 

of unauthorized drone activities and their far-reaching consequences. 

 

2.1. Targeted Attacks 

Drones' versatility, ease of use, and affordability make them highly attractive tools for malicious 

actors. A drone can be equipped with explosives, biological and chemical weapons which can be dropped or 

detonated over a targeted area, or it can be modified to carry firearms or other weapons, enabling remote 

shooting or stabbing, causing significant harm or fatalities on specific individuals, public institutions, business 

organizations or even entire nations. According to [5], target attacks became the first category of threats under 



IJEEI  ISSN: 2089-3272  

 

Deep Learning Techniques for Advanced Drone Detection Systems… (Fatin Najihah Muhamad Zamrir et al) 

821 

drone attacks. In Mexico in 2021, two police officers were injured due to an attack received from armed drones 

that brought improvised explosive devices (IEDs), as reported by [6]. In 2023, 88 people died during a religious 

celebration when drones mistakenly dropped a bomb at the celebration area in Nigeria [7]. In 2024, 13 civilians, 

including seven children, were killed by a drone strike in Mali [8]. These incidents underscore the growing risk 

of drone-enabled targeted attacks, which are becoming a significant threat to public safety and national security. 

 

2.2. Smuggling 

Drones are increasingly being used to facilitate smuggling, enabling the transport of illegal contraband 

across borders, into prisons, and other restricted areas. Their ability to fly long distances, carry payloads, and 

evade traditional security systems makes them a formidable challenge for law enforcement and border control. 

Drones are commonly used to smuggle drugs, weapons, and other prohibited items [5]. According to recent 

reports, over 20 smuggling incidents involving drones have been recorded since January 2024 [9]. These 

incidents include the transportation of drugs across international borders and the delivery of contraband into 

correctional facilities, illustrating the growing scale of drone-enabled smuggling operations. 

 

2.3. Breaching No-Fly Zones 

Breaching restricted airspace around airports is one of the most dangerous drone-related threats. 

Unauthorized drones in no-fly zones, such as airports and prisons, have led to numerous incidents of flight 

delays, diversions, and cancellations, endangering the lives of thousands of passengers. For example, the 

runway at Heathrow Airport had to be temporarily closed after a drone, flying at nearly 200 mph, came within 

3 feet of an aircraft [10]. Similarly, Pittsburgh International Airport halted operations after unauthorized drones 

were spotted near the airport [11]. These breaches create significant safety concerns, as drone-aircraft collisions 

could result in catastrophic loss of life and massive economic damage. 

 

2.4. Privacy Invasion 

Drones equipped with high-resolution cameras and advanced sensors can be used for covert 

surveillance, invading the privacy of individuals, businesses, and governments. These drones can gather 

sensitive data without detection, posing severe personal privacy and security risks. In December 2022, an 

organization in North Carolina providing equine care and therapy for traumatized children reported that a drone 

was harassing staff, children, and therapy animals, causing distress and safety concerns [12]. Similarly, in 

September 2022, a parent in California reported that a drone was hovering near her daughter's balcony, 

seemingly spying on her [13]. These incidents illustrate the growing risk of drones being used to violate 

personal privacy and create fear and intimidation without direct physical interaction. 

 

3. KEY CHALLENGES OF DETECTING DRONES 

With the rapid proliferation of drones across industries and public spaces, drone detection systems 

have become critical tools for ensuring security and safety. Despite significant advancements, drones' inherent 

complexity and variability present numerous challenges to developing effective detection systems. These 

challenges must be addressed to enhance the accuracy and reliability of such systems in real-world applications. 

 

3.1. Real-Time Detection 

Real-time drone detection is essential for maintaining continuous surveillance and swiftly responding 

to potential threats. However, it presents significant challenges due to the dynamic and unpredictable nature of 

drone movements and variations in size and speed [14, 15]. For instance, small drones often travel at speeds of 

up to 15 m/s, while larger drones can reach speeds exceeding 100 m/s [16]This wide range in drone size and 

velocity complicates real-time detection efforts and requires fast and precise processing capabilities. 

The complexity of real-time detection can be modeled, as shown in Eq. (1), by considering the required 

processing time 𝑡𝑝 for detecting a drone. The detection system must operate within a fixed time window 𝑇, 

where: 

𝑡𝑝 ≤ 𝑇         (1) 

If the processing time 𝑡𝑝 exceeds 𝑇, the system fails to detect the drone in real time. Optimization of 

algorithms and hardware, such as reducing the model complexity while maintaining accuracy, helps ensure 

that 𝑡𝑝 remains below the threshold. 

One approach to achieving this is optimizing model architectures to improve computational 

efficiency. Future research should focus on creating robust, lightweight models that can handle various real-

world contexts and dynamic drone behaviors without sacrificing speed or accuracy. 
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3.2. Differentiating Drones from Drone-Like Objects 

A significant challenge in drone detection arises when the system must differentiate between drones 

and drone-like objects such as birds or airplanes. This challenge is particularly prominent in optical-based 

approaches, where drones may appear as small indistinct pixels, especially at long distances. The lack of 

information hinders the detection system's accuracy in identifying drones, potentially leading to 

misidentifications with similar objects [17]. When drones and birds are in the same visual frame, the problem 

becomes more complex, leading to a higher chance of false alarms [18]. Misidentifications can influence the 

accuracy of detection systems and increase the chances of security oversights. Researchers give this critical 

issue significant emphasis. As a result, the Drone vs. Bird Detection Challenge [19-22] was established to 

address this issue collaboratively. Misidentification between drones and birds increases the likelihood of false 

positives and security oversights. The false positive rate 𝐹𝑃𝑅 in a detection system can be expressed as follows: 

  𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
        (2) 

where 𝐹𝑃 is the false positive, and 𝑇𝑁 is the false negative. To minimize 𝐹𝑃𝑅, advancements in 

detection algorithms are needed, such as improved resolution and pattern recognition techniques that can 

incorporate additional contextual information beyond the visual spectrum. Deep learning algorithms trained on 

comprehensive datasets, including scenarios with birds and drones in the same frame, can significantly reduce 

false alarms. By enhancing the learning process through diverse datasets, the system becomes more adept at 

distinguishing between drones and similar objects. 

 

3.3. Altitude and Range Detection 

Detecting drones at different altitudes is difficult for visual detection systems because they become 

smaller as they fly higher, eventually looking like pixels on the camera's screen [23]. The decreased size and 

level of detail make it difficult to accurately identify objects since the visual information is limited, hindering 

the detection system's ability to distinguish drones from other small flying objects or background interference. 

Radio frequency-based and acoustic signals-based detection will also be affected as RF signals and acoustic 

signals weaken over long distances, thus limiting the range of effective drone-detecting systems [3].  

Researchers have extensively reported detecting drones at high altitudes, emphasizing the challenges in 

identifying small drones against extensive aerial backgrounds [24]. In this context, the signal attenuation over 

distance can be modeled using the inverse square law for both RF and acoustic signals, as follows: 

𝑺 =
𝑺𝟎

𝒅𝟐         (3) 

where 𝑆0 is the initial signal strength and 𝑑 is the distance from the source. As distance increases, the 

signal strength 𝑆 decreases significantly, limiting the effectiveness of detection systems over large areas. To 

address this, detection algorithms must incorporate enhanced feature extraction techniques to reliably identify 

small drones at high altitudes or long ranges. High-sensitivity sensors and training models on datasets, 

including distant and small drones, can improve detection accuracy. 

 

3.4. Environmental Effects 

Drones frequently operate in various environments where weather, background noise, and lighting 

conditions can significantly affect detection performance. These environmental factors pose a significant 

challenge to the efficiency and accuracy of drone detection systems. Detecting drones in adverse weather 

conditions, such as rain, fog, or snow, becomes difficult because these factors can distort camera visual data 

and interfere with radar and RF signals [14]. Fluctuating lighting conditions, including low-light environments 

or bright sunshine, can conceal drones or create shadows, altering their apparent shape and size and making 

identification more complex. 

Adverse weather conditions such as rain or fog reduce the clarity of visual signals by introducing 

noise into the system. This degradation can be modeled using a simple image degradation model: 

  𝐼𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑(𝑥, 𝑦) = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥, 𝑦) ⋅ 𝐻(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)    (4) 

where 𝐼𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑(𝑥, 𝑦) is the observed image, 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥, 𝑦) is the original or noise-free image, 𝐻(𝑥, 𝑦) 

represents the degradation function due to weather effects, e.g., rain or fog, and 𝑁(𝑥, 𝑦) is the additive noise 

caused by environmental factors. In this model, weather acts as a blurring or noise factor, reducing the signal 

quality and thus impairing the ability of detection systems to recognize drones accurately. 

Radar-based detection is also affected by adverse weather conditions, where signal attenuation occurs 

due to precipitation, such as rain. The radar signal attenuation can be quantified by: 

  𝐴𝑟 = 𝑘𝑟 ⋅ 𝑅𝛼         (5) 



IJEEI  ISSN: 2089-3272  

 

Deep Learning Techniques for Advanced Drone Detection Systems… (Fatin Najihah Muhamad Zamrir et al) 

823 

where 𝐴𝑟 is the radar signal attenuation in dB/km, 𝑘𝑟 and 𝛼 are constants dependent on the radar frequency 

and 𝑅 is the rain rate in mm/h. This relationship indicates that radar signals degrade rapidly as rainfall intensity 

increases, reducing the detection range and accuracy. As a result, it becomes more difficult to detect drones 

accurately under heavy precipitation. 

Environmental noise also impacts RF-based and acoustic-based detection systems. The presence of 

noise and interference can degrade the quality of signals and reduce the system’s ability to differentiate drone 

signals from background noise. The performance of these systems under noisy conditions can be modeled by 

the signal-to-noise ratio (SNR): 

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
         (6) 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 is the power of the drone signal, and 𝑃𝑛𝑜𝑖𝑠𝑒  is the power of environmental noise. When 𝑃𝑛𝑜𝑖𝑠𝑒  is 

high, as in the case of strong background interference, the 𝑆𝑁𝑅 decreases, making it more difficult for detection 

systems to maintain reliable performance. 

Advanced detection algorithms are needed to compensate for visual distortions to adapt to 

environmental changes [25]. One such technique is the adaptive Wiener filter, which adjusts based on local 

image statistics to reduce noise while preserving essential image details. The Wiener filter is particularly 

effective for restoring image quality in the presence of environmental noise and can be expressed as: 

 �̂�(𝑢, 𝑣) =
𝑆𝑠(𝑢,𝑣)

𝑆𝑠(𝑢,𝑣)+�̂�𝑛(𝑢,𝑣)
        (7) 

where  �̂�(𝑢, 𝑣) is the estimate of Wiener gain in the frequency domain, 𝑆𝑠(𝑢, 𝑣) is the power spectral density 

of the original image, and  �̂�𝑛(𝑢, 𝑣) is the estimate of the noise's power spectral density. By applying the Wiener 

filter, the system can better compensate for the distortions introduced by environmental factors, improving the 

visual quality of drone detection even under challenging conditions. 

In addition to adaptive filtering techniques, integrating thermal or infrared imaging can enhance 

detection capabilities when visual signals are degraded. Thermal imaging is less affected by lighting conditions, 

providing an alternative detection method when visible light cameras struggle due to low visibility or extreme 

brightness. Machine learning models trained on diverse datasets that include weather conditions, lighting 

variations, and other environmental factors can further improve the robustness of detection systems, ensuring 

consistent performance across a wide range of operational settings. 

 

4. FUNDAMENTAL OF DEEP LEARNING FOR DRONE DETECTION 

Artificial Intelligence (AI) is a vast and rapidly evolving field, with its applications permeating various 

industries, including drone technology [26]. Within AI, Machine Learning (ML) is a critical subset that enables 

machines to learn from data, enhancing their ability to imitate human decision-making processes [27]. ML can 

be categorized into three main types: supervised learning, unsupervised learning, and reinforcement learning. 

The nature of the data distinguishes each type used and the type of problem being addressed [28]Given the 

nature of drone detection, supervised learning is the most suitable ML approach due to its reliance on labeled 

data, allowing the model to predict drone presence accurately. 

 

Table 2. Type of Machine Learning 
Type Description Problems Algorithms 

Supervised Learning 

Utilizes labeled datasets (input-output pairs) to 

train the model, allowing it to make accurate 

predictions on new, unseen data. Supervised 
learning is well-suited for tasks such as drone 

detection, where labeled images of drones are 

available. 

Classification, 

Regression 

 

Linear regression, Support 
Vector Machines (SVM), 

Decision Trees, Random Forests, 

Naïve Bayes, Neural Networks, 
and CNNs 

Unsupervised Learning 

Identifies patterns and structures within 

unlabeled data. This method clusters data based 

on similarities without prior knowledge of the 
data categories, which can be useful in 

discovering patterns within sensor data or 

camera feeds from drones. 

Clustering, 
Association 

K-Means, DBSCAN 

Reinforcement Learning 

Learns by interacting with an environment and 

receiving feedback through rewards or penalties. 
Although less commonly applied to drone 

detection, it can be used in dynamic path 

optimization and autonomous navigation of 
detection systems. 

Positive/Negative 

Reinforcement 

Q-Learning, Markov Decision 

forms 
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Unlike traditional methods that rely on manually designed features, deep learning (a specialized subset 

of ML) automatically extracts targeted features directly from the data, offering more sophisticated and accurate 

outcomes [29]. The increasing popularity of deep learning is fueled by the growing availability of large 

datasets, enhanced computational power, and advances in hardware [30]. These advances have enabled deep 

learning models to perform exceptionally well in object detection tasks, which is crucial for effective drone 

detection systems. The architecture of Convolutional Neural Networks (CNNs) has emerged as the dominant 

choice for object detection tasks. CNNs excel at recognizing patterns within images, making them particularly 

well-suited for identifying drones in visual data [30]. Deep learning models are typically trained on large, 

labeled datasets that allow them to learn and recognize the unique features of drones across different 

environments. Table 2 outlines the key characteristics of each type of ML, providing insights into their 

applications for solving drone detection challenges. 

The decision to focus on CNN, RNN, and GAN for drone detection is driven by the specific 

capabilities these deep learning algorithms offer, each well-suited for the unique challenges of drone detection 

tasks. CNNs are exceptional at handling spatial data, making them the go-to choice for analyzing images and 

videos, which are crucial in drone detection for identifying objects in visual data. CNNs' ability to automatically 

extract features from images enables them to effectively distinguish drones from other objects, even in complex 

backgrounds [30]. RNNs, on the other hand, are particularly adept at processing sequential data, such as 

acoustic signals produced by drones. Their internal memory and recurrent connections allow RNNs, especially 

LSTMs, to capture temporal dependencies, making them ideal for analyzing time series data, such as the sound 

generated by a drone's propellers [31]. Finally, GANs offer a unique advantage in scenarios where training 

data is limited, such as thermal infrared (TIR) images of drones. GANs can generate synthetic data that mimic 

real-world scenarios, thus expanding the training dataset and improving the model's generalization capability 

[32]. By integrating these three algorithms, drone detection systems can effectively handle visual, acoustic, 

and data augmentation tasks, ensuring robust and accurate performance across various environments and 

conditions. 

 

4.1. Convolutional Neural Network (CNN) 

CNNs are the backbone of modern drone detection systems because they can efficiently process and 

learn from large visual datasets. Through convolutional layers, pooling layers, activation functions, and fully 

connected layers, CNNs can extract critical features and make accurate predictions about the presence of 

drones. These architectures, combined with optimization techniques such as backpropagation, enable CNNs to 

continually improve their performance in detecting drones, even in challenging environments [33]. Figure 2 

shows the basic architecture of CNN. This figure illustrates the key components of a CNN used in drone 

detection systems. The architecture begins with an input layer that receives the image data, which is processed 

through multiple convolutional layers to extract hierarchical features from low-level edges to high-level object 

semantics. Pooling layers reduce the dimensionality, retaining the most significant features, while activation 

layers introduce non-linearity through functions like ReLU. Finally, fully connected layers combine the learned 

features to produce the final classification or detection result, with output determined by activation functions 

such as Softmax or Sigmoid. This architecture enables accurate and efficient detection of drones in complex 

environments by leveraging deep learning methods. 

In the case of drone detection, the input to the CNN is typically an image represented as a 3D tensor. 

This tensor contains three key pieces of information: the height of the image (number of rows of pixels), the 

width of the image (number of columns of pixels), and the number of color channels (usually 3 for RGB 

images). Thus, the input layer encodes the image's dimensions, allowing the CNN to process its spatial and 

color information. 

The convolutional layer is responsible for most of the computations in a CNN and is crucial for feature 

extraction. The operation can be represented mathematically as: 

  𝑍𝑖𝑗 = (𝑋 ∗ 𝑊)𝑖𝑗 = ∑ ∑ 𝑋[𝑖 + 𝑚, 𝑗 + 𝑛] ⋅ 𝑊[𝑚, 𝑛] + 𝑏𝑛𝑚    (8) 

where 𝑋 is the input image (or feature map) of the size 𝑀 × 𝑁, 𝑊 is the convolution filter (kernel) of size 

𝑘 × 𝑘 , 𝑏 is the bias term, 𝑍 is the output feature map, and ∗ denotes the convolution operation. In the context 

of drone detection, the convolutional layers extract features such as edges, shapes, and textures from drone 

images. These features are then passed through multiple layers to extract higher-order representations, allowing 

the model to distinguish drones from other objects, such as birds or airplanes. 
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Figure 2. Basic Architecture of Convolutional Neural Network for Drone Detection 

 

To reduce the computational load and avoid overfitting, CNNs often incorporate pooling layers, which 

perform downsampling operations on the feature maps. The most common pooling method is max pooling, 

where the largest value in a window (typically 2 × 2) is retained. Max pooling can be expressed as follows: 

 𝑍𝑖𝑗
𝑝𝑜𝑜𝑙

= max
(𝑚,𝑛)∈𝑊

𝑍[𝑖 + 𝑚, 𝑗 + 𝑛]       (9) 

where 𝑍𝑖𝑗
𝑝𝑜𝑜𝑙

 is the pooled feature map, 𝑍 is the input feature map, and 𝑊 is the pooling window. For drone 

detection, pooling layers help reduce the dimensionality of the feature maps while retaining the most important 

features, ensuring that the model can operate efficiently while still capturing the necessary information for 

classification. 

After pooling, the data is passed through an activation layer to introduce non-linearity into the model, 

enabling it to learn complex patterns. The most commonly used activation function in CNNs is the Rectified 

Linear Unit (ReLU), which is defined as: 

 𝑓(𝑥) = max(0, 𝑥)        (10) 

This function sets all negative values to zero while retaining positive values, helping the network learn 

complex patterns and speeding up convergence during training. The ReLU activation function is particularly 

useful for drone detection because it prevents the vanishing gradient problem and allows the network to learn 

efficiently from large datasets [33]. 

The fully connected layer connects all neurons from the previous layer to every neuron in the next 

layer, effectively combining the features learned throughout the CNN into a final prediction. The output layer 

then provides the classification or detection result. For drone detection, this could involve predicting whether 

an object is a drone or not or classifying multiple drone types. 

If we are performing binary classification (drone vs. non-drone), the sigmoid activation function is 

typically used as follows: 

 𝜎(𝑥) =
1

1+𝑒−𝑥         (11) 

For multi-class classification, such as detecting different types of drones, the softmax function is 

employed, which converts the output of the network into a probability distribution: 

 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
         (12) 

where 𝑧𝑖 represents the score for the class 𝑖, and the softmax function ensures that the predicted probabilities 

sum to 1 across all classes (𝑗). 

The backpropagation algorithm is used to optimize the weights and biases of the CNN during training. 

In backpropagation, the network's prediction is compared to the ground truth, and the error is propagated 

backward through the layers to update the weights. The error is computed using a loss function (e.g., cross-

entropy for classification tasks). The goal is to minimize this loss by adjusting the weights using gradient 

descent: 
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 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ⋅
𝜕𝐿

𝜕𝑤𝑡
        (13) 

where 𝑤𝑡+1 and 𝑤𝑡  are the weights at iterations 𝑡 + 1 and 𝑡, 𝜂 is the learning rate, and 
𝜕𝐿

𝜕𝑤𝑡
 is the gradient of the 

loss function to the weights. For drone detection, backpropagation enables CNN to learn and refine its feature 

extraction process iteratively, improving the network's ability to detect drones in various environments 

accurately. 

 

4.2. Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) are a class of neural networks specifically designed to process 

sequential data, such as time series, speech, or text. Unlike traditional feedforward networks, RNNs have 

recurrent connections that enable them to maintain an internal state and capture temporal dependencies in data 

[4]. This makes RNNs well-suited for tasks where information order is critical, such as handwriting 

recognition, speech processing, and acoustic-based drone detection systems. Figure 3 shows the basic 

architecture of RNNs. 

RNNs are particularly effective in drone detection tasks that involve analyzing sequential inputs, such 

as acoustic signals generated by drones. Drone engines, propellers, and other mechanical components produce 

unique sound signatures that can be captured and analyzed to detect and classify drone activity. Long Short-

Term Memory (LSTM), a variant of RNNs, is especially useful in this context due to its ability to capture long-

range dependencies in time-series data and overcome the vanishing gradient problem commonly associated 

with traditional RNNs [31]. 

In a standard RNN, the hidden state at the time step 𝑡, denoted as ℎ𝑡, is computed based on the input 

𝑥𝑡 at that time step and the hidden state from the previous time step ℎ𝑡−1. The update rule for the hidden state 

can be expressed as follows: 

  ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏ℎ)      (14) 

where ℎ𝑡 is the hidden state at time step 𝑡, 𝑊ℎ is the weight matrix for the hidden state, 𝑊𝑥 is the weight matrix 

for the input, 𝑥𝑡 is the input at a time step 𝑡, 𝑏ℎ is the bias term, and 𝜎 is the activation function, such as the 

sigmoid or tanh function. The output at the time step 𝑡, denoted as 𝑦𝑡 , is computed as: 

  𝑦𝑡 = 𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦)       (15) 

where 𝑊𝑦 is the weight matrix for the output layer, and 𝑏𝑦 is the bias term for the output layer. 

For drone detection, the input sequence 𝑥𝑡 could be a time series of acoustic data where each 𝑥𝑡 

represents the acoustic features captured at a specific time point. By maintaining the hidden state across time 

steps, the RNN can learn evolving patterns, making it highly effective for detecting drones based on their 

unique acoustic signatures. 

While RNNs are powerful, they suffer from the vanishing gradient problem, which hampers their 

ability to learn long-term dependencies in sequences. LSTM networks address this issue by incorporating 

memory cells that selectively retain or forget information over longer sequences. The critical components of 

an LSTM cell include the input gate, forget gate, and output gate, which regulate the flow of information 

through the network. 

The core functions governing an LSTM cell at a time step 𝑡 include the forget gate (𝑓𝑡), input gate 

(𝑖𝑡), cell state update (𝑐𝑡), output gate (𝑜𝑡), and hidden state update (ℎ𝑡), as shown in Eq. (16) to (20), 

respectively. The forget gate controls what proportion of the previous cell state 𝑐𝑡−1 to retain. The input gate 

determines how much new information will be added to the cell state. The cell state 𝑐𝑡 is updated by a 

combination of the previous state and the new candidate values. The output gate controls what information 

from the cell state will be output at the time step 𝑡. Finally, the hidden state ℎ𝑡 is updated based on the new cell 

state and the output gate’s modulation. 

  𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)      (16) 

  𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)      (17) 

  𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)    (18) 

  𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)      (19) 

  ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡)       (20) 
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In the context of drone detection, LSTM networks are highly effective at modeling the sequential 

nature of acoustic data, where each time step contains information about the drone's sound patterns. By 

maintaining and updating the cell state across time steps, LSTM can capture both short-term and long-term 

dependencies, making it an ideal solution for detecting drones based on fluctuating acoustic signals. 

 

 
Figure 3. Basic Architecture of Recurrent Neural Network 

 

The loss function for training an RNN or LSTM on drone detection tasks can be represented as 

follows: 

  𝐿(𝜃) =
1

𝑇
∑ 𝐿𝑜𝑠𝑠(𝑦𝑡 , �̂�𝑡)𝑇

𝑡=1       (21) 

where 𝑇 is the total number of time steps, 𝑦𝑡  is the true label, e.g., drone or non-drone, at time step 𝑡,  �̂�𝑡 is the 

predicted output at time step 𝑡, 𝜃 represents the parameters of the network (weights and biases), and 

𝐿𝑜𝑠𝑠(𝑦𝑡 , �̂�𝑡) is the loss function used to quantify the difference between the true and predicted labels, e.g., 

cross-entropy loss. The training process minimizes this loss by adjusting the network's parameters using 

backpropagation through time (BPTT). The goal is to minimize the classification error across all time steps, 

allowing the model to learn the temporal patterns in drone acoustics and make accurate predictions about drone 

activity. 

 

4.3. Generative Adversarial Network (GAN) 

GANs represent a robust framework in deep learning, particularly in unsupervised learning and data 

generation [34]. A GAN consists of two neural networks, the generator and the discriminator, which compete 

against each other in a zero-sum game. The generator attempts to produce realistic synthetic data (e.g., images 

or audio), while the discriminator tries to distinguish between real data and synthetic data generated by the 

generator  [32]. In drone detection applications, GANs are particularly useful for generating additional training 

data, such as thermal infrared (TIR) images or drone sound datasets, which are often limited due to the high 

costs of data collection or experimental setup [35]. By leveraging GANs, researchers can enhance the diversity 

of training data, improving model performance, especially in scenarios where acquiring labeled data is 

expensive or infeasible. 

As described in [36], many variants of GANs have been proposed. Figure 4 depicts the mechanism of 

GANs, illustrating the interaction between the generator and the discriminator. The process starts by feeding a 

random noise vector 𝑧 into the generator 𝐺. The generator attempts to create a synthetic sample 𝐺(𝑧) that 

resembles the real data distribution 𝑝𝑑𝑎𝑡𝑎. Simultaneously, the discriminator 𝐷 receives either a real sample 𝑥 

or a generated sample 𝐺(𝑧). The discriminator’s task is to classify the sample as real (label 1) or fake (label 0). 

As both networks train, the generator improves its ability to generate realistic samples while the discriminator 

becomes better at detecting fakes. The goal is to reach Nash equilibrium, where neither network can improve 

further without the other improving. 
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Figure 4. Mechanism of Generative Adversarial Network 

 

GANs operate using a min-max optimization framework, where the generator 𝐺 and the discriminator 

𝐷 are engaged in an adversarial game. The objective of a GAN can be represented as follows: 

 min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐄𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐄𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]  (22) 

where 𝑥 represents the real data sampled from the true data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥), 𝑧 is a random noise vector 

sampled from a noise distribution 𝑝𝑧(𝑧), 𝐺(𝑧) is the synthetic data generated by the generator, 𝐷(𝑧) is the 

discriminator’s estimate of the probability that the data is real, and 𝐷(𝐺(𝑧)) is the discriminator’s estimate that 

the synthetic data is real. The generator aims to minimize the discriminator’s ability to correctly classify real 

versus fake data, while the discriminator maximizes its accuracy in making this distinction. This competitive 

dynamic forces both networks to improve over time until the generator produces data indistinguishable from 

real data, and the discriminator can no longer differentiate between real and fake. 

One practical application of GANs in drone detection is generating synthetic thermal infrared (TIR) 

images. Acquiring large TIR datasets can be challenging due to the high costs of equipment and controlled 

environments required to capture such data. By using GANs, particularly image-to-image translation models 

such as pix2pix and CycleGAN, synthetic TIR data can be generated from easily available RGB images [37]. 

In the context of TIR image generation, the goal is to translate RGB images into TIR images by 

learning to map between these two domains. The pix2pix framework, for instance, uses paired training data 

(RGB and corresponding TIR images) and a U-Net generator with skip connections to perform image 

translation [38]. The PatchGAN discriminator classifies local patches of the image, which is effective for 

texture and style transformation tasks [39, 40]. The objective of the pix2pix model is to minimize the Euclidean 

distance between the generated TIR image and the real TIR image, ensuring that the synthesized data closely 

matches the real data. 

The CycleGAN framework, on the other hand, can be used when paired training data is not available. 

Instead, CycleGAN performs cycle-consistent image translation, ensuring that the translation from RGB to 

TIR and back to RGB preserves the essential features of the image [41]. In this case, the model’s loss function 

includes a cycle consistency loss term that ensures the translations maintain semantic consistency: 

 𝐿𝑐𝑦𝑐(𝐺, 𝐹) = 𝐄𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹(𝐺(𝑥)) − 𝑥‖
1

] + 𝐄𝑦~𝑝𝑑𝑑𝑎𝑡𝑎(𝑦) [‖𝐺(𝐹(𝑦)) − 𝑦‖
1

]  (23) 

where 𝐺 translates images from the RGB domain to the TIR domain, 𝐹 translates images from the 

TIR domain back to the RGB domain, and the cycle consistency loss encourages 𝐹(𝐺(𝑥)) to resemble 𝑥, and 

𝐺(𝐹(𝑦)) to resemble 𝑦. Recent GAN variants, such as BicycleGAN, enable the generation of diverse outputs 

from a single input, which is particularly valuable for generating various synthetic TIR images. This capability 

expands the training data's diversity and improves drone detection models' robustness [42, 43]. In acoustic-

based drone detection, WaveGAN generates synthetic drone audio clips. These synthetic audio datasets can 

help overcome the scarcity of labeled drone sound data, improving the performance of acoustic drone detection 

systems by providing more training samples [44, 45]. 

 

 

5. DEEP LEARNING APPROACHES FOR DRONE DETECTION 

Drone detection systems leveraging deep learning can be broadly classified into optical and non-

optical approaches. Each approach focuses on different types of data input, using various sensors and 

techniques to identify and track drones in diverse environments. The effectiveness of these approaches depends 

on factors such as the type of environment, available sensor technology, and the specific challenges related to 

drone behavior and movement. This section will explore optical and non-optical approaches' fundamental 
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principles and methodologies, highlighting their advantages, limitations, and applications in real-world drone 

detection systems. 

As shown in Table 3, drone detection is a multi-faceted challenge that demands a combination of 

sensors to ensure effectiveness in diverse conditions. While Millimeter-Wave Radar and Lidar excel in long-

range detection and adverse weather, their high cost makes them less accessible for widespread deployment. 

Conversely, acoustic detectors and ultrasonic sensors offer lower-cost solutions but are limited in range and 

performance under certain conditions, such as noisy environments or high-speed drones. Thermal infrared 

sensors and hyperspectral imaging stand out for their effectiveness in low-visibility scenarios, yet their 

accuracy decreases with distance, particularly for small drones. Multispectral cameras and optical systems are 

versatile but can be hampered by environmental factors like rain and fog. To overcome the limitations of 

individual sensors, sensor fusion offers the most promising path forward by leveraging multiple data sources 

to enhance accuracy and robustness. However, the high costs and complexity associated with integrating 

multiple sensors and processing their data in real time can be a significant barrier to adoption. The trade-offs 

between cost, performance, and integration complexity will continue to shape the evolution of drone detection 

technologies. 

 

Table 3. Comparative Evaluation of Drone Detection Sensors Based on Performance, Cost, and Application 

Scenarios 
Sensor Type Pros Cons Price 

Millimeter-

Wave Radar 

• Excellent long-range detection. 

• Effective in adverse weather conditions 

like fog, rain, and snow. 

• High accuracy. 

• Expensive. 

• Struggles with detecting small drones at 

close range. 

High 

Lidar (Light 

Detection and 

Ranging) 

• High-resolution 3D mapping. 

• Effective in low light. 

• Real-time detection. 

• Limited performance in heavy fog or 

rain. 

• Expensive and limited detection range. 

High 

Hyperspectral 

Imaging 

Sensors 

• Identifies drones based on spectral 

signatures. 

• High detection accuracy. 

• Very expensive. 

• Heavy and power-consuming. 

• May struggle with fast-moving drones. 

High 

Sensor Fusion 

(Multi-sensor 

Integration) 

• Combines strengths of various sensors. 

• Provides robust detection under all 

conditions. 

• High cost and power consumption. 

• Complex integration and processing 

required. 

High 

Thermal 

Infrared 

Sensors 

• Ideal for night-time and low-visibility 

conditions. 

• Detects heat signatures of drones. 

• Limited range. 

• Inability to detect non-heat-emitting 

objects. 

• Costlier for long-range detection. 

Medium 

Multispectral 

Cameras 

• Detects across multiple light spectrums. 

• Effective in diverse conditions. 

• Limited range. 

• May struggle to distinguish drones 

from environmental clutter. 

Medium 

Passive RF 

Sensors 

• Detects drone-controller 

communication. 

• Effective over long detection ranges. 

• Unaffected by weather. 

• Cannot detect drones without 

communication signals. 

• Signal interference issues. 

Medium 

Optical 

Cameras with 

Adaptive 

Optics 

• High-resolution detection. 

• Effective in normal light and clear 

conditions. 

• Cost-effective for basic applications. 

• Poor performance in bad weather or 

low light. 

• Requires powerful processing for real-

time use. 

Medium 

Acoustic 

Sensors 

• Inexpensive. 

• Effective in detecting propeller sounds. 

• Performs well in low-visibility 

conditions. 

• Limited range. 

• Susceptible to environmental noise. 
Low 

Ultrasonic 

Sensors 

• Inexpensive. 

• Simple to implement for close-range 

detection. 

• Very short-range. 

• Limited usefulness for high-speed or 

long-range detection. 

Low 

Magnetometers 

• Detects magnetic fields from drone 

motors. 

• Passive (no need for active emissions). 

• Only effective for drones with large 

magnetic fields. 

• Limited to short-range detection. 

Low 

 

5.1. Non-Optical Approach 

The non-optical approach to drone detection is distinguished by its ability to detect drones without 

visual information. It is advantageous when limited or obscured visibility, such as fog, darkness, or harsh 

weather conditions. Unlike optical systems that rely on cameras and imaging sensors, non-optical systems 

utilize alternative sensors like acoustic, radar, and radio frequency (RF) to identify drones based on their 

emitted signals or the disturbances they create in their surroundings. This approach's primary advantage is its 

robustness in environments impairing optical detection methods, such as when a drone operates beyond visual 
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range or under cover of obstructions like trees or buildings. Acoustic sensors detect the unique sound signatures 

produced by the drone's rotors.  

 
Figure 5. Drone Detection Based on a Non-Optical Approach 

 

In contrast, RF sensors intercept the communication signals between the drone and its controller, 

offering a reliable way to detect drones that rely on radio communication. Radar sensors, on the other hand, 

emit electromagnetic waves and detect drones based on the reflection of these waves, making them particularly 

effective in detecting drones at longer ranges and in poor visibility conditions. Figure 5 demonstrates the 

various mechanisms of non-optical drone detection, highlighting how each sensor type interacts with drone 

activities. These systems are invaluable for applications requiring 24/7 drone monitoring across multiple 

environments and scenarios where visual sensors may struggle. Consequently, non-optical approaches provide 

a robust and versatile solution for detecting drones under diverse operational conditions. 

 

5.1.1. Radio Frequency-based Drone Detection 

Radio Frequency (RF) signals are the primary communication between a drone and its ground-based 

controller. These signals allow for real-time updates, such as live video feeds or telemetry data, and can be 

exploited for drone detection. By capturing and analyzing RF signals, an RF sensor can trigger deep-learning 

models to detect the presence of drones in real-time. One of the main advantages of RF-based detection systems 

is their ability to operate effectively in various lighting conditions and adverse weather, making them highly 

adaptable for day and night operations. However, these systems can be susceptible to interference from other 

devices that operate on the same 2.4 GHz frequency band, such as WiFi routers or Bluetooth devices. 

Implementing deep learning algorithms on RF data allows the system to extract specific features from the RF 

signals, improving detection accuracy and resilience to noise or interference from non-drone signals. 

To optimize the feature extraction module at different resolutions, the end-to-end deep learning-based 

model built with stacked convolutional layers and multiscale architecture has been proposed by [46] to detect 

the presence of drones through RF signature. The proposed system can classify signals from both UAVs and 

the controller, and the communication is established at the 2.4 GHz frequency band. To create a challenging 

signal classification environment, other devices operating in the same range, such as WiFi signals and 

Bluetooth, are also considered in CardRF [47]. An additive white Gaussian noise (AWGN) is added to the 

dataset to create noisy samples of different SNRs. Those signals have varying noise levels and were trained on 

the proposed model, which helps to produce a robust model. The training result obtained an average accuracy 

of 97.53% for drones. The precision, sensitivity, and F1 score for both drone and Bluetooth were high, meaning 

the proposed model can detect and classify them well. The proposed system is then evaluated using unseen 

noise levels to validate its performance, and the overall accuracy achieved is over 94%. Although the proposed 

model has the highest number of parameters, inference time is the fastest compared to [48], and it is believed 

that eliminating manual feature extraction techniques to identify the drone’s signal makes it computationally 

effective. The proposed model is suitable for real-time detection and can address the limitations in 

distinguishing drone RF signals from other RF signals, especially in noisy environments. 

A multi-channel 1-dimensional convolution neural network (multi-channel 1DCNN) based on a deep-

learning approach was proposed by [49] to train the DroneRF dataset [50]. To capture the presence of RF 

signals in surroundings such as WiFi, Bluetooth, and the RF signals between drone and controller, a USRP 

device [51] was utilized along with the presence of WiFi RF signals. Then, the obtained signals are stored and 
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sent to the processing unit to extract the RF frequency segments from the obtained data. Before feeding them 

to the classification model, data channelization is performed using a full WiFi frequency spectrum to divide 

into multiple channels and feed each to the classifier. Rather than analyzing the frequency spectrum 

simultaneously, breaking the whole frequency into smaller channels can prevent misclassification because the 

classifier can focus more on the smaller spectrum. Multi-channel 1DCNN is an upgraded version of basic 

1DCNN that can manage multivariate time series classification at one time, and this network will process these 

sequences together to identify the pattern. This model will extract and learn features from RF signals to classify. 

The proposed model is not only able to detect the presence of drones, but it also can recognize what type of the 

detected drones (Parrot Bebop, Parrot AR, and DJI Phantom) and their operation mode as well (off, on, 

connected, flying, hovering and video recording). These three situations demonstrate the reliability of the 

proposed model in detecting drones and ensuring their safety and security from drone attacks. Overall, the 

proposed model performed excellently during model training. By comparing model performance in terms of 

accuracy with [52]. The proposed model has outperformed overall accuracy in three different tasks: 100% for 

drone detection, 94.6% for drone detection and type identification, and 87.4 % for drone detection, type, and 

state identification. It demonstrates the reliability of the proposed model in detecting drones with other RF 

signals as disturbances. However, their research does not include the detection's inference time, so the detection 

system's reliability to detect in real-time cannot be verified.   

Another model is introduced by [53] to detect the presence of drones and classify their types and 

operational modes. By aiming computationally efficient, RF-NeuralNet, a deep learning-based network, is 

designed to identify drones using its RF signatures. RF dataset was utilized [50], and background interference 

from multiple sources, such as WiFi and Bluetooth, was added to create a challenging environment. The 

proposed system mainly detects the presence of RF signals first, and then it will proceed with the drone 

classification once it is detected. To address the vanishing gradient problems, the proposed network 

incorporated multiple-level skip connections, and multiple-level pooling layers are involved in the deep-level 

feature extraction. Three monitoring tasks were performed, which involved identifying RF signals, classifying 

drones, and monitoring a variety of drone operating modes to ensure the robustness of the proposed model. 

RF-NeuralNet is compared with other state-of-the-art in accuracy, GFLOPs, and model parameters to validate 

model performance. RF-NeuralNet obtained the highest accuracy, 89%, with the smallest model parameters, 

8k, and fewer GFLOPs, 5M, compared to [54-56]. The proposed model used the same dataset as the Multi-

Channel 1DCNN model proposed by [49] during model training, and both models obtained excellent results. 

The reliability of the dataset used in the RF-based approach can be highlighted. Like the Multi-Channel 

1DCNN model, the proposed model performs drone detection and classification tasks well. With fewer 

parameters than [54-56], the proposed model offers reduced complexity, which usually indicates low memory 

usage and faster inference times, making it more efficient for real-time detection. However, inference time was 

not included in the model evaluation, so the real-time performance of this proposed model cannot be 

guaranteed.   

Several machine-learning algorithms were evaluated by [57] to detect drones using RF signals using 

self-made datasets [58]. The proposed residual CNN model, called Deep Residual Neural Network (DRNN), 

has achieved the highest accuracy based on several experiments conducted on spectrogram datasets under 

AWGN conditions and multipath environments. The more depth of CNN architecture there is, the more it could 

lead to vanishing or exploding gradients during backpropagation. Therefore, to solve the degradation problem 

in this situation, the classifier, without skipping connections from the residual block, could not learn the 

features well under noisy conditions (-60 dBm to 10 dBm), while the one that incorporated the skipping 

connection, which is the proposed model, able to show good performance from noisy dataset. However, a 

classifier without a skip connection can learn essential features for low noise levels (-60 dBm to -15 dBm). It 

can also distinguish and classify drone signals and multiple drones simultaneously, up to 7 drones, even at 

lower SNR regions, even with WiFi signals. Almost 99% accuracy is obtained during 0 dB SNR during single 

and multi-drone situations, and at -10 dB, 5% higher than the F1 score of the existing model was obtained 

during the single drone detection scenario. However, model evaluation does not consider inference time, so the 

real-time effectiveness of the proposed system cannot be ascertained.     

 

Table 4. Available Datasets for RF-Based Drone Detection 
Reference Details of Datasets  

[47] The dataset consists of four types of signals: five UAVs, five UAV flight controllers, five Bluetooth devices, and two WiFi 

routers. Each signal includes five million sampling points at 30 dB SNR. The dataset provides a challenging environment 

by incorporating interference from non-drone RF signals, such as WiFi and Bluetooth. 

[50] The DroneRF dataset includes RF signals from three types of drones (AR, Bebop, Phantom) in five operational modes (off, 

on, connected, hovering, flying, and video recording). The dataset contains 186 drone segments and 41 no-drone segments 

for detection and 227k RF signals across low and high-frequency bands for classification. The diverse operational modes 
enhance the dataset’s utility for training classification models in various scenarios. 
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[58] This dataset contains nine drone signals, including remote control and video signals operating at 2.4 GHz and WiFi signals. 

It is particularly useful for studying the effects of interference from WiFi networks on drone signal detection and 

classification. 

Table 4 provides an overview of crucial datasets used for RF-based drone detection. These datasets 

encompass various drone types, operational modes, and interference scenarios, making them invaluable for 

developing robust detection systems. The datasets include millions of sampling points, providing a substantial 

basis for training deep learning models. The DroneRF dataset [50], for instance, contains data for different 

drone types and operational modes, which is essential for classifying not just the presence of drones but also 

their specific activities. Meanwhile, the dataset from [47] offers a complex environment with interference from 

Wi-Fi and Bluetooth signals, challenging models to effectively distinguish between drone and non-drone RF 

signals. Similarly, the dataset from [58] includes a range of drone signals, such as remote control and video 

signals at 2.4 GHz and WiFi signals, which allow for an extensive evaluation of interference effects. These 

datasets contribute to advancing deep learning techniques for accurate and efficient drone detection in diverse 

and challenging RF environments. 

 

5.1.2. Radar-based Drone Detection 

Radar-based drone detection is an electromagnetic method that uses radar waves to detect and locate 

drones, often outperforming other methods like RF and acoustic detection in terms of accuracy and robustness 

under various environmental conditions. Radar can reliably operate in noisy environments and is mainly 

unaffected by visual challenges such as rain, fog, or dust. Initially, detecting drones posed challenges for 

traditional radars due to the small radar cross-sections (RCS) of drones compared to larger objects like 

airplanes. However, introducing the micro-Doppler signature (MDS) with time-domain analysis has greatly 

improved radar's ability to distinguish between noise and drone targets, outperforming traditional Doppler-shift 

signature methods in this context [59]. 

Radar detection systems emit radio waves from a transmitter, reflecting off any object within the 

radar's range. The receiver captures these reflected signals and sends them to a processor for analysis. By 

examining these reflections, the system can gather essential data on the detected object's characteristics, such 

as its size, velocity, and distance from the radar sensor. Active radar systems, which transmit their signals, are 

preferred for drone detection over passive radars, which depend on external signal sources. Two common types 

of active radar used for drone detection are pulse radar and Frequency Modulated Continuous Wave (FMCW) 

radar. Pulse radar excels at long-range detection but struggles with short-range accuracy. In contrast, FMCW 

radar offers superior short-range performance (50-100 meters) and excellent range resolution, making it more 

suitable for drone detection [2]. 

Deep learning has enhanced radar-based drone detection by reducing noise and interference in radar 

signals [60]. Deep learning models can reconstruct original signals and filter out noise before converting the 

time-domain signals into the frequency domain using Fast Fourier Transform (FFT) methods. Several deep-

learning techniques have been employed to classify radar signals more accurately, as shown in Table 5. 

RCS signatures that were collected using millimeter-wave (mmWave) radars from [61] were used by 

[62] to perform drone detection and classification using the deep learning technique. The benefit of using 

mmWave frequencies [63] in radar systems is that they can provide a high resolution, which benefits detecting 

smaller drones. Traditionally, after the RCS signature is captured by radar, it is converted to an image for CNN 

to process and make a classification. Since this conversion technique increases the computational overhead and 

the model can be trained using a fixed learning rate, this research implemented a new approach: a long short-

term memory (LSTM) network with weight optimization to reduce the computational overhead and an adaptive 

learning rate optimization (ALRO). It is used during training to enhance the ability of the model to adapt well 

to unpredictable and dynamic environments while classifying various types of drones. The performance of 

LSTM-ALRO is compared and outperformed the model performance of GoogLeNet and CNN-based model 

[64]. With 99.88% accuracy, it has successfully obtained and produced excellent performance in detecting both 

large and small drones. However, this research does not include obstacles in the dataset, such as bird samples 

or challenging weather. The ability to perform real-time detection also cannot be verified since this research 

did not consider inference time during model evaluation. 

 

Table 5. Available Datasets for Radar-Based Drone Detection 
Reference Details of Datasets  

[65] Measurements from 77 GHz FMCW radar, including data on six drones, birds, and humans. The dataset provides rich 

micro-Doppler signatures for training classifiers to distinguish between various objects in short-range detection. 

[66] The Real Doppler RAD-DAR dataset collected by the Microwave and Radar Group includes over 17,000 samples of 

drones, cars, and people. The radar operates at 8.75 GHz and has a bandwidth of 500 MHz FMCW. 
[67] The dataset from IRIS FMCW radar contains data on drones, birds, wind turbines, and other ground targets, with drones 

flying on moving backgrounds, providing a realistic and diverse environment for model training and testing. 
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Deep convolutional neural (DCNN) was utilized by [68] as a drone detection model. FMCW radar 

dataset [65] was used for the training and testing model, which contains various sources such as birds, drones, 

and humans. The collected signatures will be transformed using Short Time Fourier Transform (STFT) to 

produce a matrix representing the received signature. This matrix forms a Micro-doppler RGB image in PNG, 

JPG, or JPEG format. This Micro-doppler image will be input by the DCNN classifier to extract features. The 

performance of the proposed DCNN-based model is compared with [69-71]. The size of the micro-Doppler 

image used was only 32x29, which cost less computation compared to others. Although the proposed model 

did not achieve the highest accuracy, 97.4 % accuracy was obtained with 15ms of signal dwell time, which is 

the fastest compared to others, and radar operating at 77 GHz is considered good as the proposed model used 

dataset that has more than three classes (drones, birds, people) compared to others. However, 77 GHz frequency 

is effective at short-range detection, which is equivalent to less than 1 km only, which means the proposed 

model may not detect targets at greater distances.  

Radar data by microwave and Radar Group named Real Doppler RAD-DAR (Radar with Digital 

Array Receiver) [66], which contains drones, cars, and people, was used by [72]. To detect the presence of 

drones, the radar used is FMCW, which operates on an 8.75 GHz based frequency band with a BW𝑚𝑎𝑥 of 500 

MHz. The received radars were processed to produce a large matrix, but then the size was reduced to 11×61 

matrices representing the distance and Doppler frequencies in dBm. The proposed detection network is based 

on CNN, which is called CNN-32DC, with 32 filters along with a depth concatenation layer obtained good 

results where the highest accuracy of 96.85% with low time needed to detect and the least number of parameters 

compared to other models, ResNet-18, SqueezeNet, SVM, K-NN and LDA. The low time consumed shows 

that the model can perform fast detection that is suitable for real-time application. Obtaining high accuracy 

using a dataset containing objects other than drones shows that the model learns to recognize drones and 

distinguish them from others well. However, it would be more advantageous if flying objects like drone-like 

objects like birds were also included in the dataset. Their similar sizes will be more challenging for the detection 

system, but it is still a good approach to include it in the dataset so the model can be trained to learn and 

differentiate between drones and birds.  

A moving surveillance radar system was used by [73] to sense the presence of a drone. The received 

signal is then processed to generate a range-doppler image in real-time, where each image contains information 

about the detected object, such as speed and distance. YOLOv5s is selected to analyze the range-Doppler plots 

images to make a classification. In this research, it is believed that implementing this surveillance radar system 

can address limitations in volumetric spatial coverage if focusing on the time and frequency of radar signatures 

to extract features. The dataset used is from IRIS FMCW radar by Robin Radar Systems B.V. [67], which 

contains drones, birds, wind turbines, and other ground objects. Some augmentation techniques were 

introduced in the dataset to create noises and variation. The involvement of objects other than drones can give 

good exposure to the model to analyze characteristics owned by them so the model can perform accurate 

detection. The effectiveness of this proposed system is proved by the mean Average Precision (mAP) obtained 

was over 99%. However, the results do not reflect the model's capability to detect drones at long distances, as 

the dataset contains drones that fly 500m from radar.  

 

5.1.3. Acoustic-based Drone Detection 

Acoustic-based detection leverages the unique sound produced by the rotating blades of drones. This 

distinct sound typically has a higher amplitude, distinguishing it from background noise. Since this approach 

relies on sound waves, it is unaffected by low-light or adverse weather conditions, such as fog or dust. However, 

noisy environments can reduce the detection system's effectiveness [74]. Another advantage of acoustic-based 

detection is its independence from the drone’s speed, making it suitable for real-time applications [2]. 

The process of acoustic detection involves three key steps: sound wave detection, feature extraction, 

and classification. Sound waves generated by drone rotors are captured by highly sensitive microphones, acting 

as acoustic sensors. The captured sound is matched against pre-identified drone signatures stored in a database 

(fingerprinting). The acoustic signature can be processed using both traditional and deep learning methods. 

Traditional techniques extract features such as Mel-frequency cepstral coefficients (MFCCs) [74, 75], 

Gammatone cepstral coefficients, linear prediction coefficients, and spectral roll-off [76], which helps identify 

important acoustic characteristics. Deep learning models like CNNs have substantially improved drone 

detection accuracy [75-77]. These models are trained using labeled datasets to extract important features from 

acoustic signatures, allowing them to recognize drones in real-world scenarios automatically. Table 6 lists 

various datasets available for training models using the acoustic-based approach. 

Several experiments have been conducted to assess the performance of machine learning algorithms 

like Support Vector Machines (SVM) and CNNs in drone detection through acoustic signals [75]. The dataset 

used in these studies includes internally generated audio data of drones at varying altitudes and publicly 
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available datasets, enhancing the reliability of the detection models. MFCCs are typically extracted from the 

audio clips to feed into the CNN models for drone identification. A field test using 220 microphones captured 

10-second audio clips, which were analyzed in real-time on a Raspberry Pi. A survey of 35 participants showed 

that humans could distinguish drone sounds with 92.47% accuracy, while the CNN model achieved 80% 

accuracy, highlighting the potential for further improving machine learning models. In addition, CNNs also 

outperformed studies that used SVM [83], significantly reducing false positives.  

 

Table 6. Available Datasets for Acoustic-Based Drone Detection 
Reference Details of Datasets  

[78] Contains 90 audio clips and 650 video data comprising airplanes, birds, drones, and helicopters. 

[79] Includes two 11-minute, 6-second audio clips of Parrot Bebop and Parrot Mambo drones. 

[80] Includes audio clips from five drone types: Parrot Bebop 2, DJI Mavic Pro, DJI Matrice 100, DJI Spark, and DJI Phantom 

4 Advanced, each with 12 signals of approximately 30 seconds. 

[81] It contains drone audio clips recorded using propeller noise in an indoor environment. 

[82] Features sounds from various drone classes with multiple background noises. 

 

The CNN14 model is a pre-trained audio neural network (PANN) [84] on the AudioSet dataset [85] 

that was used for drone detection and classification by [77]. By using the dataset of [78], which contains 90 

audio clips from three classes (drone, helicopter, and background noise). The model achieved a mean Average 

Precision (mAP) of 97.2% on validation data and 88% on unseen test data. However, the model misclassified 

some helicopter samples as noise, suggesting the need for further refinement in distinguishing drone sounds 

from similar airborne vehicles. 

In a study by [74], Random Forest (RF) and Multi-Layer Perceptron (MLP) classifiers were evaluated 

using public datasets [79, 80]. Acoustic features, including 26 MFCCs, were extracted to help distinguish 

different drone noises. MLP achieved an accuracy of 83% on unseen test data, outperforming RF, which 

achieved 75%. It suggests that neural networks like MLP can handle complex and non-linear acoustic features 

better than traditional algorithms. However, evaluating detection performance at varying distances from the 

microphone remains essential for optimizing detection range. 

To address the lack of acoustic datasets, the authors [44] generated an artificial dataset based on this 

dataset [81] using Generative Adversarial Networks (GANs) [86]. This GAN-based approach, modeled on 

WaveGAN architecture [45], combined drone sounds with background noises from publicly available datasets. 

The generated audio clips were converted into spectrograms to serve as input for deep learning models, 

including CNNs, RNNs, and CRNNs. CNN demonstrated the best performance in detecting drones even in 

noisy environments, showing that GAN-generated data could enhance detection accuracy and serve as effective 

data augmentation. The benefits of data augmentation for acoustic-based detection were demonstrated by [87], 

who used a dataset combining [82] with no-drone sound data from YouTube. Various types of noise distortions, 

including harmonic distortion, environmental noise, pitch shifting, and delay, were introduced to simulate real-

world conditions. The VGGish network, inspired by VGGNet for image classification, achieved 99.1% 

accuracy in detecting drone sounds and 97.2% in recognizing non-drone sounds. These results suggest that 

data augmentation techniques can significantly improve the performance of acoustic-based drone detection 

models by mimicking real-world noise distortions. 

Acoustic-based detection holds promise due to its independence from visual conditions and 

effectiveness in real-time applications. Deep learning models, particularly CNNs, have proven capable of 

improving detection accuracy. However, the availability of high-quality acoustic datasets and the inclusion of 

real-world noise and environmental conditions remain critical for advancing these systems' performance. 

 

5.2. Optical Approach 

The optical approach to drone detection employs cameras to identify and track drones by analyzing the 

images or video footage captured. This method requires high-quality visual data for optimal performance, as 

image clarity significantly impacts detection accuracy. While various types of cameras are available for optical 

detection, this section focuses on two fundamental types: digital and thermal infrared. Digital cameras offer 

high-resolution imagery, making them ideal for detecting drones in clear weather conditions. On the other 

hand, thermal infrared cameras excel in detecting drones based on heat signatures, making them useful in low-

light or adverse weather conditions. Figure 6 illustrates the various mechanisms involved in optical drone 

detection, showcasing how different types of cameras capture and process drone activities. 
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Figure 6. Drone Detection Based on Optical Approach 

  

5.2.1. Visible Image-based Drone Detection 

The optical or visual drone detection system focuses on identifying and locating drones through 

images or videos. The performance of these systems is significantly impacted by environmental challenges 

such as heavy rain, dust, fog, and long-range distances, as well as objects that may visually resemble drones. 

Cameras capture the images or video from the target area, after which the drone's features are extracted to 

identify its presence. To enhance system effectiveness, real-time detection provides early warning and tracking. 

With technological advancements, integrating deep learning has become a popular and effective approach for 

drone detection, particularly in object detection tasks [88]. 

CNNs are widely employed for drone detection due to their superior performance in image-based 

tasks. Compared to traditional radar systems, object detection models have shown greater accuracy and 

adaptability in drone detection [89, 90]. Object detection systems typically involve two main tasks: localization 

and classification. Localization determines where the target object is located within the image or video, while 

classification identifies the object. Object detection methods are categorized into one-stage and two-stage 

detectors. Examples of one-stage detectors include You Only Look Once (YOLO) [91] and Single Shot 

Multibox Detector (SSD) [92]. In contrast, two-stage detectors include Region-based Convolutional Neural 

Network (R-CNN) [93], Fast R-CNN [94], and Faster R-CNN [95]. Table 7 lists various datasets utilized in 

the visual approach to drone detection. 

 

Table 7. Available Datasets for Visual-Based Drone Detection 
Reference Details of Datasets  

[96] A series of annotated videos with a resolution of 1270×720 pixels for detecting small objects, including UAVs, boats, 

vehicles, people, and birds. 
[97] Four types of UAVs are included in this dataset, with images extracted from videos at 1280×720 resolution and a 

frequency of 10 fps. 

[98] 479 images of birds from 300 species and 1916 images of drones, sourced from Google and Kaggle. 
[99] 4635 images of drones with diverse backgrounds at a resolution of 1920×1080. 

[100] The dataset contains five classes: airplane, bird, drone, helicopter, and malicious drone. 

[101] Small drones and birds are captured in 77 training videos and 30 testing videos. 
[102] 2860 images of small drones at 1920×1080 resolution, captured from a distance of approximately 500 meters from a 

fixed ground camera. 

 

Research by [103] evaluated pre-trained SSD-based models to determine which model was most 

suitable for deployment in web applications. The models were trained on RGB datasets containing four 

classes—drones, helicopters, kites, and birds—sourced from YouTube to provide detailed pixel-level insights. 

SSD MobileNet v2 FPN demonstrated superior performance among the chosen lightweight models, achieving 

the lowest loss value, highest precision, and best recall for large, medium, and small target detection. It also 

had the lowest average detection time when deployed on a web application, showing the model's reliability for 

real-time detection. However, this study did not consider the effects of weather or multi-target environments 

during evaluation. 

A lightweight and accurate detection model for real-time detection was proposed by [97]. This 

research made its dataset, which contains four types of drones, to train on the modified YOLOv4 model. Instead 

of using the default backbone of YOLOv4, MobileNet is used, and all convolution blocks are replaced with 
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depth-wise separable convolutions to reduce model parameters and enhance feature extraction. By comparing 

with Faster-RCNN, SSD, EfficientDet, and original YOLOv4, proposed a lightweight model, combination of 

YOLOv4 and MobileNetv1 as the backbone, obtained high mAP, 93.14 %, fast detection of 82 fps in 

performing small and multi-target real-time detection. However, the results do not cover challenging scenarios 

like drone-like object detection, harsh weather, or inadequate lighting. In continuation of this research, research 

by [104] aimed to address challenges such as the struggle to differentiate drones and birds, the powerful GPU 

needed for real-time detection, and the limitations of the dataset. The dataset used is the same as [98] for a fair 

comparison. The authors trained and fine-tuned YOLOv5's architecture on Google Collab to ensure it was 

compatible with a custom dataset and tuned the value of the hyperparameter during training to increase 

detection accuracy. As a result, this study demonstrated the superior performance of YOLOv5 over YOLOv4 

in terms of mean Average Precision (mAP), F1 score, and recall. However, the inference speed is slightly 

increased due to the increment in several parameters, but still suitable for real-time detection.  

Research by [99] has tried to solve the challenge of detecting small targets, and as an effort, a new 

detection method was introduced using a YOLOv5-based model. This involved extending the input layer of 

YOLOv5s from a single-frame image to multiple frames and incorporating inter-frame optical flow to enhance 

small target detection. The model is trained on a dataset comprising 4625 images of drones with various 

backgrounds, each with a size of 1920×1080 pixels. 7:2:1 is a ratio of splitting datasets for training, validation, 

and testing. The model achieved a mAP of 0.8687, outperforming YOLOv4 with a 6.89% improvement in 

average precision while maintaining a speed above 30 frames per second. It shows that the proposed model 

can perform real-time detection on multi-targets and detect small drones even in complex backgrounds. 

However, drone-like objects are not included in the dataset, which poses a challenge for the model in 

distinguishing them from drones, and it is also limited in detecting drones using video as input.  

By improving the architecture of the YOLOv8m model, a fast and reliable drone detection system 

was developed [105]. With the addition of P2 Layer, Multi-Scale Image Fusion (MSIF), and utilizing copy and 

paste augmentation technique, this improved version provides a fair balance between speed and accuracy, 

especially in targeting small objects. The proposed model is trained on the dataset [101] containing drones and 

birds with various lighting conditions. As a result, YOLOv8m with P2 Layer and MSIF can detect small and 

multi-target objects in 640-pixel images at 45.7 fps while in 1280-pixel images at 17.6 fps. However, the 

research did not state the model size, but due to the addition of the P2 layer, the number of parameters of the 

proposed model is expected to increase. 

 

5.2.2. Thermal Infrared Image 

Thermal infrared (TIR) imaging utilizes heat signatures emitted by objects, including drones, to detect 

their presence. Infrared cameras, equipped with thermal energy sensors, convert these heat signatures into 

images. Drones emit thermal energy through components such as batteries, rotors, and propellers, enabling 

infrared sensors to identify them. Studies have shown that batteries produce the most heat, with motors and 

speed controllers contributing less [106]. This approach offers significant advantages in environments with low 

visibility, such as fog, smoke, or nighttime conditions, making it ideal for drone detection in a wide range of 

scenarios [107]. However, detecting small targets remains challenging due to TIR images' lack of shape and 

texture detail [108]. Traditional methods have addressed these challenges by enhancing features and 

suppressing background noise, but these methods require high computational resources and are time-

consuming. While deep learning models offer faster detection speeds, they are often optimized for visible 

images, necessitating additional adjustments to improve small infrared target detection [109]. Table 8 lists 

various public datasets available for TIR-based drone detection. 

 

Table 8. Available Datasets for Thermal Infrared Image-Based Drone Detection 
Reference Details of Datasets  

[110] Contains 10,000 thermal images with 160×120 resolution, with multiple drones per image, recorded in an indoor lab. 

[111] Includes 4737 IR images of a small quadrotor drone with 640×512 pixels across various backgrounds such as mountains, 
cities, and seas. 

[112] 7908 IR images containing speckle noise, salt and pepper noise, and uneven illumination, with small drone and bird 

targets at 640×640 resolution. 
[113] 318 RGB-thermal video pairs at 25 FPS with various drone types flying in different scenarios, such as urban areas and 

forests. 

[114] 410 thermal infrared videos containing 438k bounding boxes of drones were recorded in varied environments, with over 
half the targets being less than 50 pixels. 

 

Research by [110] developed a custom CNN model to detect multiple drones simultaneously by 

training on a self-generated thermal dataset. The thermal signatures of various drones, such as DJI and SYMA 

models, were captured using a FLIR Lepton 3.5 camera in indoor and outdoor environments. The model 

demonstrated an average accuracy of 99% in estimating the number of UAVs present, simultaneously detecting 
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up to 10 drones. While the FLIR camera’s lower resolution of 160×120 pixels facilitated faster computation, 

its frame rate of 8.7 Hz allowed for real-time detection. However, the study did not address detecting small 

targets or drone-like objects, such as birds, which may have similar thermal signatures. 

The IRSDD-YOLOv5 model was proposed by [111] to address the challenge of detecting small 

infrared targets. Using YOLOv5s as a base model, an Infrared Small Target Detection Module (IRSTDM) is 

designed and added at the neck of YOLOv5 to provide better extraction for rich semantic information of small 

infrared targets. Then, an additional prediction head is added at the head part specifically for detecting small 

targets, which makes the current total prediction head four. A new loss function called NWD is introduced to 

enhance the positioning loss function detection and increase the accuracy and reliability of the model, 

specifically when involving small targets. The proposed model is trained using a self-made single-frame 

infrared small target drone dataset (SIDD) and evaluated its performance with other methods: BlendMask 

[115], CondInst [116], Solov2 [117], BoxInst [118], Yolact++ [119], Mask R-CNN [120], YOLOv5  and 

YOLOv7 [121]. Overall, the proposed model achieves good results, which are maintained in the top three 

results in average accuracy (AP), which can prove the reliability of the proposed model in detecting small 

drones. The small size of the model shows it is a lightweight model, and the high FPS shows the ability to 

detect in real-time detection. When comparing the detection results with four different scenes (city, mountain, 

sea surface, and sky scenario), it can be seen that the detection in the mountain scenario is quite challenging 

because the overall result of AP for all models in this scenario is the lowest among other scenarios. For 

segmentation results, the proposed model is more consistent in detecting real targets than other methods. With 

complex backgrounds and varying shapes and sizes of targets, the proposed model still achieves excellent 

performance with lower model parameters and higher real-time detection. However, this research still faces 

unresolved issues, particularly in multi-target detection, such as when multiple drones are in a single frame. 

By targeting to solve drone detection and tracking in challenging scenarios for real-time detection, 

several techniques were proposed to develop accurate and reliable detection and tracking drones [122]. The 

techniques include drone detection that utilizes YOLOv7, Simple Online, and real-time tracking (SORT) 

algorithm for drone tracking, and noise distortion detection that involves a vision transformer (ViT) paralleled 

with customized CNNs. The model has been trained using the Drone Detection Dataset [112], which contains 

infrared images of small drones and birds in challenging environments like cloudy sky, fog, mist, and thick 

forest cover to increase the algorithm's robustness. Some noise distortions, such as speckle noise, salt and 

pepper noise, and uneven illumination noise, have also been introduced into the dataset. Overall, this proposed 

method achieved excellent performance in distinguishing between drones and birds during training and proves 

the robustness of the detection model even under noise distortions. However, the evaluation process is 

performed using a testing dataset that only involves new images with drone bounding boxes, and the result is 

that the YOLOv7 model obtained 94.26% of mAP. Since bird bounding boxes were not included during the 

testing phase, their presence was not adequately assessed to determine whether the model could distinguish 

between drones and birds. 

Meanwhile, the proposed drone tracking algorithm can detect drones in all frames during the testing 

phase on videos without tracking labels [112]. The SORT algorithm can track multiple objects simultaneously, 

but this research did not cover infrared images containing multi-object scenarios. In terms of real-time 

detection, this research did not provide any details about the inference time for drone tracking in IR videos, 

which is one of the essential criteria to be evaluated for real-time detection and tracking. The evaluation has 

been decided using a confusion matrix for noise distortion detection. It can be seen that the proposed algorithm 

produced high precision in classifying each kind of noise distortion introduced in the dataset. Despite the 

absence of IR images from extreme weather conditions such as heavy rainfall in the dataset, the noise distortion 

introduced comparable challenges, making it an effective proxy for testing in challenging weather. 

 

5.3. Review Summary of Deep Learning Approaches for Drone Detection 

Table 9 presents various non-optical drone detection approaches utilizing datasets and deep learning 

configurations. Each study contributes uniquely to the field, with several demonstrating impressive accuracy 

levels—the RF-based detection models, such as those by Alam et al. [46] and Misbah et al. [53], benefit from 

deep learning architectures like stacked convolutional layers and lightweight networks. These models perform 

well in RF signal detection, even under noisy conditions, showcasing their potential for real-time applications. 

However, real-time inference times are often not reported, leaving a gap in assessing their practicality for 

deployment in operational settings. The reliance on RF signals also makes them vulnerable to interference from 

common signals such as WiFi and Bluetooth, suggesting the need for robust interference mitigation techniques 

in future models. 
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Table 9. Review of Non-optical Drone Detection 

Paper Dataset 
Deep Learning 

Configurations 
Contribution Future Recommendation 

Alam et al., 2023 
[46] 

Cardinal RF 
Dataset [47] 

End-to-end deep 
learning with stacked 

convolutional layers 

and multiscale 
architecture 

Proposed a robust model for RF-

based drone detection using 

multiscale architecture, 
achieving 97.53% accuracy with 

high precision and sensitivity 

across noisy environments. 

Improve interference 
handling from non-drone 

RF signals; explore real-

time performance 
enhancements. 

Allahham et al., 
2020 [49] 

DroneRF Dataset 
[50] 

Multi-Channel 1D 

Convolutional Neural 

Network (CNN) 

Proposed a model to classify 

drones and their operational 

states from RF signals, 
achieving 100% drone detection 

accuracy and 87.4% state 

identification accuracy. 

Investigate real-time 

detection performance; add 
further RF signal variations 

for better generalization. 

Misbah et al., 
2023 [53] 

DroneRF Dataset 
[50] 

RF-NeuralNet, 

lightweight deep 

learning with skip 

connections and 
multi-level pooling 

Developed a computationally 

efficient RF detection model 

achieving 89% accuracy with 
smaller parameters and fewer 

GFLOPs than other state-of-the-

art models. 

Study the real-time 

performance and extend the 

dataset to include more 

challenging interference 
scenarios. 

Basak et al., 2021 

[57] 

Self-made dataset 

[58] 

Deep Residual Neural 

Network (DRNN) 

Demonstrated effective drone 

classification under AWGN 

conditions and multipath 
environments using residual 

CNN architecture, achieving 

99% accuracy in noisy 
environments. 

Improve robustness in 

multipath environments 
with more diverse datasets; 

validate in real-time 

conditions. 

Fu et al., 2021 

[62] 

Experimental 

mmWave radar 
dataset [61]  

Long Short-Term 
Memory (LSTM) with 

adaptive learning rate 

optimization (ALRO) 

Achieved 99.88% drone 

detection accuracy using LSTM 
for mmWave radar signals, 

improving detection efficiency 

by reducing computational 
overhead. 

Extend the dataset with 
obstacles like birds or 

adverse weather; evaluate 

real-time performance. 

Gomez et al., 

2023 [68] 

FMCW Radar 

dataset [65] 

Deep Convolutional 

Neural Network 
(DCNN)-based model 

as a classifier to 

extract features. 

With the fastest dwell time, 15 

ms, the proposed model obtained 
a 97.4% accuracy rate in 

identifying three targets (drones, 

birds, and people). 

Improve detection at long-

range detection. 

Garcia et al., 

2022 [72] 

Real Doppler 

RAD-DAR 

(Radar with 
Digital Array 

Receiver) [66] 

A CNN-based model 

with 32 filters along 

with a dept 
concatenation layer, 

called CNN-32DC 

With the least number of 

parameters, the proposed model 

obtained the highest accuracy, 
96.85%, with fast inference 

speed compared to other models.  

Extend the dataset with 
other flying objects, such as 

drone-like objects like 

birds.  

Haifawi et al., 

2023 [73] 

IRIS FMCW 
Radar dataset  

[67] 

YOLOv5s for 

classification of 

range-Doppler plot 
images 

Achieved over 99% mean 
Average Precision (mAP) for 

drone detection using real-time 

surveillance radar systems 
combined with YOLOv5s for 

range-Doppler analysis. 

Evaluate performance at 

greater distances; expand 
the dataset to include more 

flying objects for increased 

robustness. 

Alaparthy et al., 
2021 [75] 

Internally 

generated drone 
audio data and 

public datasets 

CNNs and SVMs for 

drone acoustic 

detection 

Demonstrated improved drone 

detection accuracy using CNN 

over SVM with MFCC features 
and validated the performance 

with a real-time system based on 

Raspberry Pi. 

Investigate the effects of 

weather conditions on 

detection performance; 

include more diverse drone 
audio datasets. 

Yaacoub et al., 

2022 [77] 

Drone detection 

dataset [78] 

Fine-tuned CNN14 

model for audio 
detection 

Achieved 97.2% mAP for drone 

detection with CNN14, 

demonstrating the effectiveness 
of transfer learning in acoustic 

drone detection tasks. 

Improve the model’s ability 

to distinguish helicopter 

sounds from noise; increase 
robustness against more 

complex sounds. 

Ahmed et al., 

2022 [123] 

Public datasets 

[79, 80] 

Random Forest (RF) 

and Multi-Layer 

Perceptron (MLP) 
algorithms for drone 

classifier 

MLP outperformed RF with 
83% accuracy, demonstrating 

the effectiveness of neural 

networks compared to traditional 
algorithms in handling complex 

and nonlinear features like 

MFCCS. 

Investigate the model 
performance based on the 

detection distance from the 

sensor.  

Al-Emadi et al., 

2021 [44] 

Generated 

artificial drone 

acoustic dataset 
using Generative 

Adversarial 

CNN is built with two 

convolutional layers 

and a hidden fully 
connected layer, RNN 

is built based on an 

Demonstrated the ability of  

CNN over RNN and CRNN to 

identify the sound of drones 
even in noisy backgrounds and 

proved the effectiveness of using 

Extend the dataset with the 

sound of flying objects. 
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Paper Dataset 
Deep Learning 

Configurations 
Contribution Future Recommendation 

Network (GAN) 

based on drone 
audio dataset [81] 

LSTM layer, and 

CRNN is built with a 
convolutional layer, 

two RNN-GRU-based 

layers, and a fully 
connected layer. 

GAN in generating datasets 

where to solve the issue of 
dataset limitation.   

Kümmritz, 2024 
[87] 

YouTube no-

drone sound 
dataset and 

dataset [82] 

VGGish network for 

drone sound detection 
with data 

augmentation 

Achieved 99.1% drone detection 

accuracy and 97.2% non-drone 
detection accuracy using the 

VGGish network with 

augmented audio data, 
simulating real-world 

conditions. 

Further explore data 

augmentation techniques to 

simulate varying detection 
distances and more real-

world environmental 

factors. 

 

The radar-based studies, particularly those utilizing millimeter-wave (mmWave) radars [63], highlight 

the advantages of radar systems in challenging environmental conditions. These systems can accurately detect 

smaller drones even at longer ranges and are unaffected by visual obstacles like fog or dust. Incorporating deep 

learning, such as LSTM networks, enables efficient processing and classification of radar signals, further 

enhancing detection accuracy. Nonetheless, many radar-based systems lack evaluations under complex real-

world scenarios, such as interference from birds or other small objects. It underscores the need for future 

research to include more diverse datasets and incorporate real-time performance measures to ensure these 

models can function effectively in operational environments. 

Acoustic-based detection models, as explored by Alaparthy et al. [75] and Yaacoub et al. [77], 

demonstrate the effectiveness of using sound as a distinguishing feature for drone detection. The use of deep 

learning models, such as CNNs and pre-trained audio neural networks, significantly improves the classification 

of drone sounds, even in noisy environments. These approaches are promising for situations where visual or 

RF-based methods may fail. However, challenges remain in distinguishing drone sounds from other airborne 

noises, like helicopters or birds, particularly in real-world environments with high ambient noise levels. Future 

studies should focus on enhancing the robustness of these models through better data augmentation techniques 

and the development of larger, more varied acoustic datasets that can improve detection accuracy in diverse 

settings. 

Table 10 highlights the advancements in optical and thermal infrared image-based drone detection, 

showcasing the contributions of various studies in this field. Optical detection, mainly through digital and 

thermal infrared cameras, is crucial for identifying and tracking drones. This approach leverages high-quality 

visual data, and the integration of machine learning and deep learning models, such as CNNs, YOLO, and 

SSD, enhances the performance of these systems. The studies cited, including Wastupranata & Munir (2021) 

[103], Cai et al. (2022) [97], and Aydin & Singha (2023) [104], demonstrate how models such as YOLOv4 

and YOLOv5 have evolved to improve accuracy in drone detection, even in complex environments. The 

datasets used in these studies, such as annotated RGB datasets, highlight the variety of data sources leveraged 

to train the models effectively, allowing them to differentiate between drones and other objects like birds or 

helicopters. 

 

Table 10. Review of Optical Drone Detection 

Paper Dataset 
Deep Learning 

Configurations 
Contribution Future Recommendation 

Wastupranata & 
Munir (2021) 

[103] 

RGB dataset 

(YouTube): 
drones, 

helicopters, kites, 

birds 

Pre-trained SSD 

models: SSD 

MobileNet v2, SSD 
ResNet50 

Demonstrated real-time drone 

detection on a web application 

using SSD MobileNet v2 with 
the best precision and recall 

Suggested incorporating 

weather and multi-target 

scenarios for a more robust 
evaluation 

Cai et al. (2022) 

[97]  

Custom dataset 
with four types of 

drones 

Modified YOLOv4 
with MobileNet 

backbone 

Developed a lightweight 

YOLOv4-MobileNet model 

with 93.14% mAP and 82 fps 
for real-time detection 

Recommended addressing 

drone-like object detection 

in harsh weather and low 
lighting conditions 

Aydin & Singha 

(2023) [104] 

Same dataset as 

Singha & Aydin 
(2021): 479 bird 

images, 1916 

drone images 

YOLOv5 fine-tuned 

on a custom dataset 

Achieved higher mAP, F1 

score, and recall compared to 

YOLOv4 for small drone 
detection 

Suggested improvements 

for inference speed and 

real-time detection 
efficiency 

Sun et al. (2023) 

[99] 

4625 images of 

drones at 
1920×1080 

YOLOv5 with optical 

flow and multi-frame 
input 

Improved detection of small 

drones with complex 

backgrounds, achieving 0.8687 
mAP while maintaining speed 

detection above 30 fps. 

Recommended including 
drone-like objects in the 

dataset to enhance model 

differentiation capabilities 
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Paper Dataset 
Deep Learning 

Configurations 
Contribution Future Recommendation 

Kim, Won (2023) 

[105] 

Drones and birds 

with various 

lighting (640x, 
1280x) 

Improved YOLOv8m 

with P2 Layer and 

Multi-Scale Image 
Fusion 

Balanced speed and accuracy, 

detecting small targets at 45.7 

fps (640-pixel) and 17.6 fps 
(1280-pixel) 

Future work could focus on 

optimizing model size and 

performance in different 
weather conditions. 

Wilson et al. 
(2023) [110] 

Self-generated 

thermal dataset 
(FLIR Lepton 

3.5) 

Custom CNN for 
multi-drone detection 

Achieved 99% accuracy in 

estimating the number of drones 
in thermal images, with real-

time capabilities 

Proposed expanding 

detection capabilities to 
outdoor and long-range 

environments 

Yuan et al. (2023) 

[111] 

4737 IR images 

of small drones 

Infrared Small Target 
Detection Module is 

added at the neck of 

YOLOv5, IRSDD-
YOLOv5, with 

aiming to enhance 

small target detection 

Improved semantic extraction 
for small infrared targets and 

achieved high accuracy across 

diverse environments. 

Recommended addressing 

multi-target scenarios and 
expanding dataset diversity 

Bentamou et al. 
(2023) [122] 

 

Drone Detection 

Dataset [112] 

YOLOv7 with ViT 

and customized CNNs 

Demonstrated robustness of 
drone detection under noisy 

conditions, with 94.26% mAP 

Recommended extending 

evaluation to extreme 

weather conditions, such as 
heavy rainfall 

Huang et al. 
(2024) [114] 

410 thermal 
infrared videos 

Custom framework 

with optimized 
YOLO for tracking 

drones 

Achieved 438k accurate 

bounding box detections in 
varied scenarios with over 50% 

targets under 50 pixels 

Suggested expanding 

model generalization across 
different drone types and 

weather conditions 

Kim & Hwang 
(2022) [42] 

Acoustic and 

image data for 

UAV detection 

GAN-based 

enhancement for 

drone detection 

Improved detection and 

classification of malicious 
drones using multimodal data 

sources 

Proposed further studies 
integrating multi-modal 

sensor fusion for improved 

detection in complex 
environments 

Zamri et al. (2024) 

[124] 

Small drone 

dataset with IR 

and visible 

images 

YOLOv8 with 

attention mechanisms 

Enhanced small drone detection 

using optimized YOLOv8, 

achieving high mAP and low 

latency 

Suggested extending 

research into real-world 
applications with multi-

target scenarios and 

adverse weather 

Andraši et al. 

(2017) [106] 

Thermal UAV 

images 

TIR detection model 

using CNNs 

Demonstrated night-time 

detection of UAVs using 

thermal infrared cameras, 
effective in low-visibility 

conditions 

Proposed integrating deep 
learning models to improve 

detection under cluttered 

thermal backgrounds 

Lin et al. (2023) 
[108] 

Small UAV 
infrared images 

YOLOv4-based TIR 
detection model 

Optimized detection of small 

UAV targets with TIR data, 

demonstrating higher precision 

Recommended extending 
work to real-time 

applications in harsh 

environments such as fog 
and dense forests 

 

The contributions of these previous studies reflect the rapid advancements in real-time drone detection 

capabilities, particularly through deep learning techniques such as YOLOv8 and SSD MobileNet, which 

achieve high precision and recall while maintaining efficiency in computational environments. However, 

several studies [102, 111] identify gaps in the current systems, such as difficulty detecting small targets in 

cluttered backgrounds and the challenges posed by adverse weather conditions like fog and rain. These 

limitations are evident in the datasets, many of which do not account for drone-like objects or environmental 

disturbances that affect detection accuracy. It highlights the need for more comprehensive datasets and models 

to adapt to these conditions. 

Future directions proposed by the analyzed studies emphasize the need for further research into multi-

target detection, adverse weather performance, and real-time applications in outdoor environments. For 

instance, integrating multi-modal sensor fusion to enhance detection accuracy in complex scenarios was 

suggested by [42], while expanding thermal infrared detection capabilities for longer-range targets was 

recommended by [110]. Additionally, the increasing popularity of lightweight models, such as YOLOv8, with 

attention mechanisms [124], suggests that future research should focus on optimizing model size and efficiency 

for deployment in real-world applications, where resource constraints may limit the use of larger models. It 

demonstrates the need to balance drone detection systems' accuracy, computational demands, and 

environmental adaptability. 

 

 

6. ADVANCES IN DRONE DETECTION TECHNIQUES 

Section 6 delves into recent advances in drone detection techniques, focusing on integrating multiple 

sensor types and applying deep learning models with attention mechanisms. Given the limitations of optical 
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and non-optical approaches in various challenging environments, sensor fusion has emerged as a powerful 

method to enhance the reliability and accuracy of detection systems. This section explores how combining data 

from multiple sensors, such as acoustic, radar, and thermal infrared sensors, with optical systems helps to 

address the complexities of detecting drones in adverse conditions, such as low visibility, noise, and cluttered 

environments. In addition, attention mechanisms integrated into deep learning models further refine detection 

performance by allowing the models to focus on the most relevant parts of the data. The combination of sensor 

fusion and attention-based deep learning is proving to be a robust solution in overcoming the challenges posed 

by dynamic and diverse environments, enhancing the overall efficacy of drone detection systems across 

different operational scenarios. 

 

6.1. Sensor Fusion 

As discussed in the previous subsection regarding the two types of approaches, optical and non-optical 

approaches, it is evident that each has its limitations in solving challenges in drone detection. Sensor fusion is 

another way that can be employed to increase the effectiveness of the detection system, especially under 

adverse conditions, by adopting several approaches at one time to complement one another. While this may 

increase the complexity of the process due to the different types of datasets that need to be managed, the 

method's reliability makes it an appealing option. As discussed in [5], two approaches can be divided: early 

sensor fusion, as shown in Figure 7(a), and late sensor fusion, as shown in Figure 7(b). Early sensor fusion 

involves combining data of various types from different sources to create one harmonized dataset to be 

processed by the model. Meanwhile, different datasets will be processed separately by different models to 

make predictions for the late sensor fusion approach. Then, fusion layers merge the prediction outputs from 

different models using combination techniques such as concatenation, averaging, weighting, or attention-based. 

To produce the final output, ensemble algorithms connected to fusion layers combine the predictions made 

from each model using several methods, such as boosting, stacking, or voting. 

 

 
Figure 7. Sensor Fusion Approaches 

 

Early and late sensor fusion each offer distinct advantages and drawbacks, making them suitable for 

different applications. Early sensor fusion combines data from multiple sensors into a single, unified dataset 

before processing, allowing for richer feature extraction by deep learning models. This approach can enhance 

performance in real-time applications by leveraging integrated data, making it particularly useful in complex 

environments. However, it comes with challenges, such as increased data management complexity and 

potential synchronization issues between heterogeneous sensor types, which can lead to higher computational 

costs. Additionally, if one sensor fails or underperforms, the overall dataset may suffer, diminishing system 

reliability. On the other hand, late sensor fusion processes data from each sensor independently and merges the 

results at the decision-making stage. This method allows for greater flexibility, as individual models can be 

optimized for specific sensor types, making it more resilient to sensor failures. Moreover, late fusion can better 

adapt to varying environmental conditions by allowing different sensors to specialize in specific tasks. 

However, it may introduce higher latency and often misses out on the deep data interaction that early fusion 

capitalizes on. Despite these drawbacks, late fusion is particularly beneficial for applications where sensor 

independence is crucial, as it minimizes the impact of errors from any single source. Ultimately, the choice 
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between early and late fusion depends on the application's specific needs, balancing performance, complexity, 

and flexibility. 

 

6.1.1. Acoustic and Visual Sensor Fusion 

In [125], the authors developed a hybrid drone detection system that combines acoustic and visible 

light image data to improve the accuracy and reliability of drone detection, particularly in noisy environments. 

The system utilizes MFCC to classify drone acoustic signatures, employing CNNs for feature extraction and 

classification. Simultaneously, YOLOv5 is implemented for image-based detection, extracting visual features 

and predicting the presence of drones. The system then merges the outputs from both the acoustic and optical 

detectors using a logical OR function, improving overall accuracy by leveraging the strengths of each approach. 

While the visual detection system alone achieved an accuracy of 90.26% and the acoustic detection system 

achieved 88.96%, the fusion of these two methods led to a combined accuracy of 92.53%. This hybrid approach 

demonstrates the potential of multi-sensor fusion in enhancing drone detection accuracy, reducing the 

likelihood of false positives or missed detections by compensating for the limitations of individual sensor 

modalities. Integrating acoustic and visual data proves effective in environments where either method might 

struggle alone, such as in low-visibility conditions or ambient noise, highlighting the benefits of multi-modal 

fusion in improving system robustness. 

 

6.1.2. Radar and Visual Sensor Fusion 

A system utilizing a fusion of radar and visual detection methods was proposed by [126] to enhance 

drone detection accuracy. Initially, the radar-based detection operates using 3D K-band radar, with signals 

received by an antenna and processed using a CNN that analyzes Short-Time Fourier Transform (STFT) 

spectrograms. The system switches to visual detection when radar detection does not classify an object. For 

the visual detection network, ResNet-50 is employed to extract image features and classify the object. These 

two approaches work sequentially rather than concurrently. To validate this model's effectiveness, the authors 

compared it with existing studies, including [127-131]. While methods in [130] and [128] achieved higher 

accuracy at 97% and 98.70%, respectively. The proposed system achieved 71.43%, which was still deemed 

satisfactory. Notably, the datasets in previous studies did not include birds, which was a crucial challenge in 

this study. 3D K-band radar effectively extended the detection range and enabled the model to detect birds and 

drones. However, the accuracy, precision, recall, and F1 scores analysis revealed that visual detection 

outperformed radar in several scenarios, particularly when radar faced challenges detecting objects at long 

distances or in noisy environments. It underscores the value of combining both methods, as each compensates 

for the other's weaknesses. However, the dataset did not include varied environmental conditions, limiting the 

results' generalizability. 

A real-time drone detection system was proposed by [132] that leverages radar and camera fusion to 

address challenges in detecting small drones at long distances and in adverse weather conditions. The dataset 

includes long-range data (up to 1.2 km) on drones, birds, and other objects like humans and vehicles. Radar 

detection manages time-series data with an algorithm [133] integrating target kinematics and tracking features. 

For visual detection, YOLOv5 was utilized to extract image features [134]. The radar and visual outputs are 

fused using a fully connected layer to generate combined features. Results demonstrated that the two 

approaches complement each other: when radar scores are low, the visual approach enhances classification 

accuracy, particularly in complex backgrounds and dynamic environments. It highlights the advantages of 

sensor fusion, where one sensor compensates for the weaknesses of the other, making the system more robust 

and versatile across different scenarios. 

 

6.1.3. Radio Frequency and Visual Sensor Fusion 

A novel sensor fusion approach combining Radio Frequency (RF) data and visual images was 

introduced by [135] to enhance real-time drone detection. The system leverages dual cameras and an RF 

analyzer to detect and classify drones by processing data from both sources. RF data was sourced from [50], 

while images were separately captured to build a fused dataset. Each visual image is paired with its 

corresponding RF signal, and the images are converted to greyscale to reduce processing complexity. The fused 

data is processed by two artificial neural networks (ANNs) for high and low bands of RF data, while a 

convolutional neural network (CNN) processes the images. A deep neural network combines the RF and visual 

data to produce a final classification. The model demonstrated excellent performance, especially compared to 

[52], which used a single sensor. The fusion system effectively handled multi-target scenarios and accurately 

distinguished between drones and helicopters with high confidence. 

However, this fusion of RF and visual data introduces significant complexity due to the need to 

simultaneously process two distinct data types. The large dataset and the integration of multiple data streams 

require substantial computational infrastructure, particularly powerful GPUs, to maintain smooth real-time 
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detection. The model's performance highlights the effectiveness of sensor fusion in multi-target environments, 

as it addresses limitations inherent in single-sensor systems. Nevertheless, the increased complexity raises 

concerns about scalability and the feasibility of deploying such systems in resource-constrained environments. 

Further research could explore optimization techniques to reduce computational demands or alternative 

methods of fusion that streamline processing without sacrificing accuracy. Additionally, testing the model 

under varied environmental conditions would provide insights into its robustness and generalizability, 

particularly in challenging scenarios such as adverse weather or complex urban environments. 

 

6.1.4. Multisensory Fusion Using Thermal Infrared, Visual, and Acoustic Approaches 

A comprehensive multisensory fusion system combining thermal infrared (TIR), visible light cameras 

(VCAM), and acoustic sensors was proposed by [78] to improve drone detection and classification accuracy. 

Instead of relying on a simple OR function for decision-making, this system assigns varying weights to each 

sensor based on their reliability. The dataset from [112] was used for training, containing diverse objects such 

as drones, birds, airplanes, and helicopters. YOLOv2 was employed to process and classify images captured 

by IRCAM and VCAM. At the same time, MFCCs were extracted from the acoustic data and classified using 

an LSTM network. 

The performance of each sensor was evaluated under different scenarios, including short, medium, 

and long-distance detection. Results indicated that the TIR sensor (IRCAM) excelled at close-range detection. 

At the same time, the VCAM was more effective for longer distances due to its ability to capture richer object 

detail and shape. However, IRCAM struggled with certain elements, such as clouds, while the VCAM had 

issues with autofocus when multiple objects appeared in the frame. The acoustic sensor, evaluated based on 

overall F1-score rather than distance, outperformed IRCAM and VCAM, demonstrating a higher reliability in 

object detection. This sensor fusion approach significantly minimized false positives, achieving a drone 

classification accuracy rate of 78%, a notable improvement over the VCAM-only system's 67%. It 

demonstrates the power of sensor fusion in overcoming individual sensor limitations, particularly in diverse 

and challenging environments. Nevertheless, the system's complexity raises concerns about real-time 

processing and operational costs, which could be explored further to determine scalability and applicability in 

broader, real-world scenarios. 

 

6.1.5. Radio Frequency and Acoustic Sensor Fusion 

A fusion system combining radio frequency (RF) and acoustic sensors was proposed by [136] to 

enhance drone detection, particularly under noisy conditions with low signal-to-noise ratio (SNR). This system 

leverages the XBee Self-Built RF dataset [137], the DroneRF dataset [52], and the Drone Audio dataset [138], 

which contain diverse drone types, operating modes, and various noise conditions. Data preparation involved 

extracting key features such as Power Spectral Density (PSD), Short-Time Fourier Transform (STFT), MFCC, 

and Wavelet Packet Decomposition (WPD) from both the RF and audio datasets. These features were fused 

using an RNN-based method with LSTM layers, effectively integrating the temporal dynamics of both RF and 

audio signals. 

Deep learning techniques, including CNN, RNN, LSTM, and SVM, were employed to enhance 

classification performance. Among them, the proposed fusion RNN-based model demonstrated superior 

accuracy, outperforming previous studies by an 8% improvement. This gain in accuracy is particularly 

significant in noisy environments, showcasing the robustness of the fusion approach in mitigating the effects 

of low SNR. This method highlights the strength of using sensor fusion to improve noise immunity. While 

individual RF or acoustic sensors may struggle with signal interference, their combined use enhances reliability 

and performance in real-time applications. However, the complexity of integrating features from distinct 

datasets and the computational load of deep learning models like LSTM and CNN pose challenges for real-

time deployment. 

 

 

 

6.2. Enhancing Drone Detection with Deep Learning Attention Mechanisms 

Integrating attention mechanisms into deep learning models has become a powerful tool for enhancing 

drone detection systems. Drawing from the human brain's ability to selectively focus on relevant stimuli while 

ignoring distractions, attention mechanisms in neural networks similarly allow models to concentrate on the 

most essential features of the input data. In complex environments with noisy backgrounds, this selective focus 

enables the model to efficiently capture the essential structures, reducing the complexity of processing all the 

input simultaneously. Attention modules adaptively assign weights to different parts of the input data based on 

their relevance. It allows the model to prioritize critical features such as edges, textures, or spatial patterns 

crucial for accurate drone detection [139, 140]. 
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Different attention mechanisms—such as SENet [141], CBAM [142], GAM [143], ECA [144], SA 

[145], and self-attention, commonly used in transformer architectures [146]—focus on various aspects of the 

input. These mechanisms can be categorized into four primary types: channel attention, which determines 

"what" to focus on; spatial attention, which identifies "where" to focus; temporal attention, which decides 

"when" to focus; and branch attention, which determines "which" part of the network to emphasize. Hybrid 

approaches combining two or more attention types can further improve performance. This flexibility in 

attention mechanisms makes them highly versatile and applicable across different neural network architectures 

and problem domains. The growing body of research confirms that attention mechanisms significantly improve 

drone detection models' precision, recall, and robustness by enabling them to filter out irrelevant information 

and focus on the key features distinguishing drones from other objects. 

The core idea behind attention mechanisms is to compute a weighted sum of input features, where the 

weights are determined by a compatibility function that measures the relevance of each feature to the task at 

hand. Mathematically, this can be expressed as: 

  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉     (24) 

where 𝑄 is the query matrix derived from the input, 𝐾 is the key matrix, also derived from the input, 𝑉 is the 

value matrix, which represents the input features and 𝑑𝑘 is the dimensionality of the key vectors. 

The attention mechanism first calculates the dot product between the query and key matrices, then 

scales it by √𝑑𝑘, and applies a softmax function to normalize the result. It produces a set of attention weights 

to compute a weighted sum of the value matrix  𝑉. This process allows the model to dynamically focus on 

different parts of the input data based on their relevance to the task, improving its ability to detect and classify 

drones amidst complex environments. By incorporating such attention mechanisms, drone detection models 

can achieve higher accuracy, particularly in challenging scenarios where the distinction between drones and 

other objects (such as birds or background noise) is subtle and requires more nuanced analysis. 

 

6.2.1. Enhancing RF-Based Drone Detection with Multi-Dimensional Attention Mechanisms 

In RF-based drone detection, attention mechanisms have proven effective in improving model 

performance, particularly in complex electromagnetic environments. A notable example is implementing a 

Temporal-Channel-Spatial Joint Attention (TCSJA) module in the Spiking-EfficientNet architecture, as 

proposed by [147]. This attention-enhanced model replaces the traditional SE attention module in the MB-

Conv blocks with a more sophisticated TCSJA module that combines three distinct attention mechanisms to 

address different dimensions of input data. Temporal attention focuses on important time steps using Global 

Average Pooling (GAP) to aggregate features over time, followed by Multi-Layer Perceptron (MLP) operations 

for weight assignments. Channel attention similarly uses MLP and squeeze-and-excitation to process features 

across channels at each time step. Spatial attention, inspired by the BAM mechanism, employs dilated 

convolutions to capture contextual information from the spatial layout of the RF signals. These combined 

modules enable the model to selectively focus on relevant features across time, channels, and spatial 

dimensions, enhancing its ability to classify drone signals accurately. 

To evaluate the performance of this attention-enhanced model, datasets such as ZK_RF and 

DroneDetectV2 [148] were used, featuring RF signals from various drone types and interference sources like 

WiFi and Bluetooth. The attention-enhanced Spiking-EfficientNet was compared to models such as VGG11 

[149], ResNet18 [150], and MobileNetV2 [151]. Results showed that the TCSJA module significantly 

improved classification accuracy while maintaining low energy consumption, a critical factor for SNN models 

prioritizing energy efficiency. This process makes the model ideal for high accuracy and low power 

consumption applications. The introduction of TCSJA offers several advantages, including enhanced 

adaptability to varying electromagnetic conditions and better detection rates in noisy environments. However, 

the complexity of the model also introduces challenges, such as increased computational load and potential 

overfitting in cases where the input data is less diverse. Additionally, while the model excels in controlled 

environments, its robustness in highly dynamic real-world scenarios requires further validation. The TCSJA-

enhanced Spiking-EfficientNet is a promising direction for energy-efficient, high-accuracy RF-based drone 

detection. 

 

6.2.2. Attention-Enhanced Radar-Based Drone Detection 

In radar-based drone detection, attention mechanisms have been instrumental in improving the 

precision of distinguishing between drones and other objects, such as birds. In the network proposed by [152], 

channel and spatial attention modules are integrated into 1D-CNNs to allocate attention dynamically based on 

the characteristics of the input radar signals. These attention modules allow the model to focus on relevant 

features by computing weights, which helps filter out background noise and enhance the classification of drone 
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signals. The model's core consists of Multi-Frequency Multi-Scale Deformable Convolutional (MFMSDC) 

Networks, which extract features at various frequencies and scales, a key factor in differentiating drones from 

birds—drones emit higher frequency signals while birds emit lower frequencies. Additionally, transition layers, 

equipped with attention modules, bridge the feature extraction process and further refine the output. Slow-time 

radar signals were collected and used as input to test the model, demonstrating significant improvements in 

accuracy, recall, and F1 scores when attention mechanisms were applied at the transition layers. These results 

highlight the attention mechanism’s role in optimizing feature extraction, ensuring that the model better 

distinguishes between drones and background elements, particularly in noisy environments. 

Another example is the YOLOv4-tiny-based model proposed by [153], which incorporates a hybrid 

attention mechanism, CBAM, combining channel and spatial attention. The CBAM was applied to radar data 

transformed into R-D spectrograms to enhance detection accuracy, particularly for small and fast-moving 

objects like drones [154]. Experiments with different attention mechanisms, including SE [141] and CA [155], 

showed that CBAM produced the highest mAP, demonstrating its effectiveness. However, the increased model 

size resulted in slightly reduced frames per second (fps), showing a trade-off between accuracy and speed. 

Attention mechanisms have improved detection accuracy across various radar-based models. However, the 

challenge lies in balancing accuracy gains with computational complexity, as adding attention layers can 

increase the model's size and reduce inference speed.  

 

6.2.3. Attention-Enhanced Acoustic-Based Drone Detection 

In acoustic-based drone detection, the Wavelet Packet Transform (WPT) was employed by [156] to 

address the challenge of detecting drones in environments with low signal-to-noise ratios (SNR). WPT enables 

the analysis of audio data at multiple resolutions, allowing the capture of both high- and low-frequency 

components in the signal. This zoomed-in feature extraction process provides detailed monitoring of specific 

signal parts, improving the model's ability to detect drone-specific acoustic signatures. A 1D-CNN was then 

utilized to extract relevant signal features, while a CNN detected patterns associated with drone sounds. A 

transformer model incorporating self-attention mechanisms was applied to enhance detection accuracy further. 

The self-attention mechanism selectively increases the weight of important features. It decreases the weight of 

irrelevant parts, allowing the model to focus more effectively on the acoustic signatures that correspond to 

drones. 

The attention mechanism is critical in understanding and processing complex audio signals, 

particularly those with high sample rates. It enables the model to capture long-range dependencies in the audio 

data that might be missed by traditional convolutional layers, leading to improved performance. Comparing 

models with and without attention layers showed that including attention mechanisms significantly enhanced 

performance metrics such as mAP, precision, recall, and F1 score. However, an excessive number of stacked 

attention layers can harm performance, possibly because 1D-CNNs already capture many local features that 

do not require extensive attention processing. Overfitting due to redundant attention layers could also reduce 

the model's ability to generalize new data. While attention mechanisms offer substantial improvements in 

acoustic drone detection, their implementation requires careful tuning. Excessive stacking of attention layers 

may lead to diminishing returns and increased computational cost. 

 

6.2.4. Attention-Based Visual Drone Detection 

In the visible light image detection domain for drones, several advancements have been achieved by 

incorporating attention mechanisms into deep learning models. One significant enhancement was the 

integration of a Global Attention Mechanism (GAM) at the neck of the YOLOv8 architecture [89]. This 

attention mechanism improves the feature fusion process by focusing on critical parts of the image while 

minimizing information loss. A high-resolution detection head was also incorporated to enhance small target 

detection while reducing the model's parameters to boost speed. Using multi-scale feature extraction through 

SPD-Conv, rather than traditional convolutional layers, further refines the model’s ability to capture essential 

features. Experiments on the TIB-Net dataset [102], which contains images of drones in various environmental 

conditions, demonstrated slight but meaningful improvements in precision, recall, and mAP, especially in 

scenarios involving multi-targets, blurry images, and small objects. However, this approach led to an increase 

in model size, which caused a slight reduction in frame rates (fps) but remained within acceptable limits for 

real-time applications. 

Another approach employed spatial attention within the Tiny Iterative Backbone Network (TIB-Net), 

which helped filter out the noise and focus on small object localization [102]. This method enhanced the 

model's performance in detecting drones in complex environments, such as poor lighting or cluttered 

backgrounds. However, despite its effectiveness in improving the mAP by 1.4%, the added model complexity 

introduced delays in processing time, making it slower for real-time use. A similar observation was made in 

TGC-YOLOv5 [157], where GAM and a coordinate attention mechanism (CAM) were utilized. These 
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mechanisms enhanced the detection of small targets by capturing richer semantic features and improving global 

feature interactions, particularly under challenging conditions such as fog or low light. Despite its success, the 

absence of drone-like objects in the dataset limited the model's ability to differentiate between similar objects. 

Finally, an optimized YOLOv8n model, integrated with the ResCBAM attention mechanism, was 

designed to enhance the detection of small drones and birds [124] using the BirDrone dataset [158]. This 

optimization added an extra detection head to refine small object detection. Though this modification improved 

accuracy by 2.3% over baseline models, the increased model complexity led to decreased fps. Despite this 

drawback, the optimized model remained suitable for real-time detection, making it a promising approach for 

applications requiring the identification of small flying objects. While attention mechanisms can significantly 

improve detection accuracy, carefully balancing model complexity and real-time performance is crucial to 

ensure optimal deployment in practical scenarios. 

 

6.2.5. Attention-Enhanced Thermal Infrared Image Drone Detection 

In response to the challenges of detecting dim and small drones in thermal infrared imagery, [159] 

introduced an innovative approach with a modified RetinaNet model called A-RetinaNet. To enhance target 

texture features, the model incorporates a Super-Resolution Texture Enhancement (SRTE) module, which pre-

processes images to improve their clarity before entering the network’s backbone. An Asymmetric Attention 

Fusion Mechanism (AAFM) was deployed to refine detection accuracy further. This fusion mechanism 

integrates three attention modules—Pixel-by-Pixel Spatial Attention (PAM), Global-Channel Attention 

(GAM), and Effective Channel Attention (ECA)—to enable a bi-directional flow of rich contextual information 

between high- and low-level feature maps. This structure ensures that detailed features from high-resolution 

maps are effectively communicated to lower layers, enhancing the model’s ability to detect even small and 

hard-to-see drones. 

The A-RetinaNet replaces fully connected layers with Global Average Pooling (GAP), which reduces 

the number of parameters and increases efficiency without sacrificing accuracy. To address challenges in 

anchor box selection, the model utilizes the K-means algorithm to generate adaptive anchor boxes, significantly 

boosting the recall rate. The dataset used in testing this model contains drone images of varying sizes, from 

small to medium, against backgrounds such as sky and ground, making it a diverse and challenging benchmark. 

The ablation studies revealed a 1.33% improvement in mAP after integrating AAFM, and GAP further 

contributed a 0.36% boost in accuracy. The SRTE module significantly enhanced image quality, achieving a 

1.33% accuracy gain. The adaptive anchor box generation also yielded substantial gains, increasing the average 

precision by 12.89%. Overall, the A-RetinaNet achieved an impressive 95.43% average precision and an 80.6% 

recall, outperforming standard RetinaNet by 16.32%. However, a notable drawback is the decrease in frames 

per second (fps) caused by the increased model complexity. Nevertheless, the balance between detection 

accuracy and processing speed makes this model suitable for real-time applications, particularly in complex 

thermal environments where small drone detection is critical. This solution illustrates the power of attention 

mechanisms in thermal infrared image processing. Despite the trade-off in speed, the performance gains in 

precision and recall reflect the significant potential of attention-based methods for drone detection in 

challenging scenarios. However, the decreased fps suggests that further optimization is needed to ensure 

practical real-time deployment, especially in scenarios requiring high-speed processing. 

 

6.3. Review Summary of Advances in Drone Detection Techniques 

Table 11 provides a comprehensive overview of the latest advances in drone detection techniques, 

highlighting the various datasets used, advanced methodologies employed, the contributions of each study, and 

recommendations for future work. This detailed summary offers insights into the effectiveness of different 

approaches, such as attention mechanisms, sensor fusion, and deep learning, across various modalities, 

including radar, radio frequency, visual, thermal, and acoustic data. The review of recent advancements in 

drone detection techniques shows that integrating attention mechanisms has significantly improved the 

performance of models across multiple sensing modalities. For instance, the use of multi-dimensional attention 

in RF-based detection [148]  and the CBAM attention mechanism [124] demonstrate the power of attention 

modules in enhancing classification accuracy while mitigating background noise and irrelevant features. These 

methods prioritize the most salient information, leading to more efficient drone detection in complex 

environments. Similarly, self-attention mechanisms in acoustic-based detection [156] help models better 

capture long-range dependencies within audio signals, ensuring improved recognition even in low-SNR 

conditions. 

 

 

Table 11. Review of Advanced Techniques in Drone Detection 
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Paper Dataset 
Advanced Techniques 

Used 
Contribution Future Recommendation 

Si et al. (2024) 
[147]  

ZK_RF, 

DroneDetectV2 

[148] 

Spiking-EfficientNet 

based on Spiking 

Neural Networks 
(SNNs) with Temporal-

Channel-Spatial Joint 

Attention (TCSJA) 

Introduced multi-dimensional 

attention for RF signal 
processing; achieved the 

highest accuracy with the 

lowest energy consumption and 
without increasing the 

computational cost. 

Further optimization for 

dynamic environmental 

conditions and interference 

Liang et al. 

(2024) [152] 

Slow-time Radar 

Signals 

Channel and Spatial 

Attention in 1D-CNN 

Improved classification of 
drones vs. birds in noisy radar 

environments; enhanced 

feature extraction 

Explore more robust 
datasets and real-world 

scenarios for radar 

detection. 

Liang et al. 
(2023) [153] 

Radar Echo Data 
[154] 

CBAM Attention 

Mechanism in 

YOLOv4-tiny.  

Achieved high mAP with 

lightweight and compact 

architecture for radar detection 

Focus on increasing fps for 
real-time applications. 

Dong et al. 

(2023) [156] 
Audio Dataset 

Wavelet Packet 

Transform (WPT), 1-

DCNN, and 
Transformer with Self-

Attention 

Improved overall result in 
mAP, precision, and recall of 

drone detection from audio 

data in low-SNR environments 

Incorporate environmental 

noise variations in future 
experiments. 

Zhao et al., 

2023 [157] 

SUAV-DATA, self-

build dataset 

Transformer Encoder 
Module, Global 

Attention Mechanism 
(GAM), and Coordinate 

Attention (CA) 

Enhanced detection of small 

drones across various weather 
conditions 

Test on drone-like objects 

to improve reliability 

Xu et al. (2023) 

[159] 

Public Infrared 

Drone Dataset 

A-RetinaNet with 
Asymmetric Attention 

Fusion Mechanism 

(AAFM) and Super-
Resolution Texture 

Enhancement (SRTE) 

module. 

Achieved high precision and 
recall in detecting dim and 

small drones in thermal 

infrared images 

Further reduce fps loss for 

real-time deployment. 

Zamri et al. 

(2024) [124] 

BirDrone Dataset 

[158] 

ResCBAM Attention in 

YOLOv8n and 

additional detection 
head. 

Improved accuracy in 
distinguishing between small 

drones and birds 

Address fps reduction in 

complex environments 

Svanström et 
al. (2020) [78] 

IRCAM, VCAM, 

and Audio Sensor 

Dataset 

Thermal, Visible Light, 

and Acoustic Fusion 
with Weighted 

Decision-Making 

Minimized false alarms and 
enhanced drone classification 

Explore more sophisticated 

fusion techniques for 

diverse sensor types 

 

Despite these advancements, challenges remain in optimizing models for real-time performance. 

Many studies [124, 153] emphasize the trade-off between accuracy and processing speed. As drone detection 

systems become more sophisticated with the addition of attention mechanisms, the computational complexity 

often increases, potentially hindering their application in real-time scenarios. This limitation calls for future 

research to focus on lightweight architectures that can balance performance and efficiency, ensuring that 

systems are accurate and responsive. Furthermore, while multi-sensor fusion techniques have proven effective, 

such as in [78], there is still a need for more robust methods capable of handling diverse environmental 

conditions. The current datasets often lack the variability to stress-test models across different weather, 

lighting, and background scenarios. Expanding the scope of datasets and developing adaptive fusion techniques 

could lead to more resilient drone detection systems, particularly in real-world, unpredictable environments. 

 

 

7. CHALLENGES 

The proliferation of drones in a variety of sectors has emphasized the existence of numerous obstacles in 

the development of detection systems that are both efficient and robust. This section critically evaluates the 

primary obstacles in drone detection, analyzing the underlying challenges and suggesting potential solutions. 

 

7.1. Real-Time Detection 

One of the most urgent obstacles in drone detection is the guarantee of real-time performance. Real-

time detection is essential for effectively mitigating potential drone threats, particularly in high-risk and 

dynamic environments such as airports, military zones, and densely populated urban areas. Nevertheless, the 

variability in drone size, speed, and movement patterns substantially complicate the real-time detection 

process. Each drone requires a distinct processing and detection capability, ranging from small, fast-moving 

devices to larger, slower ones. Optimizing models for computational efficiency without compromising 

accuracy is necessary to alleviate this issue. For instance, lightweight deep learning models, such as 

architectures based on MobileNet, can significantly improve processing speed. Furthermore, real-time 
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demands can be satisfied by incorporating hardware acceleration, such as GPUs, or specialized hardware, such 

as FPGAs. The optimization of algorithms that can maintain robustness across a variety of drone types while 

balancing detection speed and accuracy should be the primary focus of future research. 

 

7.2. Environmental Interference 

Background noise, weather conditions (rain, fog, snow), and lighting are all environmental factors 

that can significantly affect the precision of drone detection systems. For example, radar and RF-based systems 

are susceptible to interference from other electronic devices, while optical systems frequently encounter 

difficulties in low-light conditions. Detecting small drones in adverse weather conditions continues to be a 

critical concern. Sensor fusion solutions, which combine multiple detection systems (e.g., optical, thermal 

infrared, radar), present promising opportunities for addressing environmental challenges. Nevertheless, sensor 

fusion introduces its level of complexity, necessitating the use of advanced integration techniques and a 

corresponding increase in computational resources. Additionally, environmental disturbances may necessitate 

the investigation of sophisticated noise-filtering methodologies, including adaptive filtering and machine 

learning-based denoising. 

 

7.3. Differentiation from Drone-Like Objects 

Distinguishing drones from other aerial objects, such as birds or aircraft, presents a substantial 

obstacle in drone detection. This is especially challenging in optical-based methods, as drones may appear as 

small, indistinct objects. Misidentification can result in many false positives, undermining trust in the detection 

system and necessitating unnecessary security responses. Training machine learning models on extensive and 

diverse datasets encompassing drone images and drone-like objects enhances their ability to distinguish 

between them. It is possible to enhance the accuracy of differentiation by incorporating contextual information 

beyond visual cues, such as acoustic signatures or motion patterns. Additionally, integrating attention 

mechanisms into deep learning models can assist the system in concentrating on the most distinctive 

characteristics of drones, thereby decreasing the probability of misidentifications. 

 

7.4. Range and Altitude Limitations 

Drones can operate at various altitudes, and detection systems frequently encounter challenges when 

drones are too high or too distant from the sensor. Drones are more challenging to detect at longer distances 

due to their smaller size, which renders visual detection systems particularly restricted in terms of range. 

Similarly, signal attenuation over extended distances challenges radar and acoustic-based detection systems. 

Improved feature extraction techniques, such as deep learning-based super-resolution, and the implementation 

of high-sensitivity sensors could potentially improve detection capabilities at extended distances. Future 

advancements should also be investigated using advanced radar technologies, such as millimeter-wave radars, 

which provide superior resolution and range for detecting small aerial objects at considerable distances. 

 

7.5. Data Scarcity and Model Generalization 

Another significant challenge is the scarcity of high-quality training datasets, particularly for drone 

behaviors and diverse environmental conditions. To achieve high accuracy, deep learning models typically 

necessitate extensive labeled datasets. However, collecting real-world data under various conditions (e.g., 

adverse weather and multiple drone types) can be time-consuming and expensive. One potential resolution to 

this problem is the utilization of Generative Adversarial Networks to produce synthetic datasets that closely 

resemble real-world scenarios. Synthetic data has the potential to bridge the gaps in training datasets, thereby 

facilitating the generalization of models to previously unobserved environments. Nevertheless, it is imperative 

to exercise caution to guarantee that synthetic data accurately represents the intricacies of the real world. 

 

7.6. Sensor Fusion and Computational Complexity 

Although sensor fusion presents a promising solution to numerous challenges, it also introduces 

substantial computational complexity. Sophisticated processing techniques are necessary to synthesize data 

from various sensors, including radars, cameras, and acoustic detectors. Although late sensor fusion can 

enhance detection accuracy by allowing each sensor to process data independently before combining it at a 

later stage, it also increases the computational burden. Early sensor fusion, which involves combining and 

processing sensor data as a single input, is computationally simpler but more challenging to implement. It is 

imperative to resolve this trade-off to create cost-effective drone detection systems that can effectively manage 

real-time threats. 

 

7.7. Integration of IoT and 5G in Drone Detection Systems 
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Integrating 5G networks and Internet of Things (IoT) infrastructure into drone detection systems is a 

substantial technological advancement that addresses numerous challenges encountered in current detection 

systems. The Internet of Things (IoT) facilitates the deployment of interconnected sensors across vast areas, 

thereby ensuring real-time detection with comprehensive coverage. Utilizing edge devices enables the 

decentralization of data processing, thereby enhancing the system's responsiveness and reducing latency. The 

interconnectedness of IoT also enables the continuous integration of new sensors without the need for 

substantial reconfiguration, rendering it highly adaptable to the expansion of applications such as autonomous 

drone operations and smart cities. 

Introducing 5G networks further enhances drone detection systems by enabling high-bandwidth data 

transmission and ultra-low latency. These capabilities enable fluidly managing substantial quantities of high-

quality data, including radar signals and high-resolution video, without bottlenecks. In high-risk environments, 

the low latency of 5G networks is particularly advantageous, as it facilitates rapid response times for threat 

mitigation. 5G's dependability guarantees uninterrupted operation in dense, urban environments with high 

network traffic, essential for preserving drone detection's accuracy and efficacy. 

Although the integration of 5G and IoT presents many benefits, there are still obstacles to overcome, 

including network security, high deployment costs, and standardization. Establishing a large-scale IoT network 

and 5G infrastructure can be prohibitively expensive, particularly for smaller applications. Furthermore, IoT 

networks are susceptible to cyberattacks, necessitating consistent software updates and secure communication. 

It will also be essential to ensure these technologies' interoperability and seamless integration by standardizing 

protocols and communication frameworks across various systems. Future research should concentrate on 

overcoming these obstacles while simultaneously improving the security, efficiency, and scalability of drone 

detection systems powered by 5G and IoT. 

Drone detection systems encounter numerous critical obstacles, such as the differentiation of drones 

from other objects, data scarcity, real-time processing requirements, and environmental interference. Deep 

learning and sensor fusion have demonstrated potential to address these challenges; however, they introduce 

system scalability and computational efficiency complexities. Innovative technologies like 5G and IoT present 

opportunities to improve these systems' scalability and real-time capabilities. However, they also introduce 

new standardization, security, and deployment cost challenges. Future research should concentrate on 

optimizing these technologies and developing drone detection systems that are more adaptable, efficient, 

robust, and capable of operating in complex environments. 

 

 

8. CONCLUSION 

This paper comprehensively examines drone detection systems that employ deep learning techniques, 

emphasizing the substantial modifications between 2020 and 2024. As drones' utilization in various sectors 

continues to expand, so do the associated security risks, such as privacy infringements, airspace violations, and 

illicit acts. The importance of detection systems that are both precise and dependable has never been greater. 

This review critically analyzed the primary obstacles to drone detection, including the absence of diverse and 

extensive datasets, sensor limitations, and environmental interference. We identified each approach's strengths 

and weaknesses by evaluating optical and non-optical methods, including radar, radio frequency (RF), acoustic 

detection methods, and visible and thermal imaging techniques. The primary contribution of this paper is the 

comprehensive examination of sensor fusion techniques and the integration of attention mechanisms into deep 

learning models, which have the potential to improve detection accuracy significantly. Attention mechanisms 

assist models in concentrating on the most pertinent features of the input data, thereby enhancing performance. 

At the same time, sensor fusion, in particular, mitigates the deficiencies of individual sensors by integrating 

complementary data sources. Furthermore, integrating emerging technologies, including the Internet of Things 

(IoT) infrastructure and 5G networks, is a promising approach to developing real-time, scalable, resilient drone 

detection systems. This paper urges the continuation of research to address the current challenges by improving 

sensor fusion methods, integrating synthetic datasets generated by GANs to improve training, and advancing 

the integration of IoT and 5G technologies. These developments will be essential in creating drone detection 

systems that are more dependable and durable, capable of reducing the increasing security risks associated with 

drones in a variety of applications. 
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