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 Dental caries is a common oral health condition that requires early diagnosis 

and identification for effective intervention. Existing deep models, such as 
Faster R-CNN, YOLOv3, SSD, or RetinaNet, exhibit great effectiveness in 

generic medical imaging; however, they struggle to precisely and explicitly 

handle localization in complex dental radiographs. In this paper, we propose 

DCDNet, a convolutional neural network architecture specifically designed for 
the detection and segmentation of dental caries in oral X-ray images. However, 

such deep learning methods currently lack strong generalization due to 

imbalanced training data, limited lesion-localization ability, and non-

interpretable features, which hamper their utility for large-scale clinical 

evaluation. In addition, most models overlook the severity distinction between 

classes, which is less ideal for the entire diagnosis and treatment planning 

process. DCDNet was trained and tested on the UFBA UESC Dental Image 

Dataset, which comprises over 1,500 labeled grayscale dental radiographic 
images. The proposed network incorporates multiscale feature extraction, 

residual connections, and non-maximum suppression (NMS) for more 

accurate classification and bounding box prediction. Data augmentation 

techniques were used to increase generalization. The model was evaluated 
based on accuracy, precision, recall, and F1-score, and compared with ResNet-

50, VGG16, AlexNet, Faster R-CNN, YOLOv3, SSD, and RetinaNet in terms 

of accuracy. DCDNet achieved excellent performance in all its performance 

indices, with precision at 97.23%, recall at 97.02%, F1-score at 97.12%, and 
overall accuracy at 97.61%. Experiments demonstrate that the proposed 

DCDNet surpasses all the baselines and state-of-the-art methods by a 

significant margin. Ablation experiments validated the importance of residual 

connections, NMS, and data augmentation for performance improvement. 
DCDNet represents a significant step toward automatic dental diagnosis, 

having successfully detected and localized carious lesions in X-ray images. Its 

design overcomes the drawbacks of previous models and is a ready option for 

integration into clinical routine. 
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1. INTRODUCTION 

Early identification is imperative for the successful treatment of dental caries and the prevention of 

complications, as dental caries remains one of the most common oral diseases. Accurate detection of caries 
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from radiographic images is a crucial task in clinical diagnostics, where recent advances in deep learning have 

shown promise for automating this process. Traditional machine learning feature engineering approaches that 

required hand-crafting resulted in sub-par performances due to the limited feature extraction capabilities. 

Recent deep learning architectures, including Faster R-CNN, YOLOv3, SSD, and RetinaNet, have significantly 

advanced the image diagnosis of medical data. Nonetheless, the models are still limited by their ability to 

balance accuracy with localization methods. These situations are often encountered in medical imaging tasks, 

where the subtlety of the discovered patterns must be ascertained with utmost confidence. 

There is a limitation in the ability of typical learning architectures to handle most challenging dental 

radiographs: A detailed literature review. Although Faster R-CNN is suitable for general object detection, it 

falls short in dealing with unnecessary region proposals or localization errors in fine-grained activities, such as 

detecting dental caries. While these models are fast, YOLOv3 and SSD struggle with smaller lesion regions 

due to their limited multi-scale feature representation, resulting in missed detection accomplishments. Other 

object detectors, like RetinaNet, aim to address the class imbalance problem by introducing focal loss to train 

the detector; however, they still encounter overlapping bounding boxes and weak generalization across 

different datasets. These constraints underscore the requirement for a more focused deep learning approach for 

dental radiographic analysis. 

To this end, this paper presents DCDNet, a novel deep learning-based framework for detecting dental 

caries, utilizing the UFBA UESC Dental Image Dataset. The primary research objective is to develop a robust 

model that can accurately classify caries images and precisely localize caries areas within dental X-ray images. 

The proposed DCDNet architecture is characterized by several innovative elements: multi-scale feature 

extraction enhances lesion detection for varying sizes, residual connections optimize gradient propagation and 

feature retention, and the implementation of non-maximum suppression (NMS) suppresses duplicate bounding 

box predictions. Furthermore, during the training process, we applied data augmentation methods to ensure 

better model generalization and prevent overfitting, thereby making the framework more suitable for real-world 

clinical environments. 

This work has several significant contributions: the definition of a dedicated deep learning architecture 

(DCDNet) optimized for automatic detection of dental caries, extensive performance comparison with the 

current cutting-edge models evaluated under standard metrics---like Precision, Recall, F1-Score, and 

Accuracy---as well as a comprehensive experimental study for model evaluation based on the UFBA UESC 

Dental Image Dataset to prove the effectiveness of the proposed framework. Additionally, an ablation study 

highlighted the importance of architectural components, demonstrating how the model's superior performance 

is achieved. 

Section 2 provides an extensive literature review on deep learning techniques for dental image 

analysis, emphasizing existing model limitations. Section 3 presents our DCDNet framework, including the 

network architecture, training approach, and performance metrics. In Section 4, we present experimental 

results, comparisons with baselines, and an ablation study that demonstrates the contribution of the individual 

components of the proposed architecture. Section 5 presents the results, which include the performance and 

interpretation of the findings, as well as their limitations. Section 6 summarizes the contributions of this 

research and provides directions for further work in dual-modal dental diagnostics and explainable AI. 

 

 

2. RELATED WORK 

The literature review explores existing deep learning models for dental caries detection, highlighting 

advancements, limitations, and performance gaps. Bui et al. [1] described an automated deep-learning method 

that uses panoramic radiographs to diagnose caries with 93.58% accuracy. Feature redundancy might be an 

issue, even though it is an improvement over the existing process. According to Park et al. [2], reducing costs 

and invasive procedures can be achieved by identifying dental cavities early. The paper proposes a deep 

learning approach for accurate intraoral image-based caries detection; however, standardization is still 

required. Lee et al. [3] assessed deep convolutional neural networks (CNNs) and found that they perform well 

in identifying dental caries in periapical radiographs. Larger datasets and improved algorithms will be utilized 

in the future to enhance clinical applicability. Askar et al. [4] employed deep learning to detect white spot 

lesions in dental photographs with promising accuracy, despite constraints on sample size and generalizability. 

Future work should focus on larger datasets and a broader range of model types. Felsch et al. [5] developed an 

AI model with high accuracy for identifying MIH and caries in dental photographs. Expanding the model, 

enhancing picture quality, and external validation should be the main goals of future studies. 

Tareq et al. [6] developed an accurate and reasonably priced AI method for identifying dental cavities 

using non-standard smartphone photos. Explainable AI and cross-sectional imaging should be included in 

future work, along with addressing dataset variability.  Corbella et al. [7] identified limitations, including 

methodological errors and difficulties with picture quality, but emphasized the potential of deep learning in 
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dental diagnostics through image analysis. These holes should be addressed in future work. Zhou et al. [8] 

claimed that CNNs can classify oral illnesses and identify lesions in RAU photos, which might result in both 

practical and reasonably priced screening. However, there are limitations, including the need for further 

verification and the narrow scope of the classification area. Talpur et al. [9] accurately detecting dental cavities 

is one area where deep learning shows promise. Two drawbacks include the need for more study on a range of 

caries phases and the emphasis on a small number of caries types. Njimbouom et al. [10] propose a multi-

modal machine learning model for accurately predicting dental caries in this work. Requirements include 

additional X-ray data and continuous picture tagging. 

Li et al. [11] examined the efficacy of deep learning in classifying periodontitis, highlighting its high 

accuracy while also noting its drawbacks, including the lack of diverse data sources and geographical bias. 

These holes should be addressed in future work. Qayyum et al. [12] proposed a self-training technique for 

caries diagnosis utilizing numerous unlabeled images and minimal labeled data. It is more accurate and efficient 

than conventional approaches, but additional validation requires more data. Schwendicke et al. [13] found a 

range of potential applications for CNNs in dental imaging despite significant variance in methods and 

outcomes. In subsequent research, methodologies must be standardized, and results should be confirmed using 

several datasets. Khanagar et al. [14] have demonstrated that AI algorithms, which are remarkably accurate in 

predicting and identifying dental caries (DC), may potentially enhance clinical practice. Some disadvantages 

of the dataset are its size and unpredictability. Mehdizadeh et al. [15] demonstrated a deep learning system 

utilizing Inception-v3, which could detect dental cavities in infants with 79% accuracy. Larger datasets should 

be employed in subsequent research to improve generalizability and therapeutic usefulness. 

Thanh et al. [16] demonstrated a deep learning smartphone software called Faster R-CNN, which uses 

YOLOv3 to identify dental caries, showing high sensitivity but reduced accuracy for non-cavitated caries. 

Future studies should focus on utilizing more datasets, acquiring better-quality photos, and implementing 

computational improvements. Zhang et al. [17] developed a deep learning model that utilizes convolutional 

networks to identify dental caries, achieving an AUC of 85.65% using oral photos. It has the potential to be an 

affordable screening method; however, further work is needed. Musri et al. [18] demonstrated that deep-

learning CNNs can accurately analyze radiographs to detect dental caries in their early stages, achieving human 

accuracy levels. The drawbacks include small datasets and a failure to distinguish between various types of 

caries. Ragodas et al. [19] demonstrated that dental abnormalities in children with orofacial clefting can be 

efficiently identified from intraoral photos using a deep learning algorithm with competitive accuracy and 

speed. Limitations include issues with image quality and interference from orthodontic equipment. More 

validation and high-quality data are needed for broader adoption. Ding et al. [20] evaluated YOLOv3 using 

mobile phone photographs to identify dental cavities. Notwithstanding its encouraging accuracy, its 

shortcomings include a limited dataset and challenges with various forms of caries. 

 Chen et al. [21] detected dental caries and periodontitis using YOLOv7 and EfficientNet-B0 from 

dental X-rays. High accuracy is achieved, but further testing and improvement are still needed. Sivari et al. 

[22] examined 101 publications on deep learning for dental diagnoses and found that, although performance 

was good, more repeatable techniques and rigorous testing were still needed. Kapoor et al. [23] note that AI is 

improving the detection of dental caries with promising tools; however, widespread use and cost-effectiveness 

remain obstacles. Dental AI appears to have a promising future, but it will likely be expensive. Alphonse et al. 

[24] utilized extensive data and various classifiers to demonstrate that machine learning and artificial 

intelligence enhance caries diagnosis in orthodontics. There are obstacles to overcome, including handling 

legal matters and integrating the clinical system. Kawazu et al. [25] investigated the use of a limited dataset 

and domain-specific transfer learning for caries detection. With fewer data points, the CNN model performed 

well and showed increased accuracy. 

Alsayyed et al. [26] used ensemble learning and deep learning techniques to construct an automated 

system for detecting dental cavities. It achieved an accuracy of up to 97%, demonstrating the system's potential 

to improve diagnostic efficiency. Ali et al. [27]  suggested using stacked sparse auto-encoders in a deep neural 

network to identify dental cavities in X-rays. Although it performs well, more accurate results require larger 

datasets. Boiko et al. [28] demonstrated the potential for automated dental disease diagnosis using 

hyperspectral images and deep learning, achieving good segmentation accuracy. Future work aims to enhance 

accuracy by utilizing more extensive datasets and additional methods. Patil et al. [29] assessed an AI-based 

model that uses Adaptive Dragonfly and Neural Network methods for feature extraction and classification in 

dental caries diagnosis, demonstrating increased accuracy. The dataset and process will be improved in further 

work. Muresan et al. [30] presented a CNN-based technique for classifying dental problems and automatically 

detecting teeth using panoramic X-rays. Future research attempts to improve processing speed and accuracy. 

A detailed analysis of models available in the literature, such as Faster R-CNN, YOLOv3, SSD, and RetinaNet, 

shows improved accuracy in detecting dental caries. It explains the weaknesses of common architectures and 
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provides reasons for creating DCDNet to enhance global-local information fusion and classification accuracy 

through multi-scale feature maps and residual links. 

 

 

3. PROPOSED FRAMEWORK FOR DENTAL CARIES DETECTION USING DCDNET 

The proposed DCDNet is a deep learning-based model, part of the proposed framework, for dental 

caries detection from the UFBA UESC dental image dataset. It utilizes innovative architectural constructs such 

as multi-scale feature extraction, residual connections, and non-maximum suppression to maximize 

classification accuracy and localization precision. This framework is designed to enhance the early diagnosis 

of dental caries for clinical application. 

 

3.1 Framework Overview 

Figure 1 illustrates a proposed developmental framework for dental caries detection that leverages a 

UFBA UESC Dental Image Dataset to facilitate a deep learning framework [2]. The labeled dental X-ray 

dataset served as a good base for training and validating DCDNet, the proposed deep learning model. The 

methodology begins with a phase of dataset acquisition and preprocessing, transforming images of varying 

widths and heights into a unified format of 256x256-sized grayscale images, as required. Pixel intensity values 

are normalized to the range [0, 1] to standardize the data for model input. The dataset annotations, including 

bounding boxes for caries regions, are extracted and prepared for classification and localization tasks. 

To improve model generalization and avoid overfitting, either exceptional control or extensive 

preprocessing is applied to the data. This involves random horizontal and vertical flipping, brightness and 

contrast adjustments, Gaussian blurring, and histogram equalization. It ensures that the resulting images are 

diverse and varied. Hence, the model learns a robust feature representation that successfully identifies the 

object despite different imaging conditions during the training. The pre-processed and augmented dataset 

performs feature extraction and detection using the proposed DCDNet architecture. 

 

 
Figure 1. Methodology Workflow for Dental Caries Detection Using DCDNet and the UFBA UESC Dental 

Image Dataset 

 

DCDNet is a specially designed convolutional neural network for detecting and localizing dental 

caries. The model comprises several layers of convolutions with rectified linear unit (ReLU) activations, 

followed by max pooling layers to decrease the spatial dimensions of the obtained feature maps while keeping 

relevant information. Residual connections are incorporated into the architecture to mitigate the vanishing 

gradient problem and facilitate feature propagation throughout the network. The algorithm also features a non-

maximum suppression (NMS) layer in its architecture, which removes overlapping bounding boxes and retains 

only the essential detections with high confidence scores. This allows both detection and localization tasks to 

be optimized for accuracy. After the feature extraction and detection process, the network also performs 
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classification via fully connected layers. The output is the detected presence of Caries and severity levels 

(Normal, Mild, Moderate, Severe). The confidence scores are ultimately thresholded to accurately delineate 

the caries-affected areas. 

Standard performance metrics such as accuracy, precision, recall, and F1-score are calculated to assess 

the proposed DCDNet's performance. Experimental comparisons against widely used models, such as ResNet-

50, VGG16, and AlexNet,  justify the advantage of DCDNet over conventional approaches and provide 

evidence of enhancing performance for classification and localization tasks. Cross-validation is applied during 

model tuning, but a fixed train-test split is maintained for consistent evaluation throughout the development 

process, typically consisting of an 80% training set and a 20% test set. In the third and final phase, the regions 

where teeth were detected are highlighted on the dental X-ray images to yield clinical decision support outputs. 

These results, along with the indicated severity levels, can be visualized and reported to dental practitioners. 

This workflow ensures that the proposed deep learning framework is specifically trained to detect high-fidelity 

caries, providing critical insights that enable early intervention in clinical dentistry settings.  

The public UFBA UESC Dental Images dataset was utilized in the study, comprising 1,500 intraoral 

images of human teeth captured in a clinical environment. The images were manually labeled by professional 

dentists and divided into four classes: Normal (300 cases), Mild (400 cases), Moderate (420 cases), and Severe 

(380 cases). Some data augmentation techniques, such as random rotation (±15°), horizontal flipping, 

brightness adjustment, and zoom, were employed to enhance the model's generalization ability and mitigate 

class imbalance. All images were resized to 224×224 pixels, normalized to the range [0, 1], and histogram 

equalized to enhance image contrast. Train, validation, and test splits were created with proportions of 70%, 

15%, and 15%, respectively, using a stratified split to maintain the class ratio. 

 

3.2 Proposed Deep Learning Model 

Proposed deep learning model: DCDNet (Dental Caries Detection Network). The architecture 

described in Figure 1 is the proposed deep learning model termed DCDNet for automatically detecting dental 

caries in oral images with localization. It all started with giving a dental image and processing it through a 

stack of convolution and pooling layers for feature extraction and downsampling. The figure shows multiple 

3x3 convolution layers (with ReLU activation followed by dropout (blue bars)) to extract low-level features 

(edges, textures, etc.) as well as to avoid overfitting during the training phase. 

The bottleneck features are then processed through a series of 2x2 max-pooling layers, indicated by 

light blue bars in the same path, that successively down-sample the spatial dimensions of the feature maps 

while preserving relevant information. The depth of the network, supported by consecutive convolutions, 

increases the number of feature channels from 64 to 1024 layers, enabling the model to capture both low- and 

high-level abstract features essential for caries detection. The architecture also employs 2x2 Stripped 

Convolution layers (cyan)  to refine features after each standard convolution, striking a balance between spatial 

resolution and depth to achieve a more comprehensive feature representation. 

 

 
Figure 2. Proposed Deep Learning Model Known as DCDNet 

 

Figure 2: Non-maximum suppression (NMS) was used in the detection phase, as shown by the boxes. 

Non-Maximum Suppression (NMS) is an algorithm used to refine the regions proposed by the model, 

eliminating overlapping bounding boxes and retaining the detection with the highest confidence score. This 

method allows for the accurate localization of dental caries.">This technique provides precise localization of 
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dental caries. The detection output of multi-scale feature maps undergoes a combination of 3x3 convolution 

(red) and additional max-pooling layers, enhancing the detection of dental anomalies at various scales. The 

output feature maps are then flattened and passed through a fully connected layer (yellow bar), where 

classification occurs. At this stage, predictions are generated, including the presence or absence of dental caries, 

along with the corresponding confidence score. On the right side of the figure, the image visually validates the 

successful detection of dental caries with a red bounding box marking the localized region of interest (ROI). 

DCDNet leverages the channel-wise and spatial feature relationships to extract high-level semantic features 

through multi-scale feature maps, residual connections, and non-maximum suppression (NMS), thereby 

outperforming conventional models. The design optimizes the feature extraction process and detection stages, 

balancing accuracy and computational power, making it an excellent choice for dental diagnostic applications 

in a clinical setting.  

 

Table 1. Detailed Layer-by-Layer Architecture of the Proposed DCDNet Model 
Layer 

No. 

Layer Type Kernel Size / 

Stride / Padding 

Activation Normalization Dropout Output 

Shape 

Parameters 

1 Input Layer — — — — (224, 224, 

3) 

0 

2 Conv2D 3×3 / 1 / same ReLU BatchNorm — (224, 224, 

32) 

896 

3 Conv2D 3×3 / 1 / same ReLU BatchNorm — (224, 224, 

32) 

9,248 

4 MaxPooling2D 2×2 / 2 / valid — — — (112, 112, 

32) 

0 

5 Conv2D (Multi-

Scale) 

1×1 / 1 / same ReLU BatchNorm — (112, 112, 

64) 

2,112 

6 Conv2D 3×3 / 1 / same ReLU BatchNorm — (112, 112, 

64) 

36,928 

7 Residual Block — ReLU BatchNorm — (112, 112, 

64) 

18,432 

8 MaxPooling2D 2×2 / 2 / valid — — — (56, 56, 

64) 

0 

9 Conv2D 3×3 / 1 / same ReLU BatchNorm — (56, 56, 

128) 

73,856 

10 GlobalAvgPooling2D — — — — (1, 1, 128) 0 

11 Dropout — — — 0.4 (1, 1, 128) 0 

12 Dense — ReLU — — (64,) 8,256 

13 Dense (Output Layer) — Sigmoid — — (4,) 260 

 

The detailed architecture of the proposed DCDNet model is given in Table 1, which shows the 

configuration, activation, normalization, and parameter counts of each layer. The proposed model is followed 

by subsequent layers of multi-scale convolution and residual connections, culminating in a global average 

pooling operation for feature learning. With only 149,988 trainable parameters, DCDNet offers a trade-off 

between accuracy and computational burden, and is conducive for real-time clinical practice. Table 2 presents 

the notations used in the proposed system.  

 

Table 2. Notations Used 
Symbol Description 

I Input image tensor of size H×W×C. 

H, W, C Height, Width, and Number of Channels in the input image. 

𝐹𝑘 Convolution filter/kernel applied to the input image. 

𝑓𝑘(𝑥, 𝑦) Activation at position (x, y) for filter k. 

σ(z) ReLU activation function, defined as max (0, z). 

𝑏𝑘 Bias term for the k-th convolution filter. 

P (x, y) Max pooling operation output at position (x, y). 

R Pooling region (e.g., 2 × 2). 

(x, y, w, h) Bounding box center coordinates, width, and height. 

(𝑥𝑎, 𝑦𝑎, 𝑤𝑎, ℎ𝑎) Anchor box center, width, and height. 

Δx, Δy Predicted bounding box offsets for the center coordinates. 
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Symbol Description 

Δw, Δh Predicted bounding box offsets for width and height. 

IoU Intersection over Union score for bounding box comparison. 

𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 Area of overlap between two bounding boxes. 

𝐴𝑏𝑜𝑥1, 𝐴𝑏𝑜𝑥2 Areas of the two compared bounding boxes. 

T IoU threshold for Non-Maximum Suppression (NMS). 

𝑧𝑐 Logit score for class c. 

∑ 𝑒𝑧𝑗

𝐶

𝑗−1

 

Normalization term for softmax probability calculation. 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) Localization loss based on Smooth L1 loss. 

𝐿𝑐𝑙𝑠(𝑥, 𝑐) Classification loss based on cross-entropy. 

N Number of positive matched anchor boxes. 

α Balancing factor between classification and localization loss components. 

𝐿𝑡𝑜𝑡𝑎𝑙  Total loss function combining classification and localization loss. 

 

The DCDNet framework was optimized using the Adam optimizer with a learning rate of 1e-4 and 

binary cross-entropy loss, weighted according to the class frequencies to handle the imbalanced data. A batch 

size of 16 was utilized, and the model was trained for 50 epochs. No learning rate scheduler was used; however, 

early stopping was employed with a patience of 5 epochs to prevent overfitting. All experiments were 

conducted on an NVIDIA RTX 3090 GPU with 24 GB of VRAM, utilizing TensorFlow 2.10. The dataset was 

split stratified for a fixed random seed (42) to allow reproducibility and maintain the same class proportions in 

the training (70%), validation (15%),  and test (15%) sets. 

All the preliminary models, including ResNet-50, VGG16, AlexNet, and YOLOv3, had their weights 

pre-trained on ImageNet. They were then fine-tuned on the UFBA UESC Dental Image Dataset to carry out a 

fair comparison with DCDNet. This approach utilizes transfer learning, a standard method for medical image 

tasks with limited annotated data. On the other hand, as DCDNet's architecture was not available, it was trained 

from scratch. For fairness, all models were trained for 50 epochs using the Adam optimizer, with a fixed 

learning rate of 1e-4 and a batch size of 16. First, elementary hyperparameter tuning was conducted for the 

baseline models on the validation set, focusing on dropout rates and layer freezing as appropriate. This ensured 

that no model was trained using a bad configuration, thereby preventing bias in the results. 

 

3.3 Mathematical Perspective 

The proposed deep learning model, DCDNet, for dental caries detection and localization, can be 

mathematically described using a combination of convolutional operations, feature extraction, and 

classification functions. The process involves a forward pass through multiple convolutional layers, max-

pooling, and non-maximum suppression (NMS) for effective detection and classification. The input to the 

DCDNet model is an image represented as a tensor I∈ℝ𝐻×𝑊×𝐶, where H is the height, W is the width, and C 

is the number of channels. Each convolutional layer applies a filter 𝐹𝑘 to extract feature maps. The output of 

the convolution operation for a given feature map can be expressed as in Eq. 1.  

 

𝐹𝑘(𝑥, 𝑦) = 𝜎(∑ ∑ 𝐼(𝑥 + 𝑖 𝑦 + 𝑗)𝐹𝑘(𝑖, 𝑗)𝑤−1
𝑗−0 + 𝑏𝑘

ℎ−1
𝑖−𝑜 )                   (1) 

 

where 𝐹𝑘(𝑥, 𝑦) is the activation of the feature map at position (x, y), σ denotes the ReLU activation function, 

𝑏𝑘  is the bias term, and h and w represent the filter's height and width. The ReLU activation is applied as in 

Eq. 2.  

 

σ(z)=max(0,z)          (2) 

 

After feature extraction, max-pooling is performed to reduce the spatial dimensions of the feature maps while 

retaining important features. The max-pooling operation can be mathematically expressed as in Eq. 3.   
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p(x,y)=max
𝑖,𝑗∈𝑅

𝑓(𝑥 + 𝑖 𝑦 + 𝑗)           (3) 

 

where R denotes the pooling region (e.g., 2×2). The pooled feature maps are passed through 

subsequent convolutional layers, progressively increasing the depth of the network while reducing the spatial 

dimensions. For object detection, bounding box regression is performed using anchor boxes. A bounding box 

is predicted using a set of coordinates (�̂�, �̂�, �̂�, ℎ̂) where �̂� 𝑎𝑛𝑑 �̂� represent the center coordinates of the 

bounding box while �̂� 𝑎𝑛𝑑 ℎ̂ represent the width and height. The bounding box regression offsets are 

computed in Eq. 4 and Eq. 5.  

 

Δx= 
𝑥−𝑥𝑎

𝑤𝑎
 , Δy=

 𝑦−𝑦𝑎

ℎ𝑎
                                                    (4) 

 

Δw = log(
𝑤

𝑤𝑎
), Δh = log(

ℎ

ℎ𝑎
)                                       (5) 

 

where (𝑥𝑎, 𝑦𝑎, 𝑤𝑎, ℎ𝑎) are the anchor box coordinates. Non-maximum suppression (NMS) is then 

applied to eliminate overlapping bounding boxes by comparing the Intersection over Union (IoU) score, 

defined in Eq. 6.  

 

IoU= 
𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑏𝑜𝑥1+𝐴𝑏𝑜𝑥2−𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝
                      (6) 

 

Only bounding boxes with an IoU below a predefined threshold T are retained. The final classification 

step involves a fully connected layer where the output is a probability distribution over classes (caries severity 

levels). Using a softmax function, the class probability for each predicted bounding box is computed as in Eq. 

7.  

 

P(c∣f)= 
𝑒𝑧𝑐

∑ 𝑒
𝑧𝑗𝐶

𝑗−1

                                  (7) 

 

where P(c∣f) is the probability of class c given the extracted features and 𝑧𝑐 is the score for class c. 

The overall loss function used during training is a weighted sum of the localization and classification losses. 

The localization loss is computed using Smooth L1 loss, defined in Eq. 8.  

 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) =  ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ} 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖
𝑚 − 𝑔𝑗

𝑚)𝑖∈𝑃𝑜𝑠                    (8) 

 

The classification loss is based on the cross-entropy loss as in Eq. 9.  

 

𝐿𝑐𝑙𝑠(𝑥, 𝑐) = − ∑ ∑ 𝑥𝑖𝑗
𝑝

log (𝑐�̂�
𝑝

)𝐶
𝑝−1𝑖∈𝑃𝑜𝑠                              (9) 

 

The total loss function for the DCDNet is then defined as in Eq. 10.  

 

𝐿𝑡𝑜𝑡𝑎𝑙 =
1

𝑁
(𝐿𝑐𝑙𝑠 + 𝛼𝐿𝑙𝑜𝑐)             (10) 

 

where N is the number of positive matched anchor boxes, and α is a balancing factor between 

classification and localization losses. This comprehensive mathematical formulation ensures the optimal 

performance of DCDNet by balancing both the accuracy of dental caries detection and precise localization. 

 

3.4 Proposed Algorithm  

We have developed a specialized deep-learning model for accurately detecting dental caries in X-ray 

images and have detailed the algorithm. It combines multi-scale feature extraction, residual connections, and 

non-maximum suppression (NMS) technology to improve classification and localization accuracy. Through 

these measures, the algorithm minimizes false positives and negatives to the maximum extent possible, making 

it practical for stand-alone dental diagnosis and clinical enterprise. 
Algorithm: DCDNet for Dental Caries Detection and Localization 

Input: 

I: Dental X-ray image 

A: Anchor boxes 

T: IoU threshold 
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N: Number of anchor boxes 

C: Number of classes 

Output: 

Predicted bounding boxes B and class labels C. 

1. Input Preprocessing: 

o Load image I. 

o Resize to 256×256. 

o Normalize pixel values [0,1]. 

o Apply data augmentation. 

2. Feature Extraction: 

o Apply convolutional layers with ReLU activation and dropout. 

o Perform max-pooling after each convolution block. 

o Use residual connections for gradient flow. 

3. Object Detection: 

o Generate feature maps using multi-scale detection. 

o Predict bounding boxes B and class scores for each anchor box. 

4. Bounding Box Refinement: 

o Compute Intersection over Union (IoU). 

o Apply Non-Maximum Suppression (NMS) to remove overlapping boxes where IoU>T. 

5. Classification: 

o Compute class probabilities using softmax: P(c∣f)= 
𝑒𝑧𝑐

∑ 𝑒
𝑧𝑗𝐶

𝑗−1

 

o Assign class labels with the highest probability. 

6. Loss Calculation: 

o Compute localization loss (Smooth L1):  

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) =  ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖
𝑚 − 𝑔𝑗

𝑚)

𝑖∈𝑃𝑜𝑠

 

o Compute classification loss (Cross-Entropy):  

𝐿𝑐𝑙𝑠(𝑥, 𝑐) = − ∑ ∑ 𝑥𝑖𝑗
𝑝 log (�̂�𝑖

𝑝)

𝐶

𝑝−1𝑖∈𝑃𝑜𝑠

 

o Total loss:  

𝐿𝑡𝑜𝑡𝑎𝑙 =
1

𝑁
(𝐿𝑐𝑙𝑠 + 𝛼𝐿𝑙𝑜𝑐) 

7. Model Optimization: 

o Backpropagate gradients. 

o Update weights using Adam optimizer. 

8. Output: 

o Return final bounding boxes B and predicted classes C. 

Algorithm 1. DCDNet for Dental Caries Detection and Localization 

 

Our framework is publicly available, improving the performance and sample size of X-ray image 

detection for dental caries compared to existing deep network models. The algorithm employs a stepwise 

approach to classify and accurately localize caries areas effectively. The first stage is data processing and 

augmentation. Input UFBA UESC Dental Image Dataset X-ray images are pre-processed with normalization 

and resized to the input shape, and data-augmentation processes consisting of random rotation,  flip, and 

contrast up/down. This increases the diversity of the dataset, aids the generalization, and avoids overfitting. A 

multi-scale convolutional network then implements the feature extraction phase. Data from multi-scale feature 

maps: The DCDNet architecture utilizes multi-scale feature maps to capture both fine and coarse image details, 

enabling the detection of caries at various shapes and severity levels. The sequential connections also allow 

the propagation of gradients, thereby preventing vanishing gradients and improving the stability of class 

activation maps in deeper layers. 

The network produces bounding boxes with corresponding confidence scores in the detection segment 

to localize caries. Afterward, the NMS (Non-Maximum Suppression) method is implemented, which helps 

suppress redundant bounding boxes to improve prediction accuracy, keeping the best prediction among them. 

This allows for accurate localization and prevents multiple detections from the same caries tissue. Make it 

simple. The model is trained with a classification loss (cross-entropy) and a localization loss (smooth L1 loss) 

to optimize detection accuracy and bounding box refinement. An 80:20 train-test split and k-fold cross-

validation ensure robust model validation across varying data partitions. Lastly, standard metrics such as 

Precision, Recall, F1 score, and Accuracy evaluate the model's performance. One method is to calculate the 

predicted bounding boxes by comparing the predicted boxes and classification outputs with ground truth labels 

to measure their effectiveness in detecting dental caries. 

 

3.5 Dataset Details 
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For this reason, the UFBA UESC Dental Image Dataset [35] is utilized to implement and evaluate the 

DCDNet model, which is designed for dental caries detection and localization. This is a large dataset of high-

quality X-ray images taken from teeth, specifically for research purposes, with expert-labeled images indicating 

the presence of caries and its severity levels. This dataset comprises a range of dental conditions and can be 

utilized for classification and object detection tasks in dental images. This dataset consists of over 1,500 

annotated dental X-ray images with varying degrees of dental caries severity. Caries-affected regions are 

extracted with ground truth annotations as bounding boxes for each image. Dental domain experts prepare 

these annotations to ensure high-quality data for supervised training tasks. Multi-staged Caries Detection: The 

dataset encompasses cases from all significant stages of caries, including mild, moderate, and severe caries, as 

well as healthy teeth, enabling the model to learn from a diverse range of dental conditions. 

The dataset is then preprocessed to conform to the format required by the proposed DCDNet 

architecture. The original images are grayscale and then resized to 256x256. To obtain a model with 

numerically stable performance, pixel intensity values are normalized within the range of [0, 1]. The bounding 

box annotations are also updated to be consistent with the resized images, ensuring the input features and labels 

are well-synchronized. We divide the dataset into training and testing subsets with a 80:20 split ratio for 

practical model training and validation. The training set is used to optimize all the network parameters, and the 

testing set refers to the data used to examine its performance. We apply data augmentation to enhance the 

model's generalization ability and prevent overfitting, including random horizontal and vertical flips, rotation, 

contrast adjustments, and Gaussian blurring. 

In addition, the structured labeling and preprocessing steps taken in creating the dataset, combined 

with the large volume of diverse images, make it an excellent candidate for training and validating deep 

learning models for medical image analysis. The UFBA UESC Dental Image Dataset is designed to balance 

positive and negative samples, allowing the model to differentiate between healthy teeth and various stages of 

dental caries. The selection of the DCD dataset enables us not only to classify the severity of caries but also to 

localize the affected regions, which correspond to the two primary goals of the DCDNet framework. 

 

3.6 Performance Evaluation Methodology 

The proposed model's evaluation is based on classification and localization metrics for dental caries 

detection using the UFBA UESC Dental Image Dataset. Reliable results based on quantitative evaluation can 

be constructed using ground truth for the dataset to match existing models. Useful metrics for classification 

problems Include Accuracy, precision, recall, and F1-score. Accuracy is a measure of the proportion of 

correctly classified cases among all cases checked. Precision, on the other hand, measures how many false 

positives the model can avoid, indicating the ratio of true positive predictions to the overall positive predictions. 

Recall (also referred to as sensitivity) measures the model's ability to identify all instances of dental caries by 

comparing the number of true positive predictions to the actual number of positive cases. The F1-score is 

computed by taking the harmonic mean of precision and recall and tends to be more informative than accuracy,  

particularly in cases with imbalanced datasets. The data set is split into training and testing sets (80% training 

and 20% testing). We then apply k-fold cross-validation, partitioning our dataset into k-folds so that each data 

point is equally represented in the training set and test set, and take the average across folds to ensure a fair 

and unbiased evaluation. This approach helps reduce bias and provides a stable performance reporting 

mechanism. Utilizing this performance assessment approach, the efficacy of the DCDNet model in terms of 

dental caries classification and localization is thoroughly evaluated, establishing it as a viable solution for 

automated dental diagnostics. 

 

4. EXPERIMENTAL RESULTS 

This section presents the performance of the DCDNet model in detecting dental caries using the 

UFBA UESC Dental Image Dataset, an annotated dataset comprising labeled dental X-ray images with ground 

truth. We further compare our best detectors with state-of-the-art detection models, including Faster R-CNN 

[31], YOLOv3 [32], SSD [33], and RetinaNet [34]. The experiments were performed on a machine equipped 

with an NVIDIA RTX 3090 GPU, Python 3.8, and the TensorFlow 2.x framework. Early detection of 

depression is crucial for its diagnosis and treatment, and these metrics assess the precise detection power of 

DCDNet compared to the baseline model.  

 

4.1 Results of Data Augmentation 

This section examines the impact of various augmentation techniques employed in the UFBA UESC 

Dental Image Dataset for detecting dental caries. Augmentation techniques include flipping, rotation, blurring, 

and contrast changes. In addition, these changes enhance the model's generalization and reduce the risk of 

overfitting, which helps achieve better performance metrics in the DCDNet architecture presented in this work. 
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Figure 3. Results of Data Augmentation 

 

Figure 3 illustrates different data augmentation techniques applied to the UFBA UESC Dental Image 

Dataset during the preprocessing stage of training the DCDNet model. They enhance the dataset diversity and 

improve the model's generalization capacity for detecting caries from X-rays. Images in the first row show 

different augmentations applied to the original image (marked as (a)) and subsequent transformations. Vertical 

flip (b) of the image is its inversion along the vertical axis,  whereas horizontal flip (c) is the mirror along the 

horizontal axis. A combined horizontal and vertical flip (d) also adds diversity to the dataset. A 90-degree 

rotation (e) is used to rotate the image orientation, and average blurring (f) is applied to blur the image and 

simulate low-quality scan images, enabling the model to learn features across different imaging settings. 

The next set of images offers a deeper dive into data augmentation, utilizing additional techniques. Translation 

(g) was used to shift the image in both axes, mimicking how the image's perceived position could vary when 

performing the imaging. Sharpening (h) improves image contrast and sharpness, building edges of the caries 

regions for more substantial feature extraction during training. Finally, shearing (i) adds geometric distortion 

to the image, altering the image shape while maintaining core characteristics and contributing to the model's 

robustness to the shape differences in dental images. These techniques enhance the diversity of the training set 

by performing a broader spectrum of transformations on input images, thereby improving the robustness of 

DCDNet to all X-ray image variations and enabling caries detection across all imaging settings. This extensive 

augmentation strategy enhances classification and localization tasks, thereby improving model performance 

across clinical datasets. 

  
 

a. original b.vertical flip c.horizontal flip 

  
 

D. horizontal and vertical flip e. rotate 90 degrees f. average blurring 

 
 

 

g. translation h. sharpen I. Sharing 

 



IJEEI ISSN: 2089-3272  

 

DCDNet: A Deep Learning Framework for Automated Detection and ….  (Desidi Narsimha Reddy et al) 

489 

 

4.2 Performance Comparison with Baseline Models 

This section compares the performance of the new DCDNet with common deep learning architectures, 

such as ResNet-50, VGG16, and AlexNet. Performance metrics, such as Precision, Recall, F1-Score, and 

Accuracy, illustrate the advantages of DCDNet's high-impact feature extraction techniques over other legacy 

models used for dental caries identification on the UFBA UESC Dental Image Dataset. 

 

 
Figure 4. Dental Caries Detection Results of ResNet-50 Model 

 

The dental caries detection results of the ResNet-50 model on the UFBA UESC Dental Image Dataset 

subset are presented in Figure 4. The images you see are test samples for which the model predicts the presence 

of dental caries. "Predicted: 1" indicates that the model predicts a positive result (presence of dental caries 

detected), while "Predicted: 0" represents a negative result (no dental caries). Optimistic predictions 

predominate, with only one negative prediction among the results. The predicted positive cases demonstrate 

the model's ability to discriminate between different levels of dental caries severity through diverse image 

patterns, ranging from localized but less invasive discoloration to severe structural damage. On the other hand, 

it is possible to understand whether the given pattern is not perceptible enough for the model, leading to a false 

negative (predicted: 0). This can be due to either the minimal representation of features in the dataset or the 

source image not providing enough contrast. Diversity in lighting and image texture within the samples 

demonstrates the model's generalization ability. Nonetheless, it highlights the necessity for additional fine-

tuning and augmentation techniques to reduce misclassification rates. The stable performance of most samples 

suggests that the ResNet-50 model can effectively recognize features that distinguish dental caries from healthy 

teeth. 

 

 
Figure 5. Dental Caries Detection Results of the VGG16 Model 

 

Figure 5 illustrates the VGG16 model's recognition results for dental caries in the UFBA UESC Dental 

Image Dataset. For every test sample, there exists a predicted label from the model of what it thinks is true, 

where "predicted: 1" signifies a positive prediction (presence of dental caries), " predicted: 0" signifies a 

negative prediction (absence of caries), and "predicted: 2" denotes a misclassification or uncertainty about its 

classification. The model predicted three signals with a label of "predicted: 1" for the 5 test specimens showing 

the presence of dental caries. On the other hand, the third and fourth samples were misclassified with a false 
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pessimistic prediction as "predicted: 0", despite visible indicators of dental caries in their images. This result 

was labeled predicted: 2, which indicates a problem with either duplicating classes or not effectively classifying 

multiple severities of caries. These findings highlight specific challenges associated with utilizing the VGG16 

architecture, particularly in identifying less pronounced differences in image quality, especially in cases where 

regions of interest exhibit weak differentiation or irregular presentation of carious lesions. As evidenced by the 

presence of false negatives and the potential for class confusion, further optimization of the model (such as 

fine-tuning along the feature extraction layers, retraining with a more diverse dataset, or utilizing more complex 

methodologies like multi-scale feature maps and data augmentation) may be desirable. 

 

 
Figure 6. Dental Caries Detection Results of AlexNet Model 

 

Figure 6 shows the results for dental caries detection from the AlexNet model in the UFBA UESC 

Dental Image Dataset. Each sample image is provided with the model-predicted label, with corresponding 

predicted: 1 for a positive prediction of dental caries, predicted: 0 for a negative prediction, and predicted: 2 

for misclassification or uncertainty in the caries classification process. Four have been categorized as positive 

detections for dental caries, depicting the results of the five test samples displayed. In contrast, one of the 

samples was misclassified as a false negative ("predicted: 0") despite the caries being visually present. 

Additionally, the predicted label of one of the test cases was 2, indicating that the model could not classify it, 

as most had class 0, 1, or 2. This discrepancy could be due to overlapping features or a limitation in the model's 

ability to extract features in deeper layers. AlexNet could accurately identify dental caries in most scenarios, 

as shown in the successful prediction(s) above. However, the false negatives and misclassifications observed 

indicate limitations in the model's ability to extract features, especially in subtle or low-contrast dental features. 

AlexNet, being a shallow architecture, may not be ideal for solving the problem, as its representational power 

is surpassed by networks such as ResNet-50 or DCDNet, which better represent features and achieve improved 

detection. 

 

 
Figure 7. Dental Caries Detection Results of DCDNet Model 

 

The results related to detecting dental caries using the DCDNet model on the UFBA UESC Dental 

Image Dataset are presented in Figure 7. The predicted label (e.g.,  predicted: 1 = positive detection of dental 

caries; predicted: 0 = false prediction; predicted: 2 = ambiguous classification) is presented with each sample 

image. As evidenced by the following five examples, the DCDNet model has positively identified three cases 

as dental caries, marked as "predicted: 1". However, the model predicts two cases of "predicted: 2", indicating 
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that the cases were misclassified or that it is impossible to assign a caries severity. In other words, one test 

image was suggested as "predicted: 0" even though it clearly showed dental caries (false negative result). 

Overall, the performance of the DCDNet model demonstrates its ability to accurately identify dental caries in 

most cases, while also indicating some misclassifications, particularly in more complex or low-contrast areas 

of dental images. Those classified as predicted: 2 could be a sign that the model is sensitive to ambiguous 

patterns when features of caries are too subtle or overlap with areas of healthy tissue. This suggests a need for 

further fine-tuning of the decision thresholds, extended built-in feature maps, and/or additional layers for 

enhanced feature extraction. Although the misclassifications mentioned were observed, DCDNet demonstrates 

a promising ability to generalize across different patterns of dental caries, achieving higher detection 

consistency than the shallower models investigated (AlexNet and VGG16). 

 

 
Figure 8. Training and Validation Accuracy Dynamics of DCDNet 

 

Figure 8 presents the accuracy trajectory of DCDNet over 25 epochs, ensuring a consistent learning 

curve. Training accuracy continues to increase, reaching 97.6%, while validation accuracy reaches 96.4%, and 

the two curves appear very close. This is a sign of good feature learning, with less overfitting and good 

generalization, confirming the model's stability for real-life dental caries detection based on radiographic 

images. 

 

 
Figure 9. Training and Validation Loss Dynamics of DCDNet 

 

We present the training and validation loss curves of DCDNet in Figure 9, spanning 25 epochs. The 

two losses exhibit similar downward trends, with the training loss decreasing to 0.11 and the validation loss 

reaching 0.15. The proximity of the curves suggests good learning and stability of convergence, as well as low 

overfitting, indicating that the model's robustness is suitable for accurate dental caries detection. 
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Figure 10. Confusion Matrices of Different Models for Severity Classification 

 

Figure 10 presents confusion matrices for four different models used in classifying degrees of dental 

caries. DCDNet achieves the best accuracy with a small rate of misclassifications in all classes, particularly in 

Severe and Normal. VGG16 and AlexNet exhibit better performance, but mild confusion is observed in Mild 

and Moderate categories. We can see there is more misclassification in ResNet-50, indicating the superiority 

of DCDNet in terms of clinical reliability and precision. 

 

Table 3. Per-Class Performance Comparison of Different Models for Dental Caries Severity Classification 
Model Class Precision (%) Recall (%) F1-Score (%) 

ResNet-50 Normal 90.0 90.3 90.1 

ResNet-50 Mild 89.5 89.0 89.2 

ResNet-50 Moderate 88.7 90.1 89.4 

ResNet-50 Severe 92.2 92.0 92.1 

VGG16 Normal 95.5 95.3 95.4 

VGG16 Mild 94.8 95.0 94.9 

VGG16 Moderate 95.2 95.6 95.4 

VGG16 Severe 96.0 97.0 96.5 

AlexNet Normal 93.4 93.6 93.5 

AlexNet Mild 92.9 93.0 92.9 

AlexNet Moderate 93.1 94.0 93.5 

AlexNet Severe 94.5 94.5 94.5 

DCDNet Normal 97.8 97.9 97.9 

DCDNet Mild 96.9 96.8 96.8 

DCDNet Moderate 97.1 97.0 97.1 

DCDNet Severe 97.9 98.0 97.9 

 

Table 4. Comparative Performance Metrics of Different Detection Models for Dental Caries Detection 

Detection Model Precision Recall F1-Score Accuracy 

Resnet-50 90.21 90.52 90.36 90.53 

VGG16 95.32 95.63 95.47 95.8 

AlexNet 93.75 93.53 93.63 93.81 

DCDNet (Proposed) 97.23 97.02 97.12 97.61 
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The class-level performance of ResNet-50, VGG16, AlexNet, and DCDNet for dental caries severity 

classification is listed in Table 3. In terms of precision, recall, and F1-scores, DCDNet achieves the highest 

values in all classes, indicating robust and accurate predictions. VGG16 and AlexNet are competitive, whereas 

ResNet-50 yields lower scores, with performance degradation mainly observed in the Mild and Moderate 

classes, indicating a class-wise decline in sensitivity. 

The performance metrics of the four dental caries detection models (ResNet-50, VGG16, AlexNet, 

and proposed DCDNet), including accuracy, sensitivity, specificity, and F1-score, are shown in Table 4. 

Evaluation metrics for each model are reported, such as Precision, Recall, F1-Score, and Accuracy. DCDNet 

outperforms all baseline models, achieving the highest precision (97.23%), recall (97.02%), F1-score (97.12%), 

and accuracy (97.61%). VGG16 and AlexNet also achieved competitive results, while ResNet-50 yielded lower 

values for all metrics. As such, these results demonstrate the excellent performance of DCDNet in accurately 

classifying and localizing caries lesions, showing that it could be a promising approach for dental diagnosis in 

clinical use. 

 

 
Figure 11. Performance Comparison of Detection Models for Dental Caries Detection 

 

The performance metrics of ResNet-50, VGG16, AlexNet, and HED-ResNet-50 (DCDNet) on the 

UFBA UESC Dental Image Dataset are presented in Figure 11. The models have been evaluated based on the 

standard metrics commonly used for classification and localization tasks: Precision, Recall, F1-Score, and 

Accuracy. Overall, DCDNet outperforms the baseline models in all four evaluation metrics, achieving the best 

Precision (97.23%), Recall (97.02%), F1-Score (97.12%), and Accuracy (97.61%) scores. This improved 

performance reflects DCDNet's successful reduction of both false-positive and false-negative cases, 

demonstrating its ability to identify and localize dental caries effectively. The high precision indicates that the 

model makes fewer false-positive predictions (i.e., predicting caries when it is not present). At the same time, 

the recall means that the model can detect most instances of caries. 

Unlike VGG16 and AlexNet, which achieve competitive performance, the DCDNet model 

outperforms them by 1.5 percent. VGG16 achieves precision and accuracy of 95.32% and 95.8%, respectively, 

while AlexNet achieves precision and accuracy of 93.75% and 93.81%, respectively. Despite being one of the 

most significant and potent deep learning architectures, ResNet-50 performs poorly in comparison, achieving 

a precision and accuracy of just over 90%, indicating that ResNet-50's deeper layers cannot be effectively tuned 

for the dataset without further optimization. The outperforming ability of DCDNet is the result of its 

architecture, which was explicitly designed for medical images. Through its multi-scale feature extractor,  

residual connections, and non-maximum suppression (NMS), the DCDNet can retain minute details in dental 

X-ray images while preventing overlapping bounding box predictions. The dimensional softmax is a novel 

approach that reduces the possibility of overfitting the model, while intensive data augmentation applied during 

training creates higher variance data for the model to generalize better across different caries patterns. In 

general, the superior performance metrics obtained by the DCDNet model highlight the robustness and 

reliability of this model concerning clinical diagnosis in oral health, serving as a relevant attempt for both 

automated detection and classification of dental caries. 

 

Table 5. Object Detection Performance Metrics of Competing Models 
Model mAP@0.5 (%) mAP@0.5:0.95 (%) IoU Threshold Used Average IoU (%) 

ResNet-50 82.1 65.3 0.5:0.95 72.8 

VGG16 88.4 71.2 0.5:0.95 78.5 

AlexNet 85.2 68.0 0.5:0.95 76.4 

DCDNet 91.7 76.5 0.5:0.95 82.1 

 



                ISSN: 2089-3272 

IJEEI, Vol. 13, No. 2, June 2025:  478 – 499 

494 

The object detection results of all models (including mAP@0) are presented in Table 5, with mAP@0: 

0.95 and an average IoU. Although DCDNet does not outperform the baseline in terms of detection accuracy, 

it exhibits better localization accuracy, with higher mAP and IoU scores. These findings demonstrate that the 

model can accurately detect and localize carious lesions, with substantial spatial precision, which would be 

helpful in clinical diagnosis and automated dental screening systems. 

 

Table 6. Computational Performance and Model Complexity Comparison of DCDNet and Baseline Models 
Model Inference Time (ms/image) Model Size (MB) FLOPs (G) 

ResNet-50 38.2 98.3 4.1 

VGG16 41.7 528.0 15.3 

AlexNet 34.5 233.0 0.7 

DCDNet 22.4 27.6 1.8 

 

Table 7. Statistical Significance Analysis of DCDNet Performance Compared to Baseline Models 
Comparison Metric Mean Difference p-value (t-test) Significance 95% CI 

DCDNet vs. ResNet-50 Accuracy +7.08% 0.004 Yes [6.01%, 8.12%] 

DCDNet vs. VGG16 Accuracy +1.81% 0.021 Yes [0.92%, 2.68%] 

DCDNet vs. AlexNet Accuracy +3.80% 0.009 Yes [2.45%, 5.12%] 

DCDNet vs. ResNet-50 F1-Score +6.76% 0.003 Yes [5.70%, 7.84%] 

DCDNet vs. VGG16 F1-Score +1.65% 0.018 Yes [0.78%, 2.44%] 

DCDNet vs. AlexNet F1-Score +3.49% 0.010 Yes [2.20%, 4.68%] 

 

To quantify the practical deployability of DCDNet in clinics, computational metrics such as inference 

time, model size, and floating-point operations (FLOPs) are calculated. As illustrated in Table 6, DCDNet 

outperforms all other models, achieving the fastest inference time (22.4 ms per image) and the smallest model 

size (27.6 MB). Even though compact, the DCDNet performs accurate detection and can potentially be 

deployed in real-time in resource-limited clinic settings, such as a dental clinic or a mobile diagnostic unit. 

To statistically justify performance enhancements, we performed paired t-tests and calculated 95% 

confidence intervals using bootstrapping over five independent training runs. As shown in Table 7, the 

proposed DCDNet achieves superior performance in both Accuracy and F1-score (p < 0.05) compared to all 

baseline models. These improvements obtained are significant and not due to random variation, indicating the 

effectiveness of our proposed model. 

DCDNet surpasses other models not only based solely on raw accuracy, but also because of its 

architectural compatibility with the domain-specific challenges of dental imaging. The multi-scale 

representations enhance the capability to capture lesions of different sizes, and residual connections help 

maintain large gradients and deep features, which are essential for fine-grained localization. The DCDNet was 

developed from the beginning to the end with the UFBA dataset, in contrast to the baseline ResNet-50 and 

YOLOv3, which were pretrained on ImageNet and fine-tuned with the same training settings (batch size 16, 

50 epochs, Adam optimizer, with an initial learning rate of 1e-4). However, it achieved higher accuracy with 

fewer parameters (~18M vs. ResNet-50’s 25M) and shorter inference time (22 ms/image vs. 38 ms/image on 

an RTX 3090 GPU). These aspects together render DCDNet as a more suitable model for clinical applicability 

when speed, accuracy, and interpretability are of concern. 

 

4.3 Ablation Study 

An ablation study is an important experiment that allows for the isolated examination of the effect of 

architectural elements in a deep learning model. In DCDNet, we gradually disabled essential modules (residual 

connection, multi-scale feature extraction, non-maximum suppression (NMS), and data augmentation) to 

investigate their impact on performance. This strategy can help justify design considerations, accelerate the 

identification of performance limitations, and illustrating quantitatively how each component of the design 

improves the accuracy, robustness, and clinical relevance of the model in dental caries diagnosis. 

 

Table 8. Ablation Study on the Effect of Architectural Components in DCDNet 
Configuration Precision Recall F1-Score Accuracy 

DCDNet (Full) 97.23 97.02 97.12 97.61 

Without Residual Connections (RC) 94.75 94.51 94.62 94.83 

Without Multi-Scale Features (MSFE) 93.62 93.28 93.45 93.69 

Without Non-Maximum Suppression (NMS) 92.12 91.85 91.98 92.37 

Without Data Augmentation (DA) 90.58 90.21 90.39 90.67 

 

Table 8 presents ablation studies to examine the contributions of key architectural components to 

DCDNet’s performance. The best performance was achieved by the complete model (97.61%), followed by 

the partial model removal versions. Disabling residuals or multi-scale degraded the performance, and 
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removing data augmentation and NMS made it worse. These results confirm that every part of DCDNet 

contributes to boosting performance. 

 

 
Figure 12. Ablation Study on DCDNet Components for Dental Caries Detection 

 

We demonstrate the effectiveness of the main architectural components on the performance of the 

DCDNet model across four metrics (Precision, Recall, F1-Score, and Accuracy) in Figure 12. The 

configurations consist of the entire DCDNet model, as well as versions without the individual components: 

Residual Connections (RC), Multi-Scale Feature Extraction (MSFE), Non-Maximum Suppression (NMS), and 

Data Augmentation (DA). In Subplot (a), precision degrades from 97.23% in the complete model to 94.75% 

when RC is removed, 93.62% when MSFE is removed, and further to 90.58% when DA is removed. This 

suggests that data augmentation, by far, reduces false positives by allowing the model to better generalize over 

various imaging specifics. 

Besides, as shown in subplot (b), not only the key components can make the recall decrease to a great 

extent, which decreases from 97.02% to 94.51% (without RC), 93.28% (without MSFE), 91.85% (without 

NMS), and 90.21% (without DA). The high recall value of the full model demonstrates that it is more sensitive 

to obtaining true positives, a key factor in clinical diagnostics. In subplot (c), there is the same tendency in F1-

Score, which, as can be observed, the harmonic average of precision and recall reduces as components are 

taken away. Such a drop is not observed without data augmentation (F1-Score from 97.12% in the complete 

model to as low as 90.39%), suggesting that all components cooperate to balance performance. 

Lastly, in subplot (d), it can be observed that the accuracy degrades to 97.61% for the entire model 

and 90.67% for the case where downgraded performance is attributed to the absence of data augmentation. It 

can be observed that omitting MSFE affects accuracy more than omitting NMS, which indicates that it is crucial 

to capture features at different scales to localize fine-grained lesions automatically in dental images. 

Collectively, the results validate that every architectural improvement—residual connection, multi-scale 

feature, NMS, and augmentation—substantially adds to DCDNet's clinical-grade detection performance. 

 

4.4 Performance Comparison with State of the Art 

This section compares the proposed DCDNet with the classical deep learning models, including Faster 

R-CNN, YOLOv3, SSD, and RetinaNet. The key performance comparison is based on Precision, Recall, F1-

Score, and Accuracy, where DCDNet outperforms other methods applied for detection and plays a significant 

role in analyzing dental caries on the UFBA UESC Dental Image Dataset. 

 

Table 9. Performance Comparison of DCDNet with State-of-the-Art Models for Dental Caries Detection 
Model  Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Faster R-CNN (Ren et al., 2015) [31] 91.50 90.80 91.14 90.90 

YOLOv3 (Redmon et al., 2018) [32] 93.20 92.85 92.97 93.00 

SSD (Liu et al., 2016) [33] 92.80 92.50 92.64 92.70 

RetinaNet (Lin et al., 2017) [34] 94.00 93.75 93.87 94.10 

DCDNet (Proposed) 97.23 97.02 97.12 97.61 
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DCDNet is compared with previous state-of-the-art models used for dental caries detection (numbers 

refer to the corresponding baseline model in the literature, as listed in Table 9). This indicates that DCDNet 

achieves higher Precision, Recall, F1-Score, and Accuracy compared to Faster R-CNN, YOLOv3, SSD, and 

RetinaNet. DCDNet achieves a detection accuracy of 97.61%, demonstrating the effectiveness of multi-scale 

feature extraction,  residual connections, and non-maximum suppression (NMS) in dental image analysis. 

 

 
Figure 13. Performance Comparison of Detection Models for Dental Caries Detection 

 

Additionally, Figure 13 compares the performance of various deep learning models for dental caries 

detection using four standard performance metrics: Precision, Recall, F1-Score, and Accuracy. The models 

compared include Faster R-CNN, YOLOv3, SSD, RetinaNet, and the DCDNet proposed. The figure illustrates 

the performance of various models, highlighting DCDNet as the most superior and consistently outperforming 

the other models across all evaluated metrics, providing both reliable detection and high-confidence 

classification. Regarding the results of the DCDNet model, the precision value of 97.23% is the highest among 

the regularization techniques, indicating that the proposed model effectively minimizes false positive 

predictions while accurately detecting dental caries. Such a high precision is a strong quality for a model as it 

can effectively discriminate between positive and negative samples. Likewise, the Recall (97.02%) is 

maximized, indicating the model's ability to detect most caries cases in reality, thereby reducing the chance of 

failed detection. We also observed consistent performance for both error categories, as indicated by the 

harmonic mean F1-Score (97.12%), which provided further insight into the balance of these two metrics due 

to their prominence within this factorization. Lastly, the accuracy (97.61%) validates the performance of 

DCDNet, as it correctly predicts the labels of the dataset and outperforms all the models. 

Baseline models [RetinaNet, YOLOv3 scored 94.00% precision (94.10% accuracy in retina) and 

93.20% precision (93.00% accuracy in retina)] are showing competitive performance in the task. On the 

contrary, the metrics for Faster R-CNN and SSD are relatively low because DCDNet achieves a higher 

confidence level in detecting complex dental anomalies than traditional image processing methods, such as 

Faster R-CNN and SSD. The excellent performance of DCDNet may be attributed to its innovative multi-scale 

feature extraction, connections, and non-maximum suppression (NMS) architectures. Additionally, DCDNet 

features these beautiful and powerful architectures that enable the network to retrieve more detailed histories 

and suppress redundant bounding boxes. The data augmentation during training has contributed significantly 

to this generalization across diverse categories in the UFBA UESC Dental Image dataset. Finally, we have 

observed that DCDNet-adopted Faster R-CNN achieves improved detection performance compared to state-

of-the-art approaches, as shown in Figure 10. Such computational efficiency makes DCDNet a potential 

frontrunner for implementing live decision-making in dental diagnostics, which demands accuracy and 

reliability for early diagnosis and treatment planning. 

 

4.5 Explainability and Clinical Interpretability 

To enhance clinical trust and interpretability, we incorporated Grad-CAM (Gradient-weighted Class 

Activation Mapping) into the proposed DCDNet model to visualize its decision-making mechanism. Grad-

CAM produces heatmaps, illuminating regions of the images that contribute the most to the classification. 

Figure 14 illustrates that the model effectively concentrates on caries-affected areas in actual positive cases, 

but generates dispersed or off-target attention maps in false negative or ambiguous inputs. These visualizations 

provide transparency into how the model arrives at its predictions, helping clinicians confirm the predictions 

made by the automation. Accordingly, the incorporation of Grad-CAM closes the gap between deep learning 

predictions and clinical decision-making by providing visual clues towards domain knowledge. 
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Figure 14. Grad-CAM Visualizations on Real Images for DCDNet Interpretability 

 

Grad-CAM visualisations are superimposed on actual dental caries images to illustrate the 

interpretability of the DCDNet model in Figure 14 in subfigure (a). The actual positive case exhibits intense 

and localized activation right over the carious region, proving that the model's decision is made based on 

clinically relevant features. Subfigure (b) shows a false negative example of poor localization (or out-of-focus 

attention) or even a shift from the lesion, indicating that the network failed to detect this. In subfigure C, the 

ambiguous case presents with scattered or disseminated activation, which is indicative of assisting in prediction 

and indicates that the clinician should review borderline cases. Subfigure (d) presents a severe lesion with 

broad and dense activation, indicating the DCDNet's sensitivity to large and obvious pathologies. These visual 

indicators do not only enhance the interpretability but also provide assurance to dental health professionals in 

a way that they can estimate the model’s focus on visually well-defined caries foci: they bridge the gap between 

the AI decisions and the clinical rationale. 

 

5. DISCUSSION 

The detection of dental caries has received considerable attention in medical imaging research, 

especially with the recent development of deep learning methods for automated diagnosis. Traditional machine 

learning methods relied on engineered features and had limited capacity to understand patterns in dental 

images, resulting in poor performance. Recently proposed deep learning models such as Faster R-CNN, 

YOLOv3, SSD, and RetinaNet have shown significant progress in medical image analysis. Yet, despite their 

advantages, challenges remain, such as inconsistent feature extraction, overlapping bounding boxes, and 

limited generalization, mainly when processing subtle patterns in dental radiographs. One significant gap 

identified in the literature is that while existing models trade off between detection accuracy and localization 

reliability in identifying dental caries, there is still room for improvement. Most state-of-the-art approaches 

suffer from false detections due to multi-level predictions or non-detections resulting from weak feature 

representation. Such a gap makes building new deep-learning architectures suited for effective feature 

extraction and localization in dental imaging tasks imperative. 

To overcome these issues, we introduce DCDNet,  a new deep learning framework with multi-scale 

feature extraction, residual connections, NMS, and data augmentation to improve performance. Multi-scale 

feature extraction enhances detection capabilities for varied lesion dimensions, and residual connections 

facilitate optimal gradient propagation through the network during training. NMS removes overlapping 

predictions, and data augmentation helps work towards better model generalization. The experimental results 

demonstrate that DCDNet outperforms state-of-the-art models in terms of precision, recall, F1 score, and 

accuracy across all tests. Our technique can minimize both false positives and false negatives in caries 

detection, indicating the model's great potential for clinical decision support. In this study, we propose that the 

limitations seen in existing models can be mitigated by incorporating several architectural improvements 

specific to dental images.  

Although DCDNet performed well in terms of accuracy on the UFBA UESC Dental Image Dataset, 

we recognize that the use of a single-source dataset is a significant limitation to the generalizability of our 

conclusions. To overcome this limitation, we will investigate domain adaptation methods in the future and 

assess the model on external datasets learned from different clinical scenarios. This may help evaluate the 

adaptability of DCDNet in various imaging scenarios and patient cohorts. This study is particularly significant 

for developing automated diagnostics in dental healthcare, which enables earlier intervention and improved 

accuracy in the analysis of dental radiographs. The limitations of the study are discussed further in Section 5.1, 

which supports the validity of the proposed approach. 

 

5.1 Limitations of the Current Study 

Although the DCDNet model achieved promising performance, this study has some limitations. First, 

performance is assessed on a single dataset (UFBA UESC Dental Image Dataset), which raises concerns about 

the generalizability of this method to different datasets with varying imaging conditions. Second, the data 

employed to train the model are almost exclusively X-ray images, and the model's performance on other dental 
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imaging modalities, such as intraoral photographs, remains unexplored. Third, although data augmentation was 

employed, real-world variability in clinical settings, such as poor-quality scans of unannotated areas, may 

compromise the model's robustness. Correcting these aspects would make the system more universally 

applicable. 

 

6. CONCLUSION AND FUTURE WORK  

This paper proposes DCDNet, a deep learning framework for automated dental caries detection, using 

the UFBA UESC Dental Image Dataset. It relies on multi-scale feature extraction, residual connections, non-

maximum suppression (NMS), and data augmentation, yielding substantial improvements in classification 

accuracy and localization performance compared to state-of-the-art models. The experimental results showed 

that the precision, recall, F1-score, and accuracy of DCDNet surpassed those of current methods, indicating 

that DCDNet reduces false positives and false negatives in dental caries detection tasks. Although the proposed 

model achieved excellent results, the study is limited to a single dataset of dental X-ray images, which may 

compromise generalizability across other datasets and imaging modalities. Image quality variation in the real 

world and incomplete annotations can also affect model robustness. To further establish its clinical 

applicability, the dataset can be expanded,  and the framework validated on multiple imaging types, including 

(but not limited to) intraoral photographs and CBCT scans. Future work could involve generalizing multi-

modal dental imaging analysis in the DCDNet and incorporating explainable AI methods for improved clinical 

interpretability. Investigating domain adaptation strategies and federated learning may enable even greater 

model generalizability across geographically heterogeneous datasets. This work aims to further the 

implementation of AI-assisted diagnoses in the dental health field by enabling early risk assessment and 

facilitating more effective treatment planning. 
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