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 A In this paper, an adaptive direct fuzzy control system is presented to 

control the robot manipulator in task space. It is assumed that robot system 

has unknown dynamic and uncertain kinematic. The control system and 

adaption mechanism are firstly designed for joint space tracking. Then by 

using inverse Jacobian strategy, it is generalized for task space. After that, to 

overcome the problem of Jacobian matrix uncertainty, an improved adaptive 

control system is designed. All the design steps are illustrated by simulations. 
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1. INTRODUCTION  

Most robot applications are in task space or Cartesian space. While a lot of research has been done 

on controlling the robot manipulators in task space [1]-[3], most of them require exact knowledge of the 

system. Robot manipulator systems are highly nonlinear, and the system dynamics change when robot picks 

up different tools. The robot kinematics and Jacobian matrix are hence uncertain, and the transferring 

information from joint space to Cartesian space is not completely correct. In control systems theory, to deal 

with such problems, adaptive control methods are usually proposed and used in all fields [4]-[7]. In robotics 

system control [6], [8]-[10] proposed adaptive sliding mode control to overcome the uncertainties in 

dynamics and kinematics. The sliding vector is the joint space error and the adaption law is usually extracted 

from Lyapunov functions to guarantee the stability. In [11], an adaptive back stepping method is presented to 

control the position of robot manipulator based on support vector machine; the main controller is a state 

feedback control system and the stability is proved by Lyapunov theory. Adaptive impedance control 

strategies are also presented for robotic systems [12], [13]. In [13], the system uncertainties are approximated 

by a radial basis function neural network. In [12], a neural network is designed to approximate the unknown 

dynamics and drive the robot without velocity sensor. In the last decade, using of intelligent methods such as 

neural networks, fuzzy systems, and intelligent optimization algorithms in robotic systems and other control 

systems has increased. These methods may be used as the main control system, or they may approximate a 

part of dynamics or uncertainties. Neural networks and fuzzy systems can approximate any arbitrary 

nonlinear function, so they have frequently been used in many robot control systems, as a system model or 

control strategy. In [14], an adaptive neural network control system is designed based on unified objective 

bound to decrease the effect of initialization error on transient response of the robot manipulator. A neural 

network control system is presented in [15] to deal with input dead zone and output constraints. The input 

dead zone and the robot model are approximated by a neural network, and the output constraint is considered 
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in Lyapunov function. Ref. [16] proposed an ANFIS-PD+I based hybrid force/position controller for 

unspecified robot dynamics in the presence of external disturbances. Fuzzy logic control (FLC) systems are 

widely used in robot control systems. The robustness of the control system is usually improved by using 

fuzzy control systems instead of classical control strategies, and the experts and operators’ experiences can 

be added to the control system. Different fuzzy control methods, such as Simple FLC system [17], fuzzy PID 

control systems [18], fuzzy sliding mode control systems [19] and adaptive fuzzy systems [20]  

have been presented. A review on controlling a two-link robot manipulator by fuzzy techniques has been 

recently done in [21].  

In our paper, an adaptive direct fuzzy control system is designed to control a robot manipulator in 

task space with unknown dynamic and uncertain kinematics. The control method is firstly designed for joint 

space control of the robot manipulator based on the direct adaptive fuzzy control approach presented in [22]. 

After that, the proposed method is generalized to task space control system by using inverse Jacobian 

methodology. The results are accepted when the Jacobian matrix is known, and it does not have acceptable 

results when there is uncertainty in Jacobian matrix. To deal with this problem, a new update law is proposed 

in the next step. The new presented update law guarantees the acceptable performance of robot manipulator 

systems with unknown dynamics and uncertain Jacobian matrix. The stability is proved by Lyapunov 

method. Four simulations have been done on an industrial PUMA robot to illustrate all the design steps and 

control system effectiveness.  

The paper is structured as follows. Section 2 introduces the three-link industrial robot PUMA. Direct 

adaptive fuzzy control system for joint space control is designed in Section 3. A simulation on Puma robot in 

joint space in existence of disturbance is also provided in Section 3. Extending the control system to control 

the robot end effector has been discussed in Section 4. The new adaption law and improved control system 

have been presented in Section 5. Section 6 concludes the paper. 

 

 

2. PUMA ROBOT MODEL  

The PUMA 560 (Programmable Universal Manipulation Arm) is an industrial robot arm which has 

six degrees of freedom resulted from three rotational joints. It owns three joints for arm and three joints for 

wrist. Since the purpose of this paper is just to control the position of robot end point in task space, the robot 

arm joints are only considered in robot model. The wrist joints are responsible for end point final angle A 

PUMA schematic is shown in Figure 1. The three link robot dynamic equations can be written as [23]: 
 

𝑀(𝑞)�̈� +  𝐶(𝑞, �̇�) + 𝑔(𝑞) = 𝑄  (1) 
 

where 𝑞 ∈ 𝑅3 are the joint coordinates, 𝑀(𝑞) ∈  𝑅3×3 is the symmetric positive-definite inertia matrix, 

𝐶(𝑞, �̇�) represents the coriolis and centripetal terms, g(q) represents the gravity effects and Q is a control 

input vector in 𝑅3 which represents the torques applied to three joints. The position of robot end –effector 

can be calculated from joint coordinates through robot kinematic equation which can be expressed as: 
 

𝑋 = ℎ(𝑞)  (2) 
 

where X is the position vector of robot end-effector in task space and h(q) is a nonlinear function extracted 

from kinematic equations. The velocity of end-effector is related to joint velocity through Jacobian matrix 

J(q) ∈ 𝑅3×3 as 
 

�̇� = 𝐽(𝑞)�̇�  (3) 
 

 

 
 

Figure 1. A schematic of PUMA 560 arm [24] 
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3. JOINT SPACE CONTROL SYSTEM  

The control objective is to design a feedback controller 𝑢 = 𝑢(𝑍|𝜃) based on fuzzy systems and an 

adaptation law for adjusting the parameter vector 𝜃, such that the robot joint angles q follows the ideal output 

𝑞𝑚, as close as possible. The fuzzy controller is designed with nine fuzzy rules in the form of: 

 

𝐿𝑗 ∶ 𝑖𝑓 𝑧1 𝑖𝑠 𝐴1
𝑗
 𝑎𝑛𝑑 𝑧2 𝑖𝑠 𝐴2

𝑗
 𝑇𝐻𝐸𝑁 𝑦 =  𝑆Lj 

 

where 𝐿𝑗 denotes the j-th fuzzy rule defined in Table 1. The inputs are 𝑧1 = 𝑞𝑑 − 𝑞 and 𝑧2 = 𝑞�̇� − �̇� and 𝑧 =

[𝑧1, 𝑧2]
𝑇. 𝐴𝑖

𝑗
 are the fuzzy input sets which are shown in Figure 2 and it is the same for both of inputs. 𝑦 is the 

output, for 𝑗 = 1,2, … ,9 and 𝑖 = 1,2. Specifically, using the product inference engine, singleton fuzzifier and 

center average defuzzifier, the output 𝑢(𝑧) ∈ 𝑉 ⊂ 𝑅 of the fuzzy system is in form of  

 

𝑢(𝑍|𝜃)  =
∑ (�̅�𝑢

𝑙𝑗
)9

j=1 (∏ μ
A

i
j(zi))

n
i=1

∑ (∏ μ
A

i
j(zi))

2
i=1

9
j=1

  (4) 

 

where �̅�𝑢

𝑙𝑗
 is the center of output membership function for the j-th rule. Let �̅�𝑢

𝑙𝑗
 be the free parameters that are 

collected into a vector of θ ∈ 𝑅9 . The output membership functions of the proposed fuzzy system with 

initialized center (𝜃0) are shown in Figure 3. The objective is to update vector θ to improve the controller 

performance. Hence, the center of output membership function is changed adaptively to overcome the 

uncertainty and unknown dynamics. We can rewrite the 𝑢(𝑍|𝜃) in form of 𝑢(𝑍|𝜃) = 𝜃𝑇𝜀(𝑍) where 𝜀(𝑍) is a 

nine-dimensional vector in form of  

 

𝜀𝑘(𝑍) =
 [∏ 𝜇𝐴𝑖

𝑙𝑘(𝑧𝑖)]𝑛
𝑖=1

∑  [∏ 𝜇𝐴𝑖

𝑙𝑗(𝑧𝑖)
]𝑛

𝑖=1
9
𝑙𝑗=1

  k=1, 2 , …., 9  (5) 

 

and parameters in vector θ will be changed during online operation. The next task is to design an adaptation 

law for θ, such that the tracking error e is minimized. 

 

 

Table 1- Fuzzy control system rules 
Chang of error 

Error Negative Zero Positive 

Positive PM PH PVH 

zero NS Zero PS 

negative NVH NH NM 

 

 

 
 

Figure 2. Main fuzzy control system input membership function 
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o 

Figure 3. Main fuzzy control system output membership function with initial center 

 

 

Adaption law:  

The robot system can be rewritten as an unknown function in form of below 
 

�̈� = 𝑁(q, q̇) + 𝑏𝑢  (6) 
 

according to linearization feedback theory, if we choose 
 

 𝑢∗ =
1

b
[−𝑁(q, q̇) + 𝑞�̈� + 𝐊T𝐞]  (7) 

 

where 𝑒 = 𝑞𝑚 − 𝑞, 𝐞 = (𝑒, �̇�)𝑇 , 𝐊 = (𝑘1, 𝑘2)
𝑇, then we obtain that closed-loop system stability is governed by 

 

ë + k1ė + k2e = 0  (8) 
 

Since 𝑁(q, q̇) are unknown, the ideal controller above cannot be implemented. Then the control 

objective changes to estimating 𝑢∗ by an adaptive fuzzy controller u(𝑍|θ). Substituting 𝑢 = 𝑢(𝑍|𝜃) into (6) 

and by rearrangement, we obtain  
 

en = −𝐊T𝐞 + b[u∗ − u(𝑍|θ)]  (9) 
 

assume that  
 

Λ =

[
 
 
 

0 1 

0 0 

 … 0

… 0…  … … …

0  0

−𝑘𝑛  −𝑘𝑛−1

 …  1 

 …  −𝑘1]
 
 
 

 𝐛 = [

0

…
0

b

]  (10) 

 

the closed-loop dynamics can be written into the vector form 
 

�̇� = Λ𝒆 + 𝒃[u∗ − u(𝑍|θ)]  (11) 
 

define the optimal parameters  
 

𝜃∗ = arg minθ∈R9[sup𝑧∈R2|u(Z|θ) − u∗|]  (12) 

 

and the minimum approximation error 
 

𝜔 = u(Z|θ∗) − u∗  (13) 

 

we can rewrite the error (11) as 
 

�̇� = Λ𝒆 + 𝑏(𝜃∗ − 𝜃)𝑇𝜀(𝑍) − 𝒃𝜔  (14) 
 

Consider the Lyapunov function candidate 
 

𝑉 =
1

2
𝒆𝑇𝑃𝒆 +

𝒃

2𝛾
(𝜃∗ − 𝜃)𝑇(𝜃∗ − 𝜃)  (15) 
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where P is a positive definite matrix satisfying the Lyapunov equation 𝛬TP + PΛ = −Q , (Q is a an arbitrary 

positive definite matrix) and 𝛾 is a positive constant. 

The time derivative of V along the closed-loop system trajectory is  

 

�̇� = −
1

2
𝐞TQ𝐞 + 𝐞T𝑃𝒃[(𝜃∗ − 𝜃)𝑇𝜀(𝑍) − 𝜔] −

𝑏

 𝛾
(𝜃∗ − 𝜃)𝑇�̇�  (16) 

 

Let 𝑝𝑛 be the last column of P, then from b = (0, ..., 0, b) we have 𝐞T𝑃𝒃 = 𝐞T𝑝𝑛𝑏. So, we can 

rewrite �̇� as 

 

�̇� = −
1

2
𝐞TQ𝐞 +

𝑏

 𝛾
(𝜃∗ − 𝜃)𝑇[𝛾𝐞T𝑝𝑛𝜀(𝑍) − �̇�] − 𝐞T𝑝𝑛𝑏ω  (17) 

 

If we choose the adaptation law as 

 

�̇� = 𝛾𝐞T𝑝𝑛𝜀(𝑍)  (18) 

 

then 

 

�̇� = −
1

2
𝐞TQ𝐞 − 𝐞T𝑝𝑛𝑏ω  (19) 

 

Since 𝑄 > 0 and 𝜔 is the minimum approximation error, it is expected that by designing the fuzzy 

system u(Z|θ) with a sufficiently large number of rules, the 𝜔 would be small enough such that |𝐞T𝑝𝑛𝑏ω| <
1

2
𝐞TQ𝐞, which results in �̇� < 0.  

So, the adaption law is extracted from Lyapunov function to guarantee the stability. The joint space 

control structure is displayed in Figure 4. The parameter 𝛾 is the convergence rate. By increasing 𝛾, the error 

usually decreases faster, but if it is set as a large number, small change in error results in a large change in 

adjustable parameters which is not acceptable.  

 

3.1.  Joint space control simulation (simulation A) 

To illustrate the effectiveness of the proposed controller in joint space, a simulation on PUMA 560 

robot has been done in Matlab software. A desired trajectory shown in Figure 5 is considered for joint 

coordinates. The vector 𝜃 is the center of fuzzy output membership functions. The goal of adaptive controller 

is to update the vector 𝜃 according to (18) to improve the control performance. The initial center of fuzzy 

output membership functions is set to  

 

𝜃0 = [ −12 − 9 − 6 − 3 0 3 6 9 12]  (20) 

 

To illustrate the effect of adaption law, one of controllers which is applied to joint 2 is non-adaptive 

control system. The center of fuzzy output membership function related to joint 2 controller is fixed and it is 

same as 𝜃0. The other two controllers applied to joint1 and joint 3 will be adapted by (18). A disturbance 

pulse is also added to output joint coordinates which is started in second 1, and it will be ended in second 2. 

The tracking errors of joints are displayed in Figure 6. It is clear that joints 1 and 3, in which the controllers 

are adapted by adaption law, have smaller errors and better performance in presence of disturbance. The 

center of “zero” membership functions related to fuzzy outputs is shown in Figure 7. This figure illustrates 

how the membership functions change adaptively to compensate the system error and to overcome the 

disturbance. From all the results, the proposed controller has acceptable performance in presence of unknown 

dynamics and disturbance. 

 

 

 
 

Figure 4. Proposed joint space control structure 
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Figure 5. Desired trajectory for joints angle in simulation A 

 

 

 
 

Figure 6. Robot joints tracking error in simulation A. Joint 2 has non-adaptive control system and a 

disturbance pulse is also added between seconds 1 and 2. 

 

 

 
 

Figure 7. Center of fuzzy output “zero” membership functions in simulation A. 
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4. TASK SPACE CONTROL SYSTEM  

In joint space control strategies, it is assumed that a desired trajectory is specified for joint variables 

such as joint position or velocity. But the robot motion is usually defined in task space or Cartesian space. 

The control methods in which the error is defined based on robot end-effector position and velocity in 

Cartesian space are named task space control schemes. There are some different control systems in this field, 

but one of the most known methods is inverse Jacobian strategy displayed in Figure 8. Cartesian error is 

mapped to joint space error through inverse Jacobian matrix based on (3). The main problem that limits the 

application of this method is uncertainties in robot kinematics and Jacobian matrix. Therefore, the control 

system would not have successful performance if the Jacobian matrix is not exact. The proposed method in 

the last section is used for task space control by using inverse Jacobian strategy. Two different simulations 

have been done with exact and non-exact Jacobian matrix. When the Jacobian matrix is exact, the control 

system has acceptable performance in task space although the robot dynamics are unknown. On the other 

hand, the proposed control system does not work perfectly when Jacobian matrix is uncertain. The proposed 

control structure in task space is displayed in Figure 9.  

 

 

 
 

Figure 8. Inverse Jacobian strategy 

 

 

 
 

Figure 9. Task space adaptive direct fuzzy control structure 

 

 

The presented control system is applied to PUMA robot to track a circle in Cartesian space with 

following equations: 

 

{
𝑥 = 0.203 sin(𝜋𝑡)

𝑦 = 0.203 cos (𝜋𝑡)
𝑧 = 0.4013 

  (21) 

 

simulations will be explained in following subsections. 

 

4.1.  Task space control system with exact Jacobian matrix simulation (simulation B) 

In this simulation, it is considered that Jacobian matrix is exact and there is no kinematic uncertainty 

in robot manipulator. The error is calculated in Cartesian space, and it is transmitted to joint space correctly 

by using exact inverse of Jacobian matrix. The robot end effector position tracking the desired path is shown 

in Figure 10. Tracking is performed completely. The Cartesian error is displayed in Figure 11. The voltage of 

the motors which move the joints are shown in Figure 12. The voltages are limited and acceptable. From all 

the simulation results, that proposed control system has acceptable performance using exact Jacobian matrix.  
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Figure 10. Robot end effector position tracking desired trajectory in simulation B. 

 

 

 
 

Figure 11. Cartesian space error in simulation B. 

 

 

 
 

Figure 12- Input voltage of actuators which apply the torque to robot joints in simulation B 

 

 

4.2.  Task space control simulation with uncertain Jacobian matrix (simulation C) 

To investigate the control performance using uncertain Jacobian matrix, 50 percent uncertainty is 

considered for kinematic parameters (Denavit Hartenberg parameters). The Jacobian matrix is hence inexact 

and imperfect error is transmitted to joint space. The control system is applied to PUMA robot to track a 

circle the same as the last subsection. Tracking error in Cartesian space is displayed in Figure 13, and the 

motor voltages are shown in Figure 14. Tracking error increases in comparison with simulation B. The motor 

voltages are increased in unstable manner to compensate the error. Therefore, the system is out of control. It 

can be found that the proposed control does not have acceptable performance if there exists uncertainty in 

Jacobian matrix. To overcome this problem, an improved adaptive fuzzy task space control is presented in 

the next section.  
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Figure 13. Tracking error in Cartesian space in simulation C. The error is increased in comparison with 

simulation B. 

 

 

 
 

Figure 14. Input voltage for joint actuators in simulation C. It shows that the control system is not applicable 

when the Jacobian matrix is not exact. 

 

 

5. IMPROVED TASK SPACE ADAPTIVE FUZZY CONTROL SYSTEM  

To overcome the problem of uncertainty in Jacobian matrix, the presented control system should be 

improved. The controller is now designed directly in task space. The control objective is now to design a 

feedback law 𝑢 = 𝑢(𝑍|𝜃) based on fuzzy systems and an adaptation law for adjusting the parameter vector 

𝜃, such that the robot end effector position X follows the ideal output 𝑋𝑚, as close as possible. The main 

fuzzy system is the same as Section 3, and vector 𝜃 is also the center of fuzzy output membership function. It 

is necessary to rewrite the robot dynamics in task space. Derivative of (3) would be 

 

Ẍ = J̇(𝑞)�̇� + J(𝑞)�̈�  (22) 

 

by substituting �̈� from (6) into (22) we have  

 

Ẍ = J̇(𝑞)�̇� + J(𝑞)N(q, q̇) + J(𝑞)𝑏𝑢  (23) 

 

based on feedback linearization theory, u can be written as  

 

u = H(q, q̇) +
1

𝑏
J−1𝑉  (24) 

where  
 

H(q, q̇) =
1

𝑏
[−𝑁(𝑞, �̇�) − J−1𝐽�̇�]̇  (25) 
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so, the closed-loop task space robot dynamic by substituting (24) in (23) can be calculated as  

 

�̈� = V  (26) 

 

now by choosing V based on linear control systems as  

 

𝑉 = �̈�𝑑 + 𝑘1(�̇�𝑑 − �̇�) + 𝑘2(𝑋𝑑 − 𝑋) = �̈�𝑑+𝐊T𝐄𝑻  (27)  

 

where 𝐄𝑻 = (𝑒𝑡𝑎𝑠𝑘, �̇�𝑡𝑎𝑠𝑘)
𝑇 is task space error, and 𝐊 = (𝑘2, 𝑘1)

𝑇, the ideal control law would be as in the 

following equation if robot dynamics are known: 

 

𝑢∗ = [H(q, q̇) +
1

𝑏
J−1�̈�𝑑] +

1

𝑏
J−1𝐊T𝐄𝑻  (28) 

 

Since the robot dynamic is unknown, the control objective is to design a fuzzy controller 𝑢(𝑍|𝜃) 
which estimate 𝑢∗. Z is vector of fuzzy system input. By applying 𝑢(𝑍|𝜃) to system (considering (𝑢(𝑍|𝜃) =
 𝑢∗ + [𝑢(𝑍|𝜃) − 𝑢∗ ])) , the error dynamic system would be  

 

ëtask = −𝐊T𝐄𝑻 + 𝐽b[u∗ − u(Z|θ)]  (29)  

 

now by defining the matrixes Λ and B as  

 

 Λ = [
�̅� 1̅

−𝐾2 −𝐾1
] , 𝑩 = [

𝑂
𝐽b

]  (30)  

 

the error dynamics can be rewritten in matrix form as  

 

𝐄�̇� = Λ𝐄𝑻 + 𝑩[u∗ − u(Z|θ)]  (31) 
 

by using the same definitions for ideal parameter 𝜃∗ and least estimation error 𝜔 in (12) and (13), (31) can be 

written as  

 

 𝐄�̇� = Λ𝐄𝑻 + 𝑩(𝜃∗ − 𝜃)𝑇𝜀(𝑍) − 𝐁𝜔  (32) 

 

now, it is required to stabilize the error dynamic (32). The following Lyapunov is the candidate to guarantee 

the stability. 

 

𝑉 =
1

2
𝐄𝑻

𝑇𝑃𝐄𝑻 +
𝑏

2𝛾
(𝜃∗ − 𝜃)𝑇(𝜃∗ − 𝜃)  (33) 

 

where 𝛾 is a positive constant and P is a positive definite matrix which satisfies the following  

Lyapunov relation. 

 

𝛬TP + PΛ = −Q  (34) 

 

the derivative of (33) with respect to time would be  

 

�̇� = −
1

2
𝐄𝑻

TQ𝐄𝑻 + 𝐄𝑻
T𝑃𝑩[(𝜃∗ − 𝜃)𝑇𝜀(𝑍) − 𝜔] −

𝑏

 𝛾
(𝜃∗ − 𝜃)𝑇�̇�  (35) 

 
same assumption like (16), (35) can be rewritten as  

 

 �̇� = −
1

2
𝐄𝑻

TQ𝐄𝑻 +
𝑏

 𝛾
(𝜃∗ − 𝜃)𝑇[𝛾𝐄𝑻

T𝑝𝑛𝐽𝜀(𝑍) − �̇�] − 𝐄𝑻
T𝑝𝑛𝐽𝑏ω  (36) 

so, by choosing the adaption law in form of  

 

�̇� = 𝛾𝐄𝑻
T𝑝𝑛𝐽𝜀(𝑍)  (37) 

 
then the derivative of Lyapunov function will be 

 

�̇� = −
1

2
𝐄𝑻

TQ𝐄𝑻 − 𝐄𝑻
T𝑝𝑛𝐽𝑏ω  (38) 
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which is like Section 3. If the fuzzy system is designed well with small estimation error such that 

|𝐞T𝑝𝑛𝑏ω| <
1

2
𝒆TQ𝐞, then (38) results in �̇� < 0. The updating law is like (18) but now it depends on the task 

space error, and Jacobian matrix is added to the equation. Hence, the controller can compensate the 

uncertainty in the Jacobian matrix. The controller structure is shown in Figure 15. The proposed improved 

adaptive controller is applied to PUMA robot, and simulation results are investigated in the following 

subsection. 

 

 
 

Figure 15. Improved task space adaptive fuzzy control structure 

 

 

5.1.  Improved task space adaptive control system simulation (simulation D) 

To investigate the performance of the proposed controller, it is applied to PUMA 560 robot system 

to track a desired circle in Cartesian space. The tracking error is calculated in task space along the axes of x,y 

and z. These errors are used for adaption mechanism. Then by using inverse Jacobian, the joint error is 

calculated from measured task space error. The joint space error is then sent to fuzzy systems to control the 

joints. Like |Simulation C, the Jacobian matrix has 50 percent uncertainty. By considering = 20 , the robot 

end effector position tracking desired trajectory is displayed in Figure 16. Tracking errors are shown in 

Figure 17. The error is smaller than 0.1 millimeter in steady state. The actuators voltages are displayed in 

Figure 18 which are limited and acceptable. Figure 19 illustrates the change of center of fuzzy output 

membership function during simulation. The rules which are fired with higher weight, the corresponding 

center of output function will be adapted more. From all the simulation results, the proposed control system 

has successful performance in presence of kinematic uncertainty.  

 

 

 
Figure 16. Position of robot end effector tracking the desired circle in simulation D. 
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Figure 17. Task space tracking error in simulation D 

 

 

 
 

Figure 18. Actuator input voltages in Simulation D. 

 

 

 
 

Figure 19. Center of fuzzy output membership functions (vector θ) 

 

 

6. CONCLUSION  

An adaptive fuzzy control system is proposed in this paper to control the robot manipulator in task 

space subjected to both dynamic and kinematic uncertainty. The proposed system is first designed for joint 

space tracking and then is improved to control the robot end effector in task space. Four different simulations 

have been conducted to illustrate the successful performance of the proposed controller in both joint and  

task spaces. 
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