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 A number of methods have been proposed to reduce number of leads for 
electrocardiography (ECG) measurement without decreasing the signal 
quality. Some limited sets of leads that are nearly orthogonal, such as EASI, 
have been used to reconstruct the standard 12-lead ECG by various 
transformation techniques including linear, nonlinear, generic, and patient-
specific. Those existing techniques, however, employed a full-cycle ECG 
waveform to calculate the transformation coefficients. Instead of calculating 
the transformation coefficients using a full-cycle waveform, we propose a new 
approach that segments the waveform into three segments: PR, QRS complex, 
and ST, hence the transformation coefficients were segment-specific. For 
testing, our new segment-specific approach was applied to six existing 
methods: Dower’s method with generic coefficients, Dower’s method with 
individual (patient-specific) coefficients, Linear Regression (LR), 2nd degree 
Polynomial Regression (PR), 3rd degree PR, and Artificial Neural Network 
(ANN). The results showed that the new approach outperformed the 
conventional full-cycle approach. It was able to significantly reduce the 
derivation error up to 74.50% as well as improve the correlation coefficient 
up to 0.66%.
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1. INTRODUCTION  

Facts mentioned that around 2.6 million people above 15 years old in Indonesia suffered from 
coronary heart disease [1]. Around 17.3 million World population in 2013 died caused by cardiovascular 
diseases [2], including coronary heart disease, heart failure, hypertension, and stroke. Advanced technologies 
have been implemented to reduce this number and – at the same time - to increase life expectancy. The focuses 
is prevention [3], including prediction and early diagnosis [4], for instance personalized cardiovascular disease 
monitoring devices [5].  

For diagnosis, cardiologists analyze morphology of the ECG waveform. Each segment in the 
waveform contains information of specific heart activities [6]. Optimal electrodes location for each segment is 
different, as investigated by Finlat et. al. [7].They introduced Eigenleads which is useful for pre-diagnosing 
heart pathologies and for wearable ECG, which requires high signal to noise ratio (SNR). However, for 
wearable ECG, practical aspects must be considered [8]. 

The standard 12-lead ECG with ten electrodes has been established as diagnostic reference in 
hospitals. However, it is impractical for 24-hours monitoring, wearable, and ambulatory applications due to 
difficulty to attach electrodes and sensitivity to wiring noise and motion artifacts [9]. On the other hand, non-
clinical users are not trained to find the proper electrodes location, whereas misplacement of the electrodes 
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may lead to misdiagnosis [10]. For these reasons, a number of studies have been conducted to employ a limited 
set of electrodes and transform the acquired signal to produce 12-lead ECG, which is called derived 12-lead 
ECG. The leads should be nearly orthogonal, for instance lead I, II, and V2 [11].  

A promising technique-called EASI-was demonstrated by Dower et al. [12] and has been implemented 
in hospital for years. One of its benefits is easiness to find body landmarks to place electrodes Figure 1. Three 
approaches have been investigated to calculate EASI coefficients: generic, patient-specific, and population-
specific [13]. To obtain maximum accuracy, the coefficients should be patient-specific (personalized 
coefficients) [14]. To improve EASI coefficients, several techniques have been presented such as Dower’s 
method, Linear Regression (LR), Polynomial Regression (PR), Support Vector Regression (SVR), and 
Artificial Neural Network (ANN) [9]. In those techniques, the coefficients were calculated by utiizing full 
cycle (FC) of ECG signal, i.e. all segments.  

In this study, we propose a new approach by utilizing different EASI coefficients for each ECG 
segment; therefore, it is segment-specific (SS). We segmented the waveform into three segments: 1) PR-
Interval, i.e. P wave and PR segment, 2) QRS complex, and 3) ST interval, i.e. ST segment and T wave. It was 
hypothesized that the result might minimize the transformation error. The proposed approach, i.e. SS, was then 
compared with the conventional one, i.e. FC. 
 
 
2. RESEARCH METHOD  

In this study, we used EASI lead system to reconstruct 12-lead ECG. Instead of calculating for full 
cycle ECG, we proposed to segment the ECG waveform into three segments: PR, QRS, and ST as described 
in Figure 2. So, we have different transformation coefficients for each segment. At the end, the reconstructed 
lead of segment PR, QRS, and ST were then combined to be a full ECG signal. For instance, 𝑰௩ௗ,ோ, 
𝑰௩ௗ,ொோௌ, and 𝑰௩ௗ,ௌ்் were combined into 𝑰௩ௗ,ௌௌ as formulated in (1). 𝑽௩ௗ,ௌௌ represents voltage 
of lead I to V6. 
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Figure 1. EASI lead system: Electrodes placement 
 

 
 

Figure 2. Segmenting one cycle of ECG signal 
into three segments: PR interval, QRS complex, 

and ST interval. 
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Data sets used in this study were taken from Physionet [15]. Calculation was performed using 
MATLAB (MathWorks, Natick). To evaluate our new segment-specific (SS) approach, we applied it into six 
existing methods and compared the result with conventional full cycle (FC) approach. The six existing methods 
are Dower’s method with improved generic coefficients, Dower’s method with individual (patient-specific) 
coefficients, Linear Regression (LR), 2nd-degree Polynomial Regression (PR), 3rd-degree PR, and Artificial 
Neural Network (ANN). To simplify, these methods are called method A, B, C, D, E, and F. Method A to E 
were also presented in our previous work [16]. 
a. Method A: Dower’s method with improved generic coefficients [17] 

This method has been applied in commercial EASI 12-lead ECG machines. Generic EASI coefficients were 
pre-determined statistically from a data set of 983 adult subjects. The (2) was used to calculate derived ECG 
lead voltage (𝑽௩ௗ,) from three bipolar leads: ES (𝑽ாௌ), AS (𝑽ௌ), and AI (𝑽ூ) with coefficients of 
𝛽,, 𝛽ଵ,, and 𝛽ଶ,. As the coefficients are pre-determined, SS and FC result in a same result. 
 

𝑽௩ௗ, ൌ 𝛽,𝑽ாௌ  𝛽ଵ,𝑽ௌ  𝛽ଶ,𝑽ூ (2) 
 

b. Method B: Dower’s method with individual (patient-specific) coefficients 
Basically, it is similar to method A, but it utilizes individual (patient-specific) coefficients instead of using 
pre-determined ones. 

c. Method C: Linear Regression (LR)  
The (3) is a formula used to calculate derived ECG lead voltage (𝑽௩ௗ,) from unipolar EASI lead: E 
(𝑽ா), A (𝑽), S (𝑽ௌ), and I (𝑽ூ) with coefficients of 𝛽,, 𝛽ଵ,, 𝛽ଶ, , 𝛽ଷ, ,and 𝛽ସ,. 
 

𝑽௩ௗ, ൌ 𝛽,  𝛽ଵ,𝑽ா  𝛽ଶ,𝑽  𝛽ଷ,𝑽ௌ  𝛽ସ,𝑽ூ (3) 
 

d. Method D: 2nd-degree Polynomial Regression (2nd PR) 
The (4) is a formula used to calculate derived ECG lead voltage (𝑽௩ௗ,) from unipolar EASI leads: E 
(𝑽ா), A (𝑽), S (𝑽ௌ), and I (𝑽ூ) with coefficients of 𝛽,, 𝛽ଵ,, … , 𝛽ଵସ,. 
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𝛽,𝑽ா𝑽ூ  𝛽଼,𝑽𝑽ௌ  𝛽ଽ,𝑽𝑽ூ  𝛽ଵ,𝑽ௌ𝑽ூ  𝛽ଵଵ,𝑽ாଶ  𝛽ଵଶ,𝑽

ଶ  𝛽ଵଷ,𝑽ௌ
ଶ 

𝛽ଵସ,𝑽ூଶ  
(4) 

 
e. Method E: 3rd-degree Polynomial Regression (3rd PR) 

The (5) is a formula used to calculate derived ECG lead voltage (𝑽௩ௗ,ா) from unipolar EASI leads: E 
(𝑽ா), A (𝑽), S (𝑽ௌ), and I (𝑽ூ) with coefficients of 𝛽,ா, 𝛽ଵ,ா, … , 𝛽ଷଷ,ா.  
 

𝑽௩ௗ,ா ൌ 𝛽,ா  𝛽ଵ,ா𝑽ா  𝛽ଶ,ா𝑽  𝛽ଷ,ா𝑽ௌ  𝛽ସ,ா𝑽ூ  𝛽ହ,ா𝑽ா𝑽  𝛽,ா𝑽ா𝑽ௌ 
𝛽,ா𝑽ா𝑽ூ  𝛽଼,ா𝑽𝑽ௌ  𝛽ଽ,ா𝑽𝑽ூ  𝛽ଵ,ா𝑽ௌ𝑽ூ  𝛽ଵଵ,ா𝑽ாଶ  𝛽ଵଶ,ா𝑽
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(5) 

 
f. Method F: Artificial Neural Network (ANN) with Backpropagation algorithm utilizing Levenberg-

Marquardt optimization. The network consists of 88 nodes: one input layer (4 nodes), two hidden layers 
(72 nodes) with hyperbolic tangent sigmoid activation function, and one output layer (12 nodes) with linear 
activation function. The network is described in Figure 3. To speed up the calculation, it was divided into 
12 networks, one network for each lead. The trained networks produced 𝑽௩ௗ,ி. 

 
Transformation coefficients of method B to F were calculated from segment-specific (PR, QRS, ST) 

as well as full-cycle approaches. The results from both were then compared to evaluate their performance. Root 
mean squared error (RMSE) (6) and correlation coefficient (𝑟) (7) were used as a metric to measure the 
performances, where 𝑁 is number of signal samples, 𝑉ெ௦௨ௗ, is voltage of measured (original) ECG of 𝑖-th 
sample, and 𝑉௩ௗ, is derived ECG of 𝑖-th sample. 
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Figure 3. Reconstruction of derived 12-lead ECG from lead E, A, S, and I using 88 nodes ANN  
(Method F) 

 
 

3. RESULTS AND ANALYSIS  
After obtaining segment-specific coefficients for PR, QRS, and ST, we combined coefficients from 

those three segments to build derived ECG for a whole segment (𝑽௩ௗ,ௌௌ) using (1). RMSEs comparison of 
FC and SS is presented in Figure 4. For method B, C, D, and E the new combined segment-specific (SS) 
outperformed the conventional one (FC). The exception applies to method A, where the coefficients are fixed 
and pre-determined statistically for the entire segments; hence SS and FC result in a same result [17].  

Figure 3 illustrates ECG waveforms from 12 leads (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, 
and V6) obtained from measured ECG, derived ECG from conventional FC using method A, and derived ECG 
from new SS using method E. Table 1 details the comparison of SS and FC in term of RMSE, while Table 2 
presents the correlation. From the figure and tables, we conclude that the new segment-specific approach 
outperformed conventional full-cycle in term of accuracy and correlation, i.e. reducing error significantly up 
to 74.50%, and improving correlation up to 0.66%. However, the correlation improvement, which indicates 
similarity degree of ECG morphology, was not significant. 

Segmenting ECG waveform into three segments and then calculating the transformation coefficients 
for each segment results in more accurate and higher correlation derived 12-lead ECG signal. Mathematically, 
the segmenting can be any, i.e. not necessarily PR, QRS, and ST. However, by segmenting it into the three 
well-known segments, we might have benefits from the medical perspective, since each segment indicates 
different information of heart activities [6]. These segments are utilized for different pathological heart 
diagnosis; for instance, myocardial ischemia can be diagnosed by observing ST segment and T-wave. 
Segmenting into these three segments is also very useful for pre-diagnosed patients. 

Potential drawback of the segment-specific approach would be difficulty of detecting P, Q, R, S, and 
T wave automatically; however, several methods to detect these waves have been introduced [18-20]. Besides 
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segment-specific, this study also assumed patient-specific for calculation. Although difficult to implement, 
patient-specific approach is the most accurate than generic or population-specific. The difficulty can be handled 
by current technologies; for instance, the individual coefficients can be stored in a memory card [11]  
or Cloud database.  

Derivation technique in this paper used data based on Mason-Likar electrode placement. However, 
for clinical application, a more accurate derivation might be generated from standard 12-lead placement. Mason 
Likar lead placement may cause misdiagnosis, for instance misdiagnosis and inefficient ablation in predicting 
outflow tract premature ventricular contraction (OT-PVC) origin [21]. 
 
 

 
 

Figure 4. RMSEs of conventional, i.e. FC and our new approach, i.e. SS. SS outperformed FC in  
term of accuracy 

 
 

Table 1. Generated RMSEs (µV) of 12-lead derived ECG from method A to F. The new segment-specific 
(SS) outperformed full-cycle (FC) in term of accuracy 

Leads 
A B C D E F 

FC & SS FC SS FC SS FC SS FC SS FC SS 
I 34.91 22.19 14.02 14.16 10.39 9.27 7.06 7.23 2.55 8.46 8.13 
II 113.29 38.01 15.03 28.98 9.54 18.59 3.96 10.10 1.77 26.19 7.87 
III 135.79 34.73 19.39 29.14 13.95 17.76 7.56 10.58 2.52 18.95 3.99 

aVR 48.99 25.83 10.83 17.55 7.13 11.70 4.30 7.01 1.79 10.00 4.86 
aVL 81.27 22.09 15.16 17.74 11.34 10.69 7.04 7.53 2.37 12.10 5.10 
aVF 123.86 34.67 15.87 28.19 10.76 17.58 4.89 9.69 1.76 21.45 5.53 
V1 91.98 11.75 7.50 10.04 6.42 6.86 3.10 4.55 1.17 8.25 4.01 
V2 108.53 48.97 26.26 41.97 20.91 22.35 9.91 12.90 2.98 16.49 4.83 
V3 57.22 36.54 21.34 31.93 15.98 20.53 8.07 11.26 2.83 16.23 5.51 
V4 89.23 72.10 26.38 43.35 18.13 25.86 9.79 15.98 4.66 26.64 5.04 
V5 60.46 33.96 12.33 17.71 8.23 9.02 4.80 5.97 1.80 11.45 3.62 
V6 36.69 11.15 5.14 10.37 4.25 6.51 2.29 3.56 0.91 6.43 5.13 

Average 81.85 32.67 15.77 24.26 11.42 14.73 6.06 8.86 2.26 15.22 5.30 
Error Reduction - 50.37% 52.93% 58.83% 74.50% 65.17% 

 
 

Table 2. Correlation coefficient of 12-lead derived ECG from method A to F. The new segment-specific (SS) 
outperformed full-cycle (FC) in term of waveform correlation. 

Leads A B C D E F 
FC & SS FC SS FC SS FC SS FC SS FC SS 

I 0.9976 0.9970 0.9986 0.9978 0.9988 0.9991 0.9995 0.9994 0.9999 0.9992 0.9993
II 0.9276 0.9938 0.9989 0.9947 0.9994 0.9978 0.9999 0.9994 1.0000 0.9957 0.9996
III 0.6131 0.9589 0.9898 0.9594 0.9909 0.9851 0.9973 0.9947 0.9997 0.9831 0.9993

aVR 0.9822 0.9965 0.9992 0.9975 0.9996 0.9989 0.9998 0.9996 1.0000 0.9992 0.9998
aVL 0.9550 0.9809 0.9923 0.9814 0.9925 0.9933 0.9971 0.9967 0.9997 0.9914 0.9985
aVF 0.7998 0.9873 0.9976 0.9881 0.9983 0.9954 0.9996 0.9986 1.0000 0.9932 0.9995
V1 0.9949 0.9993 0.9997 0.9993 0.9997 0.9997 0.9999 0.9999 1.0000 0.9996 0.9999
V2 0.9643 0.9932 0.9977 0.9935 0.9984 0.9982 0.9996 0.9994 1.0000 0.9990 0.9999
V3 0.9828 0.9946 0.9978 0.9947 0.9987 0.9978 0.9997 0.9993 1.0000 0.9986 0.9998
V4 0.9740 0.9929 0.9985 0.9931 0.9988 0.9975 0.9996 0.9991 0.9999 0.9974 0.9999
V5 0.9910 0.9980 0.9995 0.9980 0.9996 0.9995 0.9999 0.9998 1.0000 0.9992 0.9999
V6 0.9875 0.9988 0.9997 0.9988 0.9998 0.9995 0.9999 0.9999 1.0000 0.9995 0.9997

Average 0.9308 0.9909 0.9974 0.9914 0.9979 0.9968 0.9993 0.9988 0.9999 0.9962 0.9996
Improvement - 0.66% 0.66% 0.25% 0.11% 0.34% 
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Figure 3. ECG signal: Measured (original), derived from full-cycle (FC) using method A, and derived from 
segment-specific (SS) using method E. The figure shows that the SS approach results in more accurate 

derived ECG 
 
 
4. CONCLUSION 

Segment-specific approach for deriving 12-lead ECG from a limited set of electrodes has been 
demonstrated. This approach outperformed the conventional full cycle calculation when compared using 
several methods (Dower’s method with individual (patient-specific) coefficients, LR, 2nd PR, 3rd PR, and 
ANN). It was able to reduce error significantly up to 74.50% as well as improve the correlation up to 0.66%. 
This new approach is promising to provide accurate derived 12-lead ECG for personalized (24-hours 
monitoring), wearable, and ambulatory ECG. Future works would be implementing this approach for real 
clinical use. 
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