
 

Abstract: 

Due to its applications for the betterment of human life, human activity recognition has attracted more researchers 

in the recent past. Anticipation of intension behind the motion and behaviour recognition are intensive applications 

for research inside human activity recognition. Gyroscope, accelerometer, and magnetometer sensors are heavily 

used to obtain the data in time series for every timestep. The selection of temporal features is required for the 

successful recognition of human motion primitives. Different data pre-processing and feature extraction techniques 

were used in most past approaches with the constraint of sufficient domain knowledge. These approaches are 

heavily dependent on the quality of handcrafted features and are also time-consuming and not generalized. In this 

paper, a single head deep neural network-based approach with the combination of a convolutional neural network, 

Gated recurrent unit, and Long Short Term memory is proposed. The raw data from wearable sensors are used 

with minimum pre-processing steps and without the involvement of any feature extraction method. 93.48 % and 

98.51% accuracy are obtained on UCI-HAR and WISDM datasets. This single-head deep neural network-based 

model shows higher classification performance over other architectures under deep neural networks. 
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1. INTRODUCTION 

Human activity recognition (HAR) has emerged as a very challenging topic nowadays. It has various applications 

for human beings, such as health assistance, intelligent surveillance, intelligent homes, rehabilitation, abnormal 

behaviour recognition, personal fitness, gaming, etc. HAR is a process of a group of some steps to recognize human 

physical motions, posture, and ambulation with the help of various sensors. Different types of sensors have been 

used previously in HAR, such as video sensors, wearable sensors, ambient sensors, object sensors, smartphone 

sensors, wireless sensors, etc. In this way, HAR can be broadly classified into two streams one is sensor-based, 

and the other one is video-based. In the video-based stream of HAR, video sensors like cameras are generally used 

to take images and videos of human motions and classify them according to the framework[1]. In other streams of 

sensor-based approaches, wearable sensors like accelerometer, gyroscope, and magnetometer in the form of 

inertial measurement unit (IMU), ambient sensors like RADAR sensors, wi-fi sensors, and object sensors such as 

pressure sensors are used for recognition of human activities[2].  

Machine learning algorithms have been widely used in previous research in HAR, such as K-Nearest Neighbour 

(KNN)[3], Support Vector Machine(SVM)[4], and Random Forests[5]. Ensemble empirical mode decomposition-

based features and game theory-based feature selection methods were used for activity recognition [6]. The 

evaluation of these features and the selection method was done by using KNN and SVM classifiers. Sensor and 

classifier fusion layer was used in the hierarchical fusion model based on entropy, and for estimation of weights, 

the weight entropy method was used[7]. Machine learning-based methods require a very time-consuming and 

qualitative feature extraction technique, feature selection methods, and at the same time, domain knowledge. After 

consideration of a lot of preparation, pre-processing, and feature extraction operations on data, only decent 

performance can be achieved. These HAR systems based on machine learning are applicable only for specific 

applications and cannot classify similar tasks from other sources[8].  

Deep learning-based models have gained tremendous momentum nowadays due to their successful performance 

in the fields of natural language processing, object detection. Image segmentation, classification, etc. Deep 

learning models gained momentum in HAR over machine learning due to their automatic feature extraction from 

raw sensor data. These extracted deep features can represent the original data more closely. Deep learning models 

with minimum pre-processing steps are capable of classifying different labels with minimum human intervention. 

Different deep learning models such as Deep Belief Network (DBN)[9], Convolutional Neural Network 

(CNN)[10], Deep feedforward neural networks, and Recurrent Neural Networks (RNN)[11] are heavily used in 

some of the past research. HAR has been recognized by exploiting some deep learning models such as LSTM, 

CNN, CNN-LSTM, and more. A smartphone-based activity recognition model based on CNN was proposed 

in[12]. Time series data of multivariate were utilized and classified with deep CNN framework in[13]. Another 
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deep learning model based on CNN with time-series data of univariate was proposed for an end to end 

classification in[14]. The accelerometer sensor was used to recognize human activities with CNN-based 

architecture. CNN was used to extract local features, and the global characteristics of the signal were defined with 

the help of statistical features[15]. CNN as a multilayer classifier, where CNN and Pooling layers were used 

alternatively, followed by a fully connected layer for HAR in[16]. This model has experimented on publicly 

available UCI-HAR datasets [4]. 

Another neural network that has been widely exploited in the series of deep neural networks is the Recurrent 

Neural Network (RNN). HAR is a classification problem inside the time series dataset, so that temporal 

dependency is heavily required for such types of time series datasets for an efficient classification task. RNN 

provides good temporal dependencies for time series classification problems so that various RNN models were 

widely used in previous research. For example[17], a framework based on an LSTM feature extractor was proposed 

to experiment with the WISDM dataset to recognize human activities[18]. In another LSTM model, where the 

accelerometer and gyroscope sensor's data were first normalized, normalized data was passed through stacked 

LSTM and then utilized soft-max activation function for classification task[19]. Another bi-directional LSTM for 

recognizing human activities by accelerometer and gyroscope sensors of mobile phone, mounted on subject's waist 

was proposed in [20]. Bi-directional LSTM was proposed using the smartphone-based publicly available dataset 

UCI-HAR to recognize human activities[21]. In recent times various combinations of CNNs layers and RNN layers 

have been used. For an example, activity recognition system based on CNN followed by RNN dense layer was 

proposed for HAR in[22]. One model based on the combination of CNN and LSTM was proposed to take 

advantage of both networks. That model could be able to access data from multimodal sensors without heavy data 

pr-processing steps. That model utilized gyroscope and accelerometer data in both the cases, individually and 

combination[23]. Two LSTM layers followed by convolutional layers based model and after the extraction of 

features that model was succeeded by Global Average Pooling(GAP), Batch normalization and soft-max 

activation[24].  

In recent studies in literature, the multi-head deep neural network with the combination of CNN and RNN has 

been proposed. For instance, in[25], multi-head CNN-RNN architecture for anomaly detection with multiple 

sensors was proposed in an industrial environment. In that model, one CNN head was used for one sensor, and 

then the feature map of each CNN head was concatenated and fed to the next RNN model for finding the temporal 

information in the feature map. One CNN and one LSTM head were connected in parallel as a multi-head system, 

and the feature map was then concatenated and passed to the soft-max function for classification in[26]. Multi-

head LSTM, multi-head CNN-LSTM, and multi-head Conv-LSTM models were designed and ensembled in[27] 

for recognition of the expenditure of patients on medications. 

Some other methods like Extreme Learning Machine(ELM), which is a feedforward network and has no 

backpropagation ability was proposed for recognition of human motions in[28][29]. Self-adapted architecture with 

a new sensor location based on ELM was proposed in[30]. The U-net-based model was proposed in[31] for activity 

recognition by using time series signals of sensors. Most of the approaches defined in past studies for HAR were 

utilized various feature extraction and selection methods. The accuracy of those approaches depended on the 

quality of handcrafted features and required expert knowledge of the domain[32]. In this paper, a single-input 

single head CNN-GRU-LSTM model is designed for HAR using raw wearable sensor data such as gyroscope, 

accelerometer without the process of handcrafted feature extraction. The feature extraction process inside deep 

learning models faces significant challenges due to the imbalanced and noisy data obtained from a smartphone or 

inertial wireless measurement units. In this modelling, the size of the filter in the convolutional layer is chosen as 

7. This combination of three deep neural networks made HAR fruitful in terms of less computational cost, relevant 

accuracy, and good f-1 score by taking advantage of the trio. CNN extracted the local features, and GRU, LSTM 

maintains the long-term temporal dependencies of mapped features. The model experimented over two publicly 

available datasets UCI-HAR[4] and WISDM[33]. 

1.1 Contribution of this paper 

1. Hybrid architecture of deep neural networks by taking the advantages of CNN, GRU, and LSTM is proposed to 

recognize human activities by taking the raw wearable sensor data with negligible pre-processing steps and without 

a handcrafted feature extraction process. 

2. The local features are extracted by the CNN layer and GRU; LSTM maintains the long-term temporal 

dependencies of these mapped features so that the model can recognize the diverse data. 

3. The model is experimented with over two publicly available datasets UCI-HAR, WISDM and gained accuracy 

of 93.48 %, 98.51%, respectively. 



1.2 Organization of paper 

The rest of the paper contains the following sections: Section II describes the methodology behind this proposed 

work of a single input single head CNN-GRU-LSTM activity recognition model. Section III describes the proposed 

approach's experiments and results, and the last section IV, consists of the conclusion. 

2. METHODOLOGY 

Human activity recognition is a time series classification problem. Successfully detecting activities from raw 

sensor data obtained from smartphone and wearable units requires an efficient feature extraction process. This 

proposed single input single head CNN-GRU-LSTM model extracts temporal feature map from the CNN layer 

then long-term temporal dependencies are maintained by GRU and LSTM layers. LSTM layer is also used to 

eradicate the gradient vanishing and exploding problem, which is common in CNN. This deep neural network 

approach finds the way for end-to-end classification from raw sensor data to feature extraction and then 

classification—the architecture experiments on two publicly available datasets UCI-HAR and WISDM.  

2.1 Data Segmentation 

The first step towards activity recognition is a segmentation of acquired raw data from wearable sensors. This 

process of data segmentation is carried out with the help sliding window. WISDM data set is segmented in the 

timesteps of 128 and 3 features for every timestep. UCI -HAR data was already available in a segmented form 

where data was segmented into 128 timesteps, and every timestep consisted of 9 features. So that the input vector 

size for the WISDM dataset is 128x3 and the input vector size for the UCI-HAR dataset is 128x9. This 128-size 

input vector is considered as one sample for one activity. This vector size of length 128 is calculated over n 

channels where the value of n is equal to the value of features of a particular dataset. In this case, the value of n 

for the WISDM dataset is three and for the UCI-HAR dataset is 9. 

2.2 Feature Extraction: 

The advantages of both CNN and RNN are utilized by combining CNN and RNN. These neural networks have the 

capability of automatic feature extraction. CNNs[34] are generally used for processing the data of multiple arrays.  

The architecture of CNN generally consists of CNN layer, pooling, and at last, fully connected layer. Operation of 

convolution on time series data of length K and width M is depicted in fig1., where M is nothing but the features 

available in the dataset. Feature map is generated after convolution between filters of length n and depth h, and 

time-series data of length K and features M. Each convolution unit generates its feature map. A set of local input 

time series data and kernel of size n x h are multiplied by exact overlapping with each other so that the size of the 

regional input time series, which is also called the receptive field, must be equal to the size of the filter for the 

generation of the feature map. Each value in the receptive field is multiplied with the weights of the filter bank, 

and then all the obtained values are summed up then obtained one number is  



 
Fig.1 Operation of Convolutional layer on input data 

 

the single value of the feature map. This value obtained by multiplication and addition is then passed through the 

non-linear function called activation function Rectified Linear Unit. The number of feature maps depends on the 

number of kernels used. These feature maps then passed through the pooling layer, which helped reduce the feature 

map's dimension by taking the maximum value inside the local patches. A regularly used Dropout layer reduces 

the chances of overfitting. 

CNN performance is recognized as the extraction of local features by taking time-series data in frames. Local 

values inside the data frame are highly correlated with concerned activities. CNN takes each frame of the dataset 

independently and takes this information in terms of a feature map, so it can be said that CNN follows the short-

term dependencies. So, it is crucial to extract the features locally due to the high correlation between the values of 

features for activity recognition; hence CNN performs the crucial task. But long-term dependencies are also 

required for precise recognition of activities.\ 

RNN is introduced to gain the advantages of long-term dependencies, but due to the large size of the activity 

dataset, the gradient vanishing problem[35] gets associated with traditional RNN. So traditional RNN is not useful 

for activity recognition. GRU is introduced[36] to overcome this gradient vanishing and gradient exploding 

problem in traditional RNN. GRU, an extension of traditional RNN, is used to gain the advantages of long-term 

dependencies of time series sequences for the activity dataset[37]. 

GRU and LSTM layers are added after the CNN layer to connect the past information with the present scenario in 

the proposed model. The reset gate and update gate is part of the GRU unit, and LSTM consists of the input gate, 

output gate, and forget gate. LSTM can be able to capture more long-term dependencies than the GRU unit. The 

human activities dataset is generally considered as a very long dataset in dimensions so that intense temporal long-

term dependencies are required. Both unit LSTM and GRU in combination can provide very long-term 

dependencies, and the model with these combinations can handle the data of large variations and diversity. 

2.3 Proposed Architecture 

In the following fig 2, the different parts of the proposed model are shown in the form of part A, part B, and Part 

C. Part A describes the CNN unit this unit followed by the GRU unit and LSTM unit, which are described as part 

B and part C respectively. In part, three convolutional 1D layers are used with the activation function of Relu and 

each CNN layer, followed by max-pooling and dropout layer. In part B, three GRU units are used, and a dropout 



layer follows each GRU unit. In part C first LSTM layer and second LSTM layer are followed by the dropout layer 

and flatten layer, respectively. 

 
 

Fig.2 Different parts of CNN-GRU-LSTM  

 

The complete architecture of the proposed model with the combination of part A, part B, and Part C is shown in 

fig 3. 64 filters in the first layer of CNN and 32 filters in the remaining two layers are used for extraction of local 

features. A 10% dropout follows each layer of CNN with a filter size of 7. 10% dropout is selected by the number 

of experiments in the range of 10% to 50% dropout and the observation of impact on accuracy. Three GRU layers 

with 64 units in the first layer and 32 units in the remaining two layers are used in part B to capture the long-term 

dependencies and return sequences passes to the next layers. A 10% dropout follows each GRU unit. Two LSTM 

layers with 32 units are used in part C, where the first layer is followed by 10% dropout, and a flattening layer 

follows the second. LSTM layers are used to understand better more temporal long-term dependencies of time 

series sequences of data. 

In the last section flatten layer is followed by a dense layer with 128 units, and this, in turn, is followed by a 10% 

dropout. The Batch-normalization layer is used for the normalization of the feature map for better classification 

efficiency. At last, a fully connected layer with a soft-max activation function is used. 

 



 
Fig. 3 proposed Architecture CNN-GRU-LSTM for human activity recognition 

 

3. EXPERIMENTS AND RESULTS 

The proposed model is trained and tested on UCI-HAR and WISDM datasets. Table 1 describes the 

hyperparameters for the proposed model. Other hyperparameters are taken as default. The model is trained to 

reduce the loss function. Keras with TensorFlow backend is used for implementation of the proposed model in 

google colab. The values of parameters for performance evaluation, datasets used, and results are described in this 

section. 

Table 1 description of hyperparameters 

 



Hyperparameter Used values 

Loss function Sparse 

categorical 

cross-entropy 

Optimizer Adam 

Batch size 400 

Learning rate 0.001 

Dropout 10% 

Filter size 7 

Pool size 2 

Length of input 

vector 

128 

Epochs 500 

Number of channels 9 for UCI-HAR 

dataset 

3 for the 

WISDM dataset 
 

 

3.1 Datasets 

UCI-HAR[4]: The University of California Irvine (UCI) released the dataset and publicly available it on the UCI 

repository. Thirty volunteers participated, and waist-mounted smartphone's inbuilt sensors like accelerometer and 

gyroscope were used. Total six human activities (sitting, standing, walking, walking downstairs, and walking 

upstairs) were recorded with the sampling frequency of 50Hz. Three axial body acceleration, three axial angular 

velocities, and a total of three axial acceleration; hence a total of 9 features were measured and stored. Butterworth 

low pass filter with a cut-off frequency of 0.3 Hz was used to segregate body acceleration and gravity. 2.56 s 

window was used for data segmentation, and 70% of the total subject's data were recorded as training data and the 

rest as testing data. A total of 10299 samples were recorded, where 7352 were taken as training samples and 2947 

as testing samples. 

WISDM[33]: Wireless sensor data mining lab of Fordham University was used to acquire the WISDM dataset. A 

total of 36 volunteers participated in that project, and they performed six activities (jogging, descending stairs, 

ascending stairs, walking, sitting, and standing) with placing a smartphone in their pocket. An inbuilt 

accelerometer sensor of the smartphone with a sampling frequency of 20Hz was used for acquiring the data. 

Twenty-nine subjects are selected for this paper to train the proposed model and the rest for validation. Data 

normalization is performed with the normalization of all values in the range of 0-1. 

3.2 Performance Representation 

The performance of the proposed model is represented by accuracy score, f1-score, precision, recall, and confusion 

matrix. Accuracy is defined as the ratio of correctly classified labels or targets to a total number of samples. 

Correctly classified labels are generally known as adding a total number of true positives (TP) and true negatives 

(TP). Wrongly classified terms are generally considered as false positive (FP) and false-negative (FN). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                         (1) 

The ratio of samples that are correctly predicted positive to the all-positive predicted samples is known as 

precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                 (2) 

The ratio of correctly predicted positives to the samples which actually exist as positive, known as recall. 



𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                        (3) 

For the performance evaluation of the model that is going to test on an unbalanced dataset, the f1-score is generally 

calculated. The harmonic mean of precision and recall is known as the f1 score. 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                           (4) 

The confusion matrix describes all the predicted classes and actual classes with their interrelationship positively 

or negatively. Rows of this matrix are the actual classes, and columns are considered as predicted classes. 

 
 

(a) 

 
 

(b) 

Fig 4. (a) Confusion matrix of the proposed model on UCI-HAR dataset (b) confusion matrix of the proposed model on WISDM 

dataset 
 

 
(a) 

 
(b) 

Fig 5 (a) Plot of training and testing loss of proposed model on UCI-HAR dataset (b) Plot of training and testing 

accuracy of proposed model on UCI-HAR dataset. 
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(b) 

Fig 6 (a) Plot of training and testing loss of proposed model on WISDM dataset (b) plot of training and testing accuracy of 

the proposed model on WISDM dataset. 

 
 

3.3 Results and Discussion 

 

Fig 4(a) shows the confusion matrix of the proposed CNN-GRU-LSTM architecture on the test dataset of UCI HAR and fig 

4(b) shows the confusion matrix on the test dataset WISDM of the proposed model. Both the figures under fig. 4 describe 

that the five activities of the test dataset of the UCI-HAR dataset obtained accuracy and f1-score greater than 90% and all 

the activities of the test dataset of the WISDM dataset obtained accuracy and f1-score greater than 95%. Fig 5(a) shows the 

training and testing loss of the proposed model on the UCI-HAR dataset and fig 5(b) shows the training and testing accuracy 

of the proposed model on the UCI-HAR dataset. In the same way, fig 6(a) and fig 6(b) show the training and testing loss of 

the proposed model on the WISDM dataset and the training and testing accuracy of the proposed model on the WISDM 

dataset, respectively. Table 2 and Table 3 describes the effectiveness of proposed model on both the dataset. The effectiveness 

of the proposed model on the UCI-HAR dataset is described in table 2, where some previous models are taken for comparison 

with the proposed model. It is found that the proposed model outperformed six models in terms of accuracy and f1-score on 

the UCI-HAR dataset. 

The effectiveness of the proposed model on the WISDM dataset is described in table 3, where some previous models are 

taken for comparison with the proposed model. It is found that the proposed model outperformed nine models in terms of 

accuracy and f1-score. 

 

 

 
 

 

 

Table 2 Comparative performance of proposed model on WISDM dataset 
 

Frameworks Accuracy (%) F-1 score (%) 

 

Res-LSTM[38] 91.6 91.5 

CNN-LSTM[39] 92.13 - 

Stacked LSTM[40] 93.13 - 

CNN[41] 92.71 92.93 



Single input CNN-GRU model 

A[42] 

93.03 93.01 

Single input CNN-GRU model 

B[42] 

92.43 92.42 

Proposed framework 93.48 93.5 

 

 

 

 

 

The novelty of the proposed model is to introduce the in-depth knowledge of long-term dependencies to the model by using 

both the units GRU and LSTM. Comparative analysis with similar research is included in this paper and found that this less 

complex model performed better than some existing research. Outstanding performance is observed in the case of the 

WISDM dataset with an accuracy of 98.51% and an f1-score of 98.52%. Due to the well understanding of short-term and 

long-term dependencies on temporal sequences of time series datasets, architecture could handle the diverse nature of data.   
 

Table 3 Comparative performance of frameworks on WISDM dataset 
 

Frameworks Accuracy (%) F-1 score 

Statistical features and reweighted 

genetic algorithms[43] 

94.02 - 

CNN[44] 93.32 - 

LSTM-CNN[45] 95.85 - 

U-Net[46] 96.4 96.5 

Single input CNN-GRU model A[42] 92.03 92.42 

Single input CNN-GRU model B[42] 94.71 94.50 

Single input CNN-GRU model C[42] 92.37 92.55 

Multi input CNN-LSTM[42] 95.54 95.55 

Multi input CNN-GRU[42] 97.21 97.22 

Single input CNN-GRU-LSTM 

(proposed) 

98.51 98.52 

 

4. CONCLUSION 
 

Convolutional Neural Networks and Recurrent Neural Networks for human activity recognition are implemented and tested on 

publicly available datasets. The framework CNN-GRU-LSTM outperformed some similar research in this field. These 

architectures gained advantages of three neural networks CNN as well as GRU and LSTM. CNN generates local features of the 

input sequence with efficient local dependencies, and GRU utilizes its efficiency of capturing the long-term dependencies. 

Long-term dependencies in depth are provided to this framework by the LSTM unit, and hence this proposed model can handle 

more diverse data. The performance of the proposed model is tested on publicly available datasets such as WISDM and UCI-

HAR, and it is found that the architecture outperformed some multi-head architectures. This single head and input model with 

diverse data handling capacity is computationally efficient and more accurate than other similar architectures.   
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