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Abstract 
Performance of radiographic diagnosis and therapic intervention heavily depends on the 

quality of acquired images. Over decades, a range of pre-propocessing for image enhancement 
has been explored. Among the most recent proposals is iterative blinded image deconvolution, 
which aims to identify the inheritant point spread function, degrading images during acquisition. 
Thus far, the technique has been known for its poor convergence and stability and was recently 
superseded by non-negativity and support constraints recursive image filtering. However, the 
latter requires a priori on intrinsic properties of imaging sensor, e.g., distribution, noise floor and 
field of view. Most importantly, since homogeneity assumption was implied by deconvolution, 
recovered degrading function was global, disregarding fidelity of underlying objects. This paper 
proposes a modified recursive filtering with similar non-negativity constraints, but also taking into 
account local anisotropic structure of content. The experiment reported herein demonstrates its 
superior converergence property, while also preserving crucial image feature. 
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1. Introduction 

Recent advances in medical imaging technology has so far enabled high performance 
computerized radiographic diagnosis and therapeutic intervention [1-3]. More specifically, it has 
been widely applied, for examples, in patient specific anatomical modeling, lesion extraction and 
more recently in unsupervised deep learning [4]. Thus far, degradation is one of major impeding 
factors in their success. Although in practice, it is led by a series of complex processes imaging 
signal underwent during acquisition, for simplicity in tackling the problem, the term is typically 
characterized by linear deconvolution of bluring kernel and an additive noise [5], as expressed in 
equation (1). 

g(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) + 𝑛(𝑥, 𝑦)    (1) 
 
where g and f are degraded and (presumably) original images, respectively. In the spatial domain 

of (x, y)  R2, h and n are convolutional kernel and noise, respectively. In analyzing degradation 
process, h is sometimes referred to as blur filter or, in our context, point spread function (PSF). 
Reconstructing the original image f, given the degraded g and a priori on (or sometimes, unknown) 
noise model, n, is however not trivial. Its key element involves estimating the PSF and its repective 
inverse (h-1). This process is called deconvolution and depicted in Figure 1.  
 

 
Figure 1. Direct filtering model of convolution and deconvolution 
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Depending on assumpition of the degrading model, PSF can be estimated by calculating 
its governing, for instance bluring, paramaters [6, 7]. However, several other factors, such as out 
of focus, motion, and geometrical distortion, etc. may have equally contributed to degraded image 
quality. Identfyig these simplied model parameters was unable to completely retore such adverse 
effects. Determinng types of degradation, their ranking and interactions, indeed are not trivial, 
especially without access to imaging modality calibration. Another approach, called blind image 
deonvolution (BID) [5, 8, 9], tackled this problem by estimating each element in PSF kernel/ matrix 
(or its inverse), subject to some criteria, but without prior on degradation sources. BID combines 
PSF estimation and deconvoluntion into a single reciprocal process. Estimation of PSF is usually 
done by iteratively updated vectorized kernel using a gradient descent variant [10], whereby each 
cycle its values are varied with respect to predefined objective function and constraints. Provided 
that an optimum exists, upon convergence, resultant inversed PSF are able to closely recover the 
true non-degraded image. It can be noted that noise model was not incorporated into the inversed 
PSF and hence would have caused instability in case of low SNR. Other studies thus opted for 
operations in frequency domain, in which linear property of convolution can be exploited [11, 12], 
i.e., F* (u, v) = G (u, v) H-1 (u, v), where capital letters refer to (estimated) true, degraded images 
and PSF in frequency domain, respectively. Accordingly, noise may be dismissed by selectively 
processing only in lower frequency spectrum. Although iterative variants exist, PSF estimation in 
frequency domain are of close-form and more efficient, compared to that on spatial one. Its main 
drawback was however, knowledge about noise properties are prerequisite, without which severe 
instability could occur. To remedy this adverse effect to an extent, Wiener filter [13] and Curvelet 
[14] based methods were proposed.   
 Note may be drawn from the literature that both spatial and frequency domain operations 
have their pros and cons. While the former can greatly benefit from straightforward yet intuitive 
constraints imposition, the latter is more efficient, with available fast spatial-frequency conversion 
algorithms. BID on both domains, called a nonnegativity and support constraints recursive filtering 
(NAS-RIF) [5, 15] was introduced and recently enhanced [16-22]. Its primary contribution was to 
overcome instability issue found in conventional BID. As its name suggested, NAS-RIF imposes 

irreducible, absolutely summable, i.e., ( || h || < ), and being invertible, i.e., h–1, properties on 
a PSF, while maintaining the same ausumption (i.e., real value and positive definite) on the true 
image as IBD. The support on the image was defined within a region of interest (ROI). This has 
made NAS-RIF particularly suitable for medical imaging, where anatomical object is generally 
acquired in the center of a matrix and surrounded by uniform background. Specficaly, NAS-RIF 
divided the degraded image into two regions, i.e., inside and outside support (Dsup), whose cost 
functions were determined with different objectives and constraints. A generic NAS-RIF algorithm 
is summarized in Figure 2 and elaborated in Table 1. 

 
Figure 2. Generic NAS-RIF algorithm [5] (a) and definition of support region (Dsup) (b) 

 
Given a degraded image g (x, y), NAS-RIF recursively determines the optimal inversed 

PSF, denoted here as u (x, y). At each iteration of elements of u are optimally adjusted subject to 
a cost function, which consists of negativity penalizes for pixels within and outside support region. 
Some enhanced proposal suggested additional regularization constraints, e.g., DC gain [17] or 
more realistic boundary support [18]. Noise issues were elevated by using designated filters [19-
21]. For better performance nonetheless, deconvolution was performed in the frequency domain. 
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Despite its great stability, shortcoming of NAS-RIF was slow convergence rate. Moreover, 
the inversed PSF (u) was a compromise between two penalize terms, derived from pixel intensity. 
This paper, therefore proposes a structural adaptive anisotropic term being introduced in iterative 
optimization. It was computed, taking ino account local orientation pattern of object structure. Its 
main contribution was not only emphasizing on updates in favor of feature preservation, but also 
promoting faster convergence as fidelity was enhanced. The remaining of this paper is organized 
as follow: Section 2 describes the proposed method in more detail. Section 3 reports experimental 
results and relevant analyses. Finally, section 4 states concluding remark of this study. 
 
2. Research Method 

This paper partly adopted conventional NAS-RIF following the process, depicted in Figure 
2a. It iteratively adjusted FIR filter, u, and simultaneously its output, an intermediate estimation of 
the true image, f*. To ensure nonnegativity and support constraints, this image was projected onto 
a non-linear (NL) space that diminished pixel intensities outside the support region (Dsup) to that 
of the background (LB). The corresponding non-expansive map, f*NL were then subtracted with its 
precedent, resulting in error matrix, given in equation (2) [16]. 
 

𝑒 (𝑥, 𝑦) = ∑ [𝑓𝑁𝐿(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]
2

∀(𝑥,𝑦)     (2) 

where 

𝑓𝑁𝐿(𝑥, 𝑦) = {
𝑓(𝑥, 𝑦)

0          
𝐿𝐵        

   

if 𝑓(𝑥, 𝑦) ≥ 0 and (𝑥, 𝑦) ∈ 𝐷𝑆𝑈𝑃

if 𝑓(𝑥, 𝑦) < 0 and (𝑥, 𝑦) ∈ 𝐷𝑆𝑈𝑃

if (𝑥, 𝑦) ∈ �̅�𝑆𝑈𝑃                                

    

Table 1: Summary of NAS-RIF algorithm (see text for detailed explaination). 

 
I. Definition: 

• �̂�
𝑘

 (x,y) : Estimate of true image at kth iteration 

• 𝑢
𝑘

(x,y) : FIR filter parameters of dimension 𝑁𝑥𝑢 × 𝑁𝑦𝑢 at iteration k 

• 𝐽(𝑢𝑘) : Cost function at parameter setting 𝑢𝑘 

• ∇𝐽(𝑢𝑘) : Gradient of 𝐽 at 𝑢𝑘 

 

II. Set initial condition (k = 0): 

• Set FIR filter 𝑢𝑘(𝑥, 𝑦) to all zeros 

 

III. At each iteration (k): k = 0, 1, 2, … 

1) �̂�
𝑘
(𝑥, 𝑦) = 𝑢𝑘(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦)  

2) �̂�
𝑁𝐿

(𝑥, 𝑦) = 𝑁𝐿[𝑓𝑘(𝑥, 𝑦)] 

3) Minimize routine to update FIR filter parameters (conjugate gradient routine). 

a) [∆𝐽 (𝑢
𝑘
)]

𝑇

= [
𝜕𝐽(𝑢𝑘)

𝜕𝑢(1,1)
 

𝜕𝐽(𝑢𝑘)

𝜕𝑢(1,2)
 ⋯ 

𝜕𝐽(𝑢𝑘)

𝜕𝑢(𝑁𝑥𝑢,𝑁𝑦𝑢)
] 

where 
𝜕𝐽(𝑢𝑘)

𝜕𝑢(𝑖,𝑗)
= 2 ∑ 𝑓2

(𝑥,𝑦)∈𝐷𝑠𝑢𝑝
(𝑥, 𝑦) [

1−𝑠𝑔𝑛(�̂�(𝑥,𝑦))

2
] 𝑔(𝑥 − 𝑖 + 1, 𝑦 − 𝑗 + 1) 

  +2 ∑ [𝑓𝑘(𝑥, 𝑦) − 𝐿𝑩]𝑔(𝑥 − 𝑖 + 1, 𝑦 − 𝑗 + 1)(𝑥,𝑦)∈�̅�𝑠𝑢𝑝
 

  +2𝛾[∑ 𝑢𝑘(𝑥, 𝑦) − 1∀(𝑥,𝑦) ] 

b) 𝛽 = (< ∇𝐽(𝑢𝑘) − ∇𝐽(𝑢𝑘−1), ∇𝐽(𝑢𝑘) >)/(< ∇𝐽(𝑢𝑘−1), 𝐽(𝑢𝑘−1) >) 

c) If 𝑘 = 0, 𝑑𝑘 = −∇𝐽(𝑢𝑘) 

otherwise 𝑑𝑘 = −∇𝐽 (𝑢
𝑘
) + 𝛽𝑑𝑘−1 

d) 𝑢
𝑘−1

= 𝑢
𝑘

+ 𝑡𝑑𝑘 

4) Increment k 

5) Repeat step 3) until convergence. 
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Instead of simply minimizing this matrix, which would prematurely bring estimation to halt, 
the error image was then divided by supporting region. Ideally, object pixels bled outside Dsup due 
to degrading (e.g., blurring) PSF should be drawn back inside, leaving only the background. This 
could be achieved by an edge-enhancing FIR. However, exaggerating this adjustment could lead 
to negative pixels by deconvolution. To maintain the balace of these constraints NAS-RIF defined 
the cost function to penalize negative pixels inside the Dsup and background discrpenices outside. 
According to recent modification [17], irreducibility of FIR was also ensured by reguarlization. The 
cost function adopted in this study was thus given in equation 3. Using this function, it is trivial to 
prove that its gradient with respect to an FIR element is as provided in Table 1 (III-3a). Given the 

cost function J and its respective gradient, J, iterative non-linear optimization was done using a 
conjugate gradient method [22]. 

 

𝐽 = ∑ 𝑓2(𝑥, 𝑦) [
1−𝑠𝑔𝑛(�̂�(𝑥,𝑦))

2
](𝑥,𝑦)∈𝐷𝑆𝑈𝑃

+ ∑ [𝑓(𝑥, 𝑦) − 𝐿𝐵]
2

(𝑥,𝑦)∈�̅�𝑆𝑈𝑃
+ 𝛾[∑ 𝑢(𝑥, 𝑦) − 1∀(𝑥,𝑦) ]

2
 (3) 

 

where sgn was signed function and  was an empirical factor weighting FIR regularization. 
Upon convergence, when the difference between successive true image estimations fell within a 
predefine threshold, the resultant FIR filter was then applied to the degraded image, g, producing 
the final true image restoration. 

It was, however, reported in the recent NAS-RIF literature that noise reduction and a priori 
on underlying pixel distributions are essential determinant in its stability and restoration result. In 
addition, penalizing cost function, while sufficient for typical photographic images, did not consider 
structural fidelity in an image, hence undermining anatomical features, crucial for the subsequent 
analyses. Inspired by intuitive constraints augmentation found in the recent works, this paper 
therefore incorporated an anisotropic measure into NAS-RIF optimization. Structural anisotropic 
measure was introduced in [23] and later improved in [24]. In those studies, it was used to orient 
and adjust the extent of an adaptive FIR filter so that it aligned with underlying pixel orientation 
pattern. Anisotropic measure within neighborhood surrounding a pixel, p, is given in equation (4). 

 

𝑎𝑛𝑖(𝑝) =
{∬(

𝜕𝑓

𝜕𝑥
)

2
−(

𝜕𝑓

𝜕𝑦
)

2
𝑑𝑥𝑑𝑦}

2

+{∬ 2(
𝜕𝑓

𝜕𝑥
)(

𝜕𝑓

𝜕𝑦
)𝑑𝑥𝑑𝑦}

2

{∬(
𝜕𝑓

𝜕𝑥
)

2
+(

𝜕𝑓

𝜕𝑦
)

2
𝑑𝑥𝑑𝑦}

2    (4) 

 
Figure 3 depicts a sample image with three selected neighborhood centers with different 

local orientation patterns and their respective anisotroic values. 
 

 
 

Figure 3. A sample image with three selected centers and corresponding anisotropic values  
 

In order to avoid further complicating the cost function (3), which would inevitably cause 
even more local minima, this study instead encouraged feature preservation by adjusting updating 
step size t (Table 1.III-3d) according to relative anisotropic strength, as expressed in equation (5). 
 

𝑡 = 𝛼 (
∑ 𝑎𝑛𝑖(�̂�𝑘(𝑥,𝑦))∀(𝑥,𝑦)

∑ 𝑎𝑛𝑖(�̂�𝑘−1(𝑥,𝑦))∀(𝑥,𝑦)

)

2

    (5) 
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where  was a typical stepping size taken in each iteration. 
 
The benefits of adjusting step size according to total relative anisotropic were two folds. 

Firstly, while steering away from non-negativity, original NAS-RIF cost function tended to stumble 
around an overly smoothing kernel. With anisotropic controlled step size, on the other hand, as 
the bled pixels were gathered inside, implying more pronounced object boundaries, the relative 
anisotroic measure also increased and so was the confidence in such adjustment. This effectively 
accelerated NAS-RIF convergence. Secondly, involving anisotropic measure into the optimization 
also helped lessen the dependency on having to meticulusly initialize the supporting region [18]. 
It is also worth emphasizing here that, anisotropic measure was computed within a neighborhood 
of specfied extent and not from an isolated pixel. It was thus robust against imaging noise [23].  
 
3. Results and Analysis 
 Without loss of generalization, the proposed enhanced NAS-RIF algorithm was examined 
by applying to both synthetic and medical images corrupted with known degradation. The images 
were encoded as 2D matrix of grayscale intensities, whose values were stored and processed in 
floating point format. 
 
3.1. Anisotropic Strength as Image Contrast Regularization 

As pointed out in [16] and subsequent works, a trival all-zero condition could be prevented 
by imposing a total sum constraint on FIR kernel. We found that it did not, however, rectify a 
uniform FIR kernel that would bring the image contrast tremendously down to an all-grey. To 
demonstrate that in addition to structural pattern [23] anisotropic measure is also responsive to 
such condition (and thus was a viable means of circumvent this problem) relationships between 
contrast appearances and respective total anisotropic strength are shown in Figure 4. 
 

 
Figure 4. Relationships between synthetic image appreances and thir anisotropic measures. 

 
 During an early stage of optimization, image contrast could be regularized by anisotropic 
strength. More specifically, as the FIR proceeded away from trivial all-zeros, the measure helped 
increase its confidence by further stepping in that direction. 
 
3.2. Visual Enhancement  

An MR scan of a human brain on a uniform background whose matrix size was 350x350 
pixels, was then employed in the next experiment. Comparison between enhacement made by a 
generic NAS-RIF and the proposed enhacement against an original MR image are illustrated in 
Figure 5. The results are snapshots at the 80th iteration. 

 
 

Figure 5. Comparison between a generical (middle) and proposed NAS-RIF (right) 
enhancement 
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The resultant invsered FIR, u, brought sharper edge and better separation between tissue 
and the skull. Dynamic range of pixel intensitities was much improved, compared to the generic 
NAS-RIF. It is also worth noted here that, instead of thousands of iterations usually required by a 
generic NAS-RIF to converge [5, 15], the proposed enhanced NAS-RIF gave an estimation with 
already higher fidelity and contrast at much early cycles. Moreover, no other priors were needed. 
 
3.3. Relationship between Anisotropic Stregnth and Visual Enhancement 

Figure 6 compares anisotropic strengths during the first 80th iterations between a generic 
and the proposed NAS-RIF implementation, and respective enlarged original image estimations. 
It is evident from the graph that in the proposed implementation, the strength accelerated at faster 
rate, which well corresponded to much enhanced appearance. It was thus a suitable metric for a 
NAS-RIF optimization constraint and well conformed to the preliminary hypothesis of this study. 
 

 
 

Figure 6. Comparison of anisotropic strengths (left) between generic (top-right) and proposed 
(bottom-right) NAS-RIF implementations. 

 
3.4. Numerical Assessments 

To quantitatively elucidate the proposed NAS-RIF scheme, especially in terms of noise 
immunity, numerical assessment was performed on simulated adulteration To this end, a phantom 
image was degraded with Gaussian blur and polluted with Rician noise (to emulate what happens 
in MR acquisition). Peak SNR [25], was then computed for the original, adulterated, and generic 
and proposed NAS-RIF enhanced images. The peak SNR (PSNR) and corresponding restored 
images at 40th iteration were listed in Table 2 and shown in Figure 7, respectively. 
 

 
 

Table 2. PSNR of a brain phantom 
image, after enhanced with generic 
and proposed NAS-RIF methods. 
 

Enhanced Method PSNR 
(dB) 

 

Generic 25.392 
Proposed 25.449 

 
 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔
𝑃𝑒𝑎𝑘2

𝑀𝑆𝐸
 

 

𝑀𝑆𝐸 =
1

𝑊 × 𝐻
∑|𝑓 − 𝑔|2 

 
 

Figure 7. Visual comparisons of original, adulterated, 
and generic and proposed NAS-RIF enhanced images. 
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 Although quantitatively and visually, there was only slight improvement in PSNR over the 
generic NAS-RIF, the proposed method was equally if not better immune to additive noise. 
 
 
4. Conclusion 

Blind image deconvolution is an ill-posed problem that was designed to restore the true 
image, undergone degradation by an unknown PSF and possibly by random noise. Variaonal BID 
elevates this problem by iteratively estimate the PSF (or its inversed) subject to some predefined 
criteria. NAS-RIF is another well accepted variation BID that imposed non-negativity and supports 
constraints over a sequence of restored image, during the optimization. Nonetheless, it is prone 
to noise and had low convergence rate. Many attempts had been made in the literature to address 
these issues, by suggesting various FIR regularization schemes, selectively flltering the projected 
image, or accurately defining the object support, etc.  

This paper put emphasis on quality of the shape and object definition and thus proposing 
a structural adaptive metric, i.e., anisotropic strength. Its advantages are robustness against noise 
and intuitively representing characteristics of local orientation pattern. Unlike other recent works, 
this paper did not augment anisotropic strength into an already complicate NAS-RIF cost function, 
or else it would have caused minima traps and created another unneccesary expression to be 
weigthed and balanced. On the contrary, it was used simply to adjust the step size in each kernel 
update. The benefits were two folds; It accelerated convergence as object boundaries became 
more pronounced and structural appearance. It concisely represented the structural appearance 
of underlying object and thuse lessen the need of precise initial support. 

The experimental results reported herein confirmed visually and numerically that the 
proposed NAS-RIF had much higher convergence rate, offered restoration of better quality, and 
was equally immun to synthetic noise. It was therefore believed that the proposed method could 
offer a new direction toward improving the performance of the widley adopted NAS-RIF, especially 
in the fields of medical imaging, computer aided diagnosis (CAD), and digital anatomy. 
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