K-means Clustering In Knee Cartilage Classification: Data from the OAI

Joyce Sin Yin Sia, Tian Swee Tan, Matthias Foh Thye Tiong, Kah Meng Leong, Kelvin Chia Hiik Ling, Sameen Ahmed Malik, Jeremy Yik Xian Sia

Abstract


Knee osteoarthritis is a degenerative joint disease which affects people mostly from elderly population. Knee cartilage segmentation is still a driving force in managing early symptoms of knee pain and its consequences of physical disability. However, manual delineation of the tissue of interest by single trained operator is very time consuming. This project utilized a fully-automated segmentation that combined a series of image processing methods to process sagittal knee images. MRI scans undergo Bi-Bezier curve contrast enhancement which increase the distinctiveness of cartilage tissue. Bone-cartilage complex is extracted with dilation of mask resulted from region growing at distal femoral bone. Later, the processed image is clustered with k = 2, into two groups, including coarse cartilage group and background. The thin layer of cartilage is successfully clustered with satisfactory accuracy of 0.987±0.004, sensitivity 0.685±0.065 of and specificity of 0.994±0.004. The results obtained are promising and potentially replace the manual labelling process of training set in convolutional neural network model.

Keywords


Image processing; Cartilage segmentation; K-means clustering; Osteoarthritis; Bezier curve

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

503 Service Unavailable

Service Unavailable

The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.

Additionally, a 503 Service Unavailable error was encountered while trying to use an ErrorDocument to handle the request.