Integral Backstepping Based Nonlinear Control for Maximum Power Point Tracking and Unity Power Factor of a Grid Connected Hybrid Wind-Photovoltaic System

Mohammed El malah, Abdellfattah Ba-razzouk, Elhassane Abdelmounim, Mhamed Madark

Abstract


This paper proposes a novel integral backstepping-based nonlinear control strategy for a grid-connected wind-photovoltaic hybrid system. Firstly, detailed three-phase models of the hybrid system elements are presented, and then an overall state-space model is derived. Secondly, nonlinear control laws for the hybrid system’s converters are developed with the aim of ensuring maximum extraction of the available renewable energy, stabilizing the DC bus voltage and guaranteeing the operation of the hybrid system at unity power factor. The overall stability of the closed-loop system is demonstrated on the basis of Lyapunov’s stability theory. Comprehensive simulations, using the MATLAB/Simulink software environment, are carried out to assess the effectiveness of the proposed control methodology. The simulation results obtained confirm that the proposed control strategy offers high efficiency in various operating modes of the hybrid generation system.



Keywords


Integral backstepping control; Maximum power point tracking; Unity power factor; Wind-PV hybrid system; Grid connection

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

503 Service Unavailable

Service Unavailable

The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.

Additionally, a 503 Service Unavailable error was encountered while trying to use an ErrorDocument to handle the request.