A Pattern Classification Based approach for Blur Classification

Shamik Tiwari


Blur type identification is one of the most crucial step of image restoration. In case of blind restoration of such images, it is generally assumed that the blur type is known prior to restoration of such images. However, it is not practical in real applications. So, blur type identification is extremely desirable before application of blind restoration technique to restore a blurred image. An approach to categorize blur in three classes namely motion, defocus, and combined blur is presented in this paper. Curvelet transform based energy features are utilized as features of blur patterns and a neural network is designed for classification. The simulation results show preciseness of proposed approach.

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats