DOI: 10.52549/.v9i3.3009
Selfish Herd Optimisation based fractional order cascaded controllers for AGC study
Abstract
In a modern, and complex power system (PS), robust controller is obligatory to regulate the frequency under uncertain load/parameter change of the system. In addition to this, presence of nonlinearities, load frequency control (LFC) of a Power System becomes more challenging which necessitates a suitable, and robust controller. Single stage controller does not perform immensely against aforesaid changed conditions. So, a novel non-integer/fractional order (FO) based two-stage controller incorporated with 2-degrees of freedom (2-DOF), derivative filter (N), named as 2-DOF-FOPIDN-FOPDN controller, is adopted to improve the dynamic performance of a 3-area power system. Each area of the power system consists of both non-renewable and renewable generating units. Again, to support the superior performance of 2-DOF-FOPIDN-FOPDN controller, it is compared with the result produced by PID, FOPID, and 2-DOF-PIDN-PDN controllers. The optimal design of these controllers is done by applying Selfish Herd Optimisation (SHO) technique. Further, the robustness of the 2-DOF-FOPIDN-FOPDN controller is authenticated by evaluating the system performance under parameter variation. The work is further extended to prove the supremacy of SHO algorithm over a recently published article based on pathfinder algorithm (PFA).
Keywords
Automatic Generation Control; Two-Degrees-Of Freedom; Two-stage controller; Non-integer Controller; Selfish Herd Optimization.
Full Text:
PDF
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.