Optimum Switching Angle Of Switched Reluctance Motor Using Response Surface Methodology

Agus Adhi Nugroho, Muhammad Khosyi'in, Bustanul Arifin, Bhakti Yudho Suprapto, Muhamad Haddin, Zainuddin Nawawi


Switched Reluctance Motor has numerous advantages compared to another electric motor. Simple structure, low-cost production, robustness, and high fault tolerance have been remarkable milestones. Still, the problem of excitation angle at power converter becomes crucial, especially for traction use, requiring higher torque at low speed for starting and acceleration. Therefore, this research emphasized finding the optimum excitation angle at low speed using Response Surface Methodology, a practical application to achieve the highest torque, as indicated by the best speed in the constant torque region. As a result, using Matlab simulation, the adaptive combination of optimum angles reached 2691 rpm quicker than a single excitation angle with 2568 rpm, an increase of 4.79% higher speed using RSM optimization. According to the experimental data, the adaptive combination of optimum angle achieved 2475 rpm better than the single excitation angle reached 2340 rpm, an increase of 5.77% higher speed using the Response Surface Methodology.


switched reluctance motor; optimum angles; constant torque region; response surface methodology

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats