A Collision Avoidance Based Energy Efficient Medium Access Control Protocol for Clustered Underwater Wireless Sensor Networks
Abstract
Underwater Wireless Sensor Networks (UWSNs) are typically deployed in energy constrained environments where recharging energy sources and replacing batteries are not viable. This makes energy efficiency in UWSNs a crucial directive to be followed during Medium Access Control (MAC) design. Multiplexing and scheduling based protocols are not ideal for UWSNs because of their strict synchronization requirements, longer latencies and constrained bandwidth.
This paper presents the development and simulation analysis of a novel cross-layer communication based MAC protocol called Energy Efficient Collision Avoidance (EECA) MAC protocol. EECA-MAC protocol works on the principle of adaptive power control, controlling the transmission power based on the signal strength at the receiver. EECA-MAC enhances the conventional 4-way handshake to reduce carrier sensing by implementing an enhanced Request to Send (RTS) and Clear to Send (CTS) handshake and an improved back-off algorithm.
Simulation analysis shows that the measures taken to achieve energy efficiency have a direct effect on the number of packet retransmissions. Compared to the Medium Access with Collision Avoidance (MACA) protocol, EECA-MAC shows a 40% reduction in the number of packets that are delivered after retransmissions. This reduction, coupled with the reduced signal interference, results in a 16% drop in the energy utilized by the nodes for data transmission.
Keywords
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.