ANFIS based Direct Torque Control of PMSM Motor for Speed and Torque Regulation

Marulasiddappa Hallikeri Basappa, Pushparajesh Viswanathan

Abstract


Nowadays, the Permanent Magnet Synchronous Motors (PMSM) are gaining popularity among electric motors due to their high efficiency, high-speed operation, ruggedness, and small size. PMSM motors comprise a trapezoidal electromotive force which is also called synchronous motors. Direct Torque Control (DTC) has been extensively applied in speed regulation systems due to its better dynamic behavior. The controller manages the amplitude of torque and stator flux directly using the direct axis current. To manage the motor speed, the torque error, flux error, and projected location of flux linkage are employed to adjust the inverter switching sequence via Space Vector Pulse Width Modulation (SVPWM). One of the most common problems encountered in a PMSM motor is Torque ripple, which is recreated by power electronic commutation and a better controller reduces the ripples to increase the drive's performance. Conventional controllers such as PI, PID and SVPWM-DTC were compared with the proposed Adaptive Neuro-Fuzzy Inference System (ANFIS) in terms of performance measures such as speed and torque ripple. In this work, the Two-Gaussian membership function of the ANFIS controller is used in conjunction with a PMSM motor to reduce torque ripple up to 0.53 Nm and maintain the speed with a distortion error of 2.33 %.


Keywords


Adaptive Neuro-Fuzzy Inference System, Direct Torque Control, Permanent Magnet Synchronous Motors, Speed, Torque ripple.

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats