Forward Body Biased Low Power 4.0-10.6 GHz Wideband Low Noise Amplifier

Rohit Goel, Anil Kumar, Mahesh Kumar, Sandeep Kumar

Abstract


A forward body biased low power Low Noise Amplifier (LNA) is designed using Common Gate (CG) topology. By using current reuse technique between the first stage and second stage Common Source topology accompanied with forward body biasing leads to low power dissipation. A series to parallel tank circuit at this stage leads to wideband design. A shunt peaking inductor at the drain terminal of second stage causes the higher frequency peak to increase leading to wide bandwidth. Two CS cascade stages are used to increase the overall gain of the proposed LNA with a buffer stage at the output for output matching. The proposed LNA attained maximum gain of 26.39 dB with a gain greater than 16 dB over entire range. The circuit gives reflection coefficient less than – 10 dB with NF 2.7 dB. With Vdd of 0.925 V, a DC current of 8.32 mA is consumed giving 7.7 mW power consumption.


Keywords


Common Gate; Common Source; Noise figure; Compression point; input intercept point

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

Error. Page cannot be displayed. Please contact your service provider for more details. (8)