Enhancing indoor radio tomographic imaging based on minimum RF nodes

M. S. M. Abdullah, M. H. F. Rahiman, N. S. Khalid, A. S. A. Nasir

Abstract


Uses the attenuation on the links between transceivers to produce an image using Radio Tomographic Imaging (RTI), a network of transceivers, or a Wireless Sensor Network (WSN). Several RTI setups have been constructed as monitoring areas. However, it is observed that most setups have limitations in the number of RF nodes due to a limited number of measurements. However, it is well known that the main difficulty in radio tomographic imaging attributes to the uncertainties in the RSS measurements of transceivers due to multipath effects, especially, when the environment of interest is much cluttered, and requirements on the larger number of nodes for the performance improvement. It is highly remarkable that the motivation of using fewer nodes in this work is to reduce the deployment cost of radio tomographic imaging, slower data collection rates, longer imaging reconstruction times, and bigger sensitivity matricest, this lead author to proposed to design and development of an RTI system with a minimum of 8 RF nodes. The strong and weak received signal strength (RSS) exhibited in the images will be used to assess the effectiveness and accuracy of human sensing localization in a region. The images were reconstructed based on selected image reconstruction algorithms, and they are Linear Back- Projection (LBP), Filtered Back Projection (FBP), Gaussian, Newton’s One-step’s Error Reconstruction (NOSER) and Tikhonov Regularization (TR). The reconstructed images will be analysed using the Mean Structural Similarity (MSSIM) index. A comparison between the algorithms mentioned RTI system based on the MSSIM index. NOSER and TR algorithms scored the highest for the MSSIM index overall experiments, and it is the best technique to produce images that appear similar to the original images.

Keywords


RTI; RSS; Sigma; localization

References


S.Shukri and L. M. Kamarudin, “Device free localization technology for human detection and counting with RF sensor networks: A review,” J. Netw. Comput. Appl., vol. 97, no. October 2016, pp. 157–174, 2017, doi: 10.1016/j.jnca.2017.08.014.

J. Zhang, W. Xiao, and Y. Li, “Data and Knowledge Twin Driven Integration for Large-Scale Device-Free Localization,” IEEE Internet Things J., vol. 8, no. 1, pp. 320–331, 2021, doi: 10.1109/JIOT.2020.3005939.

L. Zhao, C. Su, H. Huang, Z. Han, S. Ding, and X. Li, “Intrusion detection based on device-free localization in the era of IoT,” Symmetry (Basel)., vol. 11, no. 5, pp. 1–15, 2019, doi: 10.3390/sym11050630.

Y. Sun, X. Zhang, X. Wang, and X. Zhang, “Device-Free Wireless Localization Using Artificial Neural Networks in Wireless Sensor Networks,” Wirel. Commun. Mob. Comput., vol. 2018, 2018, doi: 10.1155/2018/4201367.

O. Kaltiokallio, H. Yigitler, and R. Jantti, “A three-state received signal strength model for device-free localization,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 9226–9240, 2017, doi: 10.1109/TVT.2017.2701399.

Y. Sasiwat, N. Jindapetch, D. Buranapanichkit, and A. Booranawong, “An Experimental Study of Human Movement Effects on RSSI Levels in an Indoor Wireless Network,” BMEiCON 2019 - 12th Biomed. Eng. Int. Conf., pp. 6–10, 2019, doi: 10.1109/BMEiCON47515.2019.8990208.

Y. Wu, F. Tang, and H. Li, “Image-based camera localization : an overview,” pp. 1–13, 2018.

Z. Zhang and X. Gao, “Moving Targets Detection and Localization in Passive Infrared Sensor Networks,” IEEE, 2007, doi: 10.1109/ICIF.2007.4408178.

R. Priyadarshini and R. M. Mehra, “Quantitative Review of Occupancy Detection Technologies,” no. January, 2015.

C. Y. Chiu and D. Dujovne, “Experimental characterization of radio tomographic imaging using

Tikhonov’s regularization,” 2014 IEEE Bienn. Congr. Argentina, ARGENCON 2014, pp. 468–472, 2014, doi: 10.1109/ARGENCON.2014.6868537.

S. Xu, H. Liu, F. Gao, and Z. Wang, “Compressive sensing based radio tomographic imaging with spatial diversity,” Sensors (Switzerland), vol. 19, no. 3, 2019, doi: 10.3390/s19030439.

D. Piumwardane et al., “Poster abstract: An empirical study of WiFi-based radio tomographic imaging,” SenSys 2017 - Proc. 15th ACM Conf. Embed. Networked Sens. Syst., vol. 2017-Janua, pp. 5–6, 2017, doi: 10.1145/3131672.3136983.

V. Smallbon, T. Potie, M. D’Souza, A. Postula, and M. Ros, “Implementation of radio tomographic imaging based localisation using a 6LoWPAN wireless sensor network,” WINSYS 2015 - 12th Int. Conf. Wirel. Inf. Networks Syst. Proceedings; Part 12th Int. Jt. Conf. E-bus. Telecommun. ICETE 2015, pp. 27–32, 2015, doi: 10.5220/0005513400270032.

Z. Wang, H. Liu, X. Ma, J. An, and S. Xu, “Enhancing indoor radio tomographic imaging based on interference link elimination,” Digit. Signal Process. A Rev. J., vol. 44, no. 1, pp. 26–36, 2015, doi: 10.1016/j.dsp.2015.05.008.

J. Lu, W. Ke, J. Jin, and Y. Wang, “Radio Tomographic Imaging Based On Quartile Outliers Filter and PCA,” DEStech Trans. Comput. Sci. Eng., no. wicom, pp. 285–292, 2018, doi: 10.12783/dtcse/wicom2018/26276.

J. Tan, Q. Zhao, X. Guo, X. Zhao, and G. Wang, “Radio Tomographic Imaging Based on LowRank and Sparse Decomposition,” IEEE Access, vol. 7, no. April, pp. 50223–50231, 2019, doi: 10.1109/ACCESS.2019.2910607.

Q. Wang, H. Yiǧitler, R. Jäntti, and X. Huang, “Localizing Multiple Objects Using Radio Tomographic Imaging Technology,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3641–3656, 2016, doi: 10.1109/TVT.2015.2432038.

A. Mishra, U. K. Sahoo, and S. Maiti, “Sparsity-enabled radio tomographic imaging using quantized received signal strength observations,” Digit. Signal Process. A Rev. J., vol. 127, p. 103576, 2022, doi: 10.1016/j.dsp.2022.103576.

J. Wilson and N. Patwari, “Radio tomographic imaging with wireless networks,” IEEE Trans. Mob. Comput., vol. 9, no. 5, pp. 621–632, 2010, doi: 10.1109/TMC.2009.174.

M. Bocca, O. Kaltiokallio, and N. Patwari, “Radio tomographic imaging for ambient assisted living,” Commun. Comput. Inf. Sci., vol. 362 CCIS, pp. 108–130, 2013, doi: 10.1007/978-3-642-37419-7_9.

Y. Zhao, N. Patwari, J. M. Phillips, and S. Venkatasubramanian, “Radio tomographic imaging and tracking of stationary and moving people via kernel distance,” IPSN 2013 - Proc. 12th Int. Conf. Inf. Process. Sens. Networks, Part CPSWeek 2013, pp. 229–240, 2013, doi: 10.1145/2461381.2461410.

J. Wilson and N. Patwari, “A Fade-level skew-laplace signal strength model for device-free localization with wireless networks,” IEEE Trans. Mob. Comput., vol. 11, no. 6, pp. 947–958, 2012, doi: 10.1109/TMC.2011.102.

F. Thouin, S. Nannuru, and M. Coates, “Multi-target tracking for measurement models with additive contributions,” Fusion 2011 - 14th Int. Conf. Inf. Fusion, 2011.

M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian, “Multiple target tracking with rf sensor networks,” IEEE Trans. Mob. Comput., vol. 13, no. 8, pp. 1787–1800, 2014, doi: 10.1109/TMC.2013.92.

I. Sabek, M. Youssef, and A. V. Vasilakos, “ACE: An accurate and efficient multi-entity devicefree WLAN localization system,” IEEE Trans. Mob. Comput., vol. 14, no. 2, pp. 261–273, 2015, doi: 10.1109/TMC.2014.2320265.

M. Maj, T. Rymarczyk, K. Kania, K. Niderla, M. Styla, and P. Adamkiewicz, “Application of the Fresnel zone and Free-space Path for image reconstruction in radio tomography,” 2019 Int. Interdiscip. PhD Work. IIPhDW 2019, pp. 30–33, 2019, doi: 10.1109/IIPHDW.2019.8755429.

M. S. M. Abdullah, L. M. Kamarudin, M. H. F. Rahiman, M. H. F. Rahiman, L. Mohamed, and A. Zakaria, “Simulation of Radio Tomographic Imaging for Measurement Rice Moisture

Content,” in 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2020, pp. 62–67. doi: 10.1109/ICCSCE50387.2020.9204958.

D. Hutchison and J. C. Mitchell, Pervasive computing. 2010.

H. Yigitler, R. Jantti, O. Kaltiokallio, and N. Patwari, “Detector Based Radio Tomographic Imaging,” IEEE Trans. Mob. Comput., vol. 17, no. 1, pp. 58–71, 2017, doi: 10.1109/tmc.2017.2699634.

G. Nafziger, “Wireless Sensor Network Optimization for Radio Tomographic Imaging,” no. March, 2020.

J. Wilson and N. Patwari, “See-Through Walls : Motion Tracking Using Variance-Based Radio Tomography Networks,” vol. 10, no. 5, pp. 612–621, 2011.

T. Van Der Meij, “Computer Science Mobile radio tomography : Reconstructing and visualizing objects in wireless Name : Date :,” Leiden University, 2016.

R. K. Martin, A. Folkerts, and T. Heinl, “Accuracy vs . Resolution in Radio Tomography,” IEEE Trans. SIGNAL Process., vol. 62, no. 10, pp. 2480–2491, 2014.

A. T. Mobashsher, A. Mahmoud, and A. M. Abbosh, “Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity,” Sci. Rep., vol. 6, no. February, pp. 1–16, 2016, doi: 10.1038/srep20459.

M. Bocca, A. Luong, N. Patwari, and T. Schmid, “Dial it in: Rotating RF sensors to enhance radio tomography,” 2014 11th Annu. IEEE Int. Conf. Sensing, Commun. Networking, SECON 2014, pp. 600–608, 2014, doi: 10.1109/SAHCN.2014.6990400.

B. Beck, R. Baxley, and X. Ma, “Improving Radio Tomographic Images using multipath signals,” pp. 1–4, 2013, doi: 10.1109/icwits.2012.6417789.

V. Rampa, S. Savazzi, M. Nicoli, and M. D’Amico, “Physical Modeling and Performance Bounds for Device-free Localization Systems,” IEEE Signal Process. Lett., vol. 22, no. 11, pp. 1864–1868, 2015, doi: 10.1109/LSP.2015.2438176.

V. Rampa, G. G. Gentili, S. Savazzi, and M. D’Amico, “Electromagnetic models for device-free localization applications,” 2017 IEEE-APS Top. Conf. Antennas Propag. Wirel. Commun. APWC 2017, vol. 2017-Janua, pp. 4–7, 2017, doi: 10.1109/APWC.2017.8062225.

S. Zarina, M. Muji, R. Abdul, M. Hafiz, and F. Rahiman, “Optical tomography : Image improvement using mixed projection of parallel and fan beam modes,” Measurement, vol. 46, no. 6, pp. 1970–1978, 2013, doi: 10.1016/j.measurement.2013.02.011.

S. N. Kane, A. Mishra, and A. K. Dutta, “Optical and X-ray computed tomography scanning of 3D dosimeters,” J. Phys. Conf. Ser., vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/011001.

S. Friedel, “Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach - Friedel - 2003 - Geophysical Journal International - Wiley Online Library,” pp. 305–316, 2003, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1365-246X.2003.01890.x/pdf

M. Mallach, P. Gebhardt, and T. Musch, “2D microwave tomography system for imaging of multiphase flows in metal pipes,” Flow Meas. Instrum., vol. 53, pp. 80–88, 2017, doi: 10.1016/j.flowmeasinst.2016.04.002.

M. H. F. Rahiman, W. K. T. Thomas, S. J. Soh, and R. A. Rahim, “Microwave Tomography Application and Approaches – A Review,” J. Teknol., vol. 3, pp. 133–138, 2015.

M. F. Iskander and Z. Yun, “Propagation Prediction Models for Wireless Communication Systems,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 662–673, 2002.

M. Cheney, D. Isaacson, J. C. Newell, S. Simske, and J. Goble, “NOSER: An algorithm for solving the inverse conductivity problem,” Int. J. Imaging Syst. Technol., vol. 2, no. 2, pp. 66–75, 1990, doi: 10.1002/ima.1850020203.

Y. Md. Yunos, R. Abd. Rahim, R. G. Green, and M. H. F. Rahiman, “Image Reconstruction Using Iterative Transpose Algorithm for Optical Tomography,” J. Teknol., vol. 47, no. 1, 2007, doi: 10.11113/jt.v47.269.

R. C. Conceição, J. J. Mohr, and M. O’Halloran, An Introduction to Microwave Imaging for Breast Cancer Detection. 2016. [Online]. Available: http://www.springer.com/series/3740%0Ahttp://link.springer.com/10.1007/978-3-319-27866-7

G. Bindu and S. Semenov, “2D Fused image reconstruction approach for microwave tomography: a theoretical assessment using the FDTD model,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., vol. 1, no. 3, pp. 147–154, Sep. 2013, doi: 10.1080/21681163.2013.776268.

T. Rubæ, P. M. Meaney, P. Meincke, and K. D. Paulsen, “Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton’s method and the CGLS inversion algorithm,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2320–2331, 2007, doi: 10.1109/TAP.2007.901993.

A. Voronov, “Regularization in Microwave Tomography for Breast Cancer Imaging Regularization in Microwave Tomography Alexey Voronov,” no. December, 2014.

C. Gilmore, “Colin_Gilmore_PhD_Thesis_Final,” 2009.

C. S. Wallace and D. M. Boulton, “An information measure for classification,” Comput. J., vol. 11, no. 2, pp. 185–194, 1968, doi: 10.1093/comjnl/11.2.185


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

https://bundamediagrup.co.id/wp-includes/idn/https://fjot.anfe.fr/js/https://www.chiesadellarte.org/https://www.rollingcarbon.org/https://www.savebugomaforest.org/https://www.sigmaslot-profil.com/https://www.doxycycline365.com/https://thailottonew.site/https://hipnose.in/https://tennishope.orghttps://serenityprime.net/https://bundamediagrup.co.id/depo10k/https://bundamediagrup.co.id/akun/demo/https://loa.tsipil-uii.ac.id/sg-gacor/http://snabm.unim.ac.id/depo-10k/http://snabm.unim.ac.id/lib/slot-maxwin/http://103.165.243.97/doc/sign/slot-thailand/https://appv2.tanahlautkab.go.id/doc/unsign/http://mysimpeg.gowakab.go.id/mysimpeg/maxwin/https://ijatr.polban.ac.id/toto/https://loa.tsipil-uii.ac.id/scatter-hitam/https://ijatr.polban.ac.id/docs/https://simba.cilacapkab.go.id/idnslot/https://sigmawin88.comhttps://perijinan.blitarkota.go.id/assets/jp-gacor/https://perijinan.blitarkota.go.id/data/depo-10k/https://simba.cilacapkab.go.id/api/demo/https://simba.cilacapkab.go.id/api/http://103.165.243.97/doc/sv388/http://103.165.243.97/doc/thailand/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/http://www.inmedsur.cfg.sld.cu/docs/https://waper.serdangbedagaikab.go.id/storage/idn/https://bakesbangpol.katingankab.go.id/uploads/pulsahttps://conference.stikesalifah.ac.id/thailand/