Regulation of Active and Reactive Powers in Doubly-Fed Induction Generators Utilizing Proportional-Integral and Artificial Neural Network Controllers

Mohammed Bouzidi, Abdelfatah Nasri, Oussama Hafsi, Boubakar Faradji

Abstract


In this paper, vector orientation and neural networks are used to simulate and regulate a Doubly Fed Induction Generator (DFIG) wind turbine. The aerodynamic turbine and DFIG dq models are developed. PI current regulation is used in vector control to separate active and reactive power control. To reproduce the PI response, training networks create a different neural vector control scheme. Comparative simulations confirm the effectiveness of both control methods in following set points and counteracting disturbances. The neural vector control scheme outperforms the PI scheme in managing short-term changes. In contrast to the PI control, it has quicker response times for both rising and settling. Neural vector control enables precise and rapid tracking of electromagnetic torque. Neural vector control could improve the performance of DFIG wind turbines because it has an adaptive architecture that lets it respond well to changes in parameters and maintain its accuracy over time. Additional investigation is needed to improve neural network training techniques and incorporate them with conventional control systems.

Keywords


DFIG Control; Neural Control; Active and Reactive Power; Wind Turbines; PI Control

References


M. Bouderbala, B. Bossoufi, A. Lagrioui, M. Taoussi, H. A. Aroussi, and Y. Ihedrane, ‘Direct and indirect vector control of a doubly fed induction generator based in a wind energy conversion system’, International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 3, Art. no. 3, Jun. 2019, doi: 10.11591/ijece.v9i3.pp1531-1540.

C. Oudaa, E. I. A. Mahmoud, A. K. K. Mahmoud, C. B. D. Eddine, and B. Azeddine, ‘Optimal Control Technique of an Induction Motor’, Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 11, no. 2, Art. no. 2, Jun. 2023, doi: 10.52549/ijeei.v11i2.4447.

H. Sediki, D. O. Abdeslam, T. Otmane-cherif, A. Bechouche, and K. Mesbah, ‘Steady-State Analysis and Control of Double Feed Induction Motor’, Jan. 2012, doi: 10.5281/zenodo.1063036.

A. Zemmit, R. Sadouni, and A. Meroufel, ‘Direct Torque Control of Double Feed Induction Machine (DTC-DFIM)’, JARST, vol. 2, no. 2, pp. 204–209, Jun. 2015, Accessed: Feb. 26, 2024. [Online]. Available: https://www.asjp.cerist.dz/en/article/4955

S. Li, H. Wang, Y. Tian, A. Aitouch, and J. Klein, ‘Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control’, ISA Transactions, vol. 64, pp. 431–439, Sep. 2016, doi: 10.1016/j.isatra.2016.06.003.

M. Ćalasan, S. H. E. Abdel Aleem, and A. F. Zobaa, ‘A new approach for parameters estimation of double and triple diode models of photovoltaic cells based on iterative Lambert W function’, Solar Energy, vol. 218, pp. 392–412, Apr. 2021, doi: 10.1016/j.solener.2021.02.038.

M. Bouzidi, A. Harrouz, and S. Mansouri, ‘Control and automation of Asynchronous motor using Fuzzy logic’, 1, vol. 1, no. 02, Art. no. 02, Dec. 2019, Accessed: Feb. 26, 2024. [Online]. Available: https://ajresd.univ-adrar.edu.dz/index.php?journal=AJRESD&page=article&op=view&path[]=44

S. Mahfoud, A. Derouich, N. E. Ouanjli, T. Mohammed, and A. Hanafi, ‘Field Oriented Control of Doubly Fed Induction Motor using Speed Sliding Mode Controller’, E3S Web Conf., vol. 229, p. 01061, 2021, doi: 10.1051/e3sconf/202122901061.

H. Benbouhenni, Z. Boudjema, and A. Belaidi, ‘Direct vector control of a DFIG supplied by an intelligent SVM inverter for wind turbine system’, Iranian Journal of Electrical and Electronic Engineering, vol. 15, pp. 45–55, Mar. 2019, doi: 10.22068/IJEEE.15.1.45.

A. Herizi, R. Rouabhi, and A. Zemmit, ‘Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller’, Diagnostyka, vol. 24, no. 3, pp. 1–8, Jun. 2023, doi: 10.29354/diag/166460.

A. Junyent-Ferré, O. Gomis-Bellmunt, A. Sumper, M. Sala, and M. Mata, ‘Modeling and control of the doubly fed induction generator wind turbine’, Simulation Modelling Practice and Theory, vol. 18, no. 9, pp. 1365–1381, Oct. 2010, doi: 10.1016/j.simpat.2010.05.018.

F. Moulay, A. Habbatti, and H. Hamdaoui, ‘Application and Control of a Doubly Fed Induction Machine Integrated in Wind Energy System’, I2M, vol. 18, no. 3, pp. 257–265, Aug. 2019, doi: 10.18280/i2m.180305.

M. Lamnadi, M. Trihi, B. Bossoufi, and A. Boulezhar, ‘Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Generator Systems’, International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 7, no. 3, Art. no. 3, Sep. 2016, doi: 10.11591/ijpeds.v7.i3.pp982-995.

N. O. Farrar, M. H. Ali, and D. Dasgupta, ‘Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review’, Energies, vol. 16, no. 3, Art. no. 3, Jan. 2023, doi: 10.3390/en16031530.

M. S. Nazir, Y. Wang, A. J. Mahdi, X. Sun, C. Zhang, and A. N. Abdalla, ‘Improving the Performance of Doubly Fed Induction Generator Using Fault Tolerant Control—A Hierarchical Approach’, Applied Sciences, vol. 10, no. 3, Art. no. 3, Jan. 2020, doi: 10.3390/app10030924.

O. Djaidja, H. Mekki, S. Zeghlache, and A. Djerioui, ‘A new improved control for power quality enhancement in double fed induction generator using iterative learning control’, Diagnostyka, vol. 24, no. 3, pp. 1–8, Aug. 2023, doi: 10.29354/diag/169462.

H. Benbouhenni, Z. Boudjema, and A. Belaidi, ‘Indirect Vector Control of a DFIG Supplied by a Two-level FSVM Inverter for Wind Turbine System’, Majlesi Journal of Electrical Engineering, vol. 13, no. 1, pp. 45–54, Mar. 2019, Accessed: Feb. 26, 2024.[Online]. Available: https://mjee.isfahan.iau.ir/article_696337.html

Y.-K. Wu and W.-H. Yang, ‘Different Control Strategies on the Rotor Side Converter in DFIG-based Wind Turbines’, Energy Procedia, vol. 100, pp. 551–555, Nov. 2016, doi: 10.1016/j.egypro.2016.10.217.

H. Mahmoudi, M. E. Ghamrasni, A. Lagrioui, and B. Bossoufi, ‘BACKSTEPPING ADAPTIVE CONTROL OF DFIG- GENERATORS FOR WIND TURBINES VARIABLE-SPEED’, Vol., 2005

A. Akhbari, M. Rahimi, and M. H. Khooban, ‘Direct current grid-based doubly-fed induction generator wind turbines: Real-time control and stability analysis’, IET Power Electronics, vol. 15, no. 12, pp. 1158–1173, 2022, doi: 10.1049/pel2.12299.

F. Arama, A. Fatima Zohra, S. Laribi, Z. Seddik, and H. Messaoud, ‘Control of Doubly Fed Induction Generator for Wind Turbine’, Mar. 2020.

G. S. Kaloi, J. Wang, and M. H. Baloch, ‘Active and reactive power control of the doubly fed induction generator based on wind energy conversion system’, Energy Reports, vol. 2, pp. 194–200, Nov. 2016, doi: 10.1016/j.egyr.2016.08.001.

H. Mesai-ahmed, A. Bentaallah, A. J. M. Cardoso, Y. Djeriri, and I. Jlassi, ‘Robust Neural Control of the Dual Star Induction Generator Used in a Grid-Connected Wind Energy Conversion System’, MMEP, vol. 8, no. 3, pp. 323–332, Jun. 2021, doi: 10.18280/mmep.080301.

M. Bouzidi, H. Abdelkader, S. Mansouri, and V. Dumbrava, ‘Modeling of a Photovoltaic Array with Maximum Power Point Tracking Using Neural Networks’, Applied Mechanics and Materials, vol. 905, pp. 53–64, 2022, doi: 10.4028/p-ndl3bi.

K. M. Elbachir and A. Ahmed, ‘Artificial Neural Networks Direct Torque Control of Single Inverter Feed Two Induction Motors’, JESA, vol. 54, no. 6, pp. 881–889, Dec. 2021, doi: 10.18280/jesa.540610.

H. Chojaa et al., ‘Enhancement of Direct Power Control by Using Artificial Neural Network for a Doubly Fed Induction Generator-Based WECS: An Experimental Validation’, Electronics, vol. 11, no. 24, Art. no. 24, Jan. 2022, doi: 10.3390/electronics11244106.

K. K. Ilse, B. W. Figgis, V. Naumann, C. Hagendorf, and J. Bagdahn, ‘Fundamentals of soiling processes on photovoltaic modules’, Renewable and Sustainable Energy Reviews, vol. 98, pp. 239–254, Dec. 2018, doi: 10.1016/j.rser.2018.09.015.

O. A. Montesinos López, A. Montesinos López, and J. Crossa, ‘Fundamentals of Artificial Neural Networks and Deep Learning’, in Multivariate Statistical Machine Learning Methods for Genomic Prediction, O. A. Montesinos López, A. Montesinos López, and J. Crossa, Eds., Cham: Springer International Publishing, 2022, pp. 379–425. doi: 10.1007/978-3-030-89010-0_10.

S. Aoun, A. Boukadoum, and L. Yousfi, ‘Advanced power control of a variable speed wind turbine based on a doubly fed induction generator using field-oriented control with fuzzy and neural controllers’, International Journal of Dynamics and Control, pp. 1–14, Nov. 2023, doi: 10.1007/s40435-023-01345-9.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

503 Service Unavailable

Service Unavailable

The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.

Additionally, a 503 Service Unavailable error was encountered while trying to use an ErrorDocument to handle the request.