Performance Analysis of Adaptive Fuzzy Sliding Mode for Nonlinear Control of the Doubly Fed Induction Motor

Cherifi Djamila, Yahia Miloud

Abstract


In this article, we propose a contribution to the control of a doubly fed induction motor by sliding mode with adaptive fuzzy logic. The technique of vector-control by classical field oriented applied to the doubly fed induction motor (DFIM) with mechanical sensors made it possible to have performances comparable with that of the direct current motor. However, it very sensitive to the parametric variations of the machine. The regulation speed by a classical regulator (PI) presents disadvantages: Poor robustness against parametric uncertainties of modeling and no the considering of the disturbances and little degree of freedom for the regulation. Because this effect, several robust controls were proposed in the technical literature to ensure the decoupling of the currents of the DFIM in a reference (d, q) leading to calculate simplified correctors. Among them, the variable structure control by sliding mode. It uses algorithms of regulations which ensure the robustness of the behavior of the process compared to the parametric variations and disturbances. Also, the impact of regulators based on artificial intelligence techniques such as adaptive fuzzy sliding mode controller are studied. In terms of results obtained, good dynamic performance and robustness with respect to load disturbances and parametric variation has been observed.

Keywords


Doubly Fed Induction Motor (DFIM), Vector-Control, Classical Regulator, Variable Structure Control (Sliding Mode) , Adaptive Fuzzy Sliding Mode Controller.

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats