Adaptive Fuzzy Control of Puma Robot Manipulator in Task Space with Unknown Dynamic and Uncertain Kinematic

Azita Azarfar


A In this paper, an adaptive direct fuzzy control system is presented to control the robot manipulator in task space. It is assumed that robot system has unknown dynamic and uncertain kinematic. The control system and adaption mechanism are firstly designed for joint space tracking. Then by using inverse Jacobian strategy, it is generalized for task space. After that, to overcome the problem of Jacobian matrix uncertainty, an improved adaptive control system is designed. All the design steps are illustrated by simulations.


Adaptive fuzzy control; PUMA 560; Robot task space; Uncertain Jacobian matrix; Robot manipulator

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats