Structural adaptive anisotropic recursive filter for blind medical image deconvolution

Tanawat Kwanpak, Paramate Horkaew


Performance of radiographic diagnosis and therapeutic intervention heavily depends on the quality of acquired images. Over decades, a range of pre-processing for image enhancement has been explored. Among the most recent proposals is iterative blinded image deconvolution, which aims to identify the inheritant point spread function, degrading images during acquisition. Thus far, the technique has been known for its poor convergence and stability and was recently superseded by non-negativity and support constraints recursive image filtering. However, the latter requires a priori on intrinsic properties of imaging sensor, e.g., distribution, noise floor and field of view. Most importantly, since homogeneity assumption was implied by deconvolution, recovered degrading function was global, disregarding fidelity of underlying objects. This paper proposes a modified recursive filtering with similar non-negativity constraints, but also taking into account local anisotropic structure of content. The experiment reported herein demonstrates its superior convergence property, while also preserving crucial image feature.


Anisotropic; Deconvolution; NAS-RIF

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats