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Abstract 
The desired frequency response of a filter is periodic in frequency and can be expanded in 

Fourier series. One possible way of obtaining FIR filter is to truncate the infinite Fourier series. But abrupt 
truncation of the Fourier series results in oscillation in the pass band and stop band. These oscillations are 
due to slow convergence of the Fourier series by the Gibb’s phenomenon. To reduce these oscillations the 
Fourier coefficients of the filter are modified by multiplying the infinite impulse response with a finite 
weighing sequence called a window. The Fourier transform (FT) of a window consists of a central lobe and 
side lobes. The central lobe contains most of the energy of the window. To get an FIR filter, the desired 
impulse response and window function are multiplied, which results to give finite length non-causal 
sequence. Since Fractional Fourier Transform (FrFT) is generalization of FT. Here an attempt is to 
implement filters using window by using Weighted Type Fractional Fourier Transform (WFrFt), 
differentiator and integrator using weighted FrFt is also present. 
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1. Introduction 

Fourier transform has proved to be a very useful tool for application in many disciplines 
such as quantum mechanics, signal processing etc. Availability of Discrete Fourier Transform 
(DFT) [1-4] gives an excellent representation of a continuous transform. Analysis of signals 
using tools of Fourier series and Fourier Transform (FT) have been discussed in [12]. Window 
functions are weighted in time domain, are applied to the signal under consideration. The 
process of convoluting the measured signal with a smoothly ending window function is called 
the windowing technique. Windowing is done to make an infinitely long function, finite in length 
so that the frequency content of signal of interest can be measured .The resultant truncated 
signal exhibits various spectral characteristics. There are few important parameters in spectral 
analysis of function [5], which are [I] Half Main Lobe Width (HMLW) or Band Width (BW) is 
defined as the frequency at which the main lobe drops to peak ripple value of the side lobes [II] 
Maximum Side Lobe Level (MSLL) or Side Lobe Attenuation (SLA) is the largest side lobe level 
relative to the main lobe peak gain [III] Side Lobe Fall-off Ratio (SLFOR) or Ripple Ratio (RR) is 
the asymptotic decay rate of side lobe level in decibels per the decade of frequency of the 
peaks of side lobes. 

An ideal filter should posses linear phase, ideal filters are unstable because the sinc 
function is not sum able. Methods of truncating need to be used.  A Triangular window may be 
regarded as the convolution of two rectangular windows. Windowing is a process of multiplying 
impulse response by a consider window function in the time domain is equivalent to periodic 
convolution of filter spectrum and window spectrum in frequency domain. One of the best ways 
to reduce oscillations and over shoots is by using a triangle window it helps side lobe decay 
faster. Spectrum of any window should have a narrow main lobe and small side lobe levels. For 
a given window length, it is not possible to minimize both main lobe width and side lobe levels 
simultaneously. Design of window requires tradeoff between these two conflicting requirements. 

Window functions provide more smoothing through convolution operation in the time 
domain, as a result, transition region is wider in Finite Impulse Response (FIR) filter. To reduce 
the width of this transition region, we can simply increase the length of the window, resulting in a 
larger filter. This trade off improves by analyzing these filters with FrFT. The fractional Fourier 
transform (FRFT) is a powerful time-frequency mathematical tool, which has widely applications 
in quantum mechanics, signal processing, optics, communications, etc. The Fourier transform 
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(FT) has four eigenvalues: 1, j, −1 and−j, while the FRFT generalizes the FT in the way of eigen 
values fractionalization. The different fractional schemes lead to a variety of definitions of the 
FRFT which consist of two mainly types: (i) the chirp-type FRFT (CFRFT) and (ii) the weighted-
type FRFT (WFRFT) [10]. 

J. Harris analyses signals using different types of windows in 1978 [11], in which he 
explained the figure of merit of different windows based on MSLL, SLFOR and HMLW. It is 
based on Fourier Transform (FT), Fast Fourier transform (FFT). Hence, analysis of signals is 
completely based on characteristics of window functions being used. The window chosen for 
truncating the infinite impulse response should have some desirable characteristics. The central 
lobe of frequency response of the window function should contain most of the energy and 
should be narrow. The first side lobe level of the frequency response should be small and the 
side lobes of frequency response decrease in energy, rapidly as ‘w’ →  .′ߨ′
 
 
2. Weighted FrFT 

Fractional Fourier Transform (WFrFT) is a generalization of the Fourier Transform [6] 
proposed some years ago by many authors. The fractional Fourier Transform of a function	ݔ, 
with an angleߙ, is defined as [10] 
                                 

ሺ݊ሻሻݔఈሺܨ ൌ .0ݓ ሻݐሺݔ  .1ݓ ሻݑሺݔ  .2ݓ ሻݐሺെݔ  .3ݓ  ሻ  (1)ݑሺെݔ
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Where p=0, 1, 2, 3 (2)    
                                                         
x(t)=function in time domain 
x(u)=frequency domain of x(t) 
x(-t)=inverse time domain of x(t) 
x(-u)=inverse frequency domain of x(u) 
 

FrFT with ߙ ൌ ߨ 2⁄  corresponds to the classical Fourier transform, and one with ߙ ൌ
0	corresponds to the identity operator. FrFT order can also be used in place of FrFT angle. The 
relationship between FrFT order and angle is given by	ߙ ൌ ܽ ߨ 2⁄ . In signal processing, FrFT 
has been applied to optimal Wiener filtering and matched filtering. 
 
 
3. Modified Weighted FrFT 

As per the literature survey the WFrFT values are almost equal to FFT at a=1.So our 
aim is to attain values more than FFT values. 

In view of the above facts, intensive investigations are carried out in the present work 
for implementation of Weighted Fractional Fourier Transform in digital filter design. New 
differentiator and integrator will be design based on WFrFT.  

 
ሺ݊ሻ൯ݔఈ൫ܨ ൌ .0ݓ .ሻݐሺݔ ݇0  .1ݓ .ሻݑሺݔ ݇1  .2ݓ .ሻݐሺെݔ ݇2  .4ݓ .ሻݑሺെݔ ݇3 (3) 

 
Where k0, k1, K2, k3 are the proposed constants, for different values of these constants 

the spectral characteristics of window functions will give better values than FT, WFrFT. 
Comparison of spectral parameters of different window functions with FT, WFrFT, and 

Modified WFrFT 
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S.NO TYPE OF 
DOMAIN 

TYPEOF 
WINDOW 

SLA(dB) 

1 FT RECTANGLE 
HAMMING 
HANNING 

-13.2 
-41.2  
-31.5 

2 WFrFT RECTANGLE 
HAMMING 
HANNING 

-10.6 
-33.0 
-26.7 

3 MODIFIED 
WFrFT 

RECTANGLE 
HAMMING 
HANNING 

-15.9 
-44.3 
-34.2 

 
 

 
 

Figure 1. Spectral characteristics of rectangle window with wfrft 
 
 

 
 

Figure 2. Spectral characteristics of Hamming window with wfrft 
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Figure 3. Spectral characteristics of hanning window with wfrf 
 
 

 
 

Figure 4. Spectral characteristics of rectangle window with modified wfrft 
 
 

 
 

Figure 5. Spectral characteristics of hamming window with modified wfrft 
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Figure 6. Spectral characteristics of hanning window with modified wfrft 
 

 
4. FIR Filter Design Techniques 

Various types of FIR filter design techniques which approximately produce the ideal 
response are:  
 Numerical analysis method 
 Window method 

 
4.1 Proposed Scheme 

We made a attempt to achieve FIR filter by introducing weighted frft to filter as given 
below formula [7, 8] 
 

Hd(w).Fα[W(n)] (4) 
 
Hd(w)=Desired infinite frequency response of a filter 
 Fα[W(n)]=modified weighted fractional Fourier transform of a window function 
Desired frequency response of infinite impulse response 
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Figure 7. The frequency response of low pass filter for rectangle window using modified WFRFT 
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5. Differentiator and Integrator 
The frequency response of an ideal digital differentiator is linearly proportional to 

frequency. It is given by 
 

jweH jw
d )(       -  w                   

Where 2/)1(  N  (6) 

 
The ideal impulse response of a digital differentiator with linear phase is given by for N even 
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)sin(
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n
nhd            for n                

          =0                                   for n  (7) 
 

The finite impulse response can be obtained by truncating )(nhd by using a window with 
modified WFrFT. 
 

Then h (n) = )(nhd .w(n) (8) 
 
The impulse response of differentiator is obtained by direct truncation and by using a hamming 
window. 
 

   

 
Figure 8. The impulse response of differentiator with modified wfrft of hamming window i 
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The frequency response of integrator with modified wfrft is shown in figure 9 
 
 
6. Conclusion 

By observing the WFrFT mathematical definition, the analysis of all windows (rectangle, 
hamming and hanning) is presented. And also the drawback of WFrFT is also solved by 
comparing WFrFT and MODIFIED WFrFT spectral characteristics of windows. Finally 
Differentiator and Integrator are also observed. 
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