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Abstract 
Floating-point numbers are broadly received in numerous applications due their element 

representation abilities. Floating-point representation has the capacity hold its determination and 
exactness contrasted with altered point representations. Any Digital Signal Processing (DSP) calculations 
utilization floating-point math, which obliges a huge number of figuring’s every second to be performed. For 
such stringent necessities, outline of quick, exact and effective circuits is the objective of each VLSI 
creator. This paper displays a correlation of pipelined floating-point snake dissention with IEEE 754 
organization with an unpipelined viper additionally protests with IEEE 754 arrangement. It depicts the IEEE 
floating-point standard 754. A pipelined floating point unit in light of IEEE 754 configuration is produced 
and the outline is contrasted and that of an unpipelined floating point unit and an investigation is defeated 
speed, range, and force contemplations. It builds the rate as well as is vitality productive. Every one of 
these changes is at the expense of slight increment in the chip region. The basic methodology and 
approach used for VHDL (Very Large Scale Integration Hardware Descriptive Language) implementation 
of the floating-point unit are also described. Detailed synthesis report operated upon Xilinx ISE 11 software 
and Modelsim is given. 
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1. Introduction 

In advanced digital signal processors (DSP) and modern microprocessors, micro chips 
floating-point unit is an imperative component. The architectures grew so far for floating point 
unit is in view of arrangement of huge operations: shift, swap add, normalize and round. 
Because of these operations, the aggregate methodology backs off. Floating-point unit ought to 
be quick to match with the increasing clock rates demanded by profound sub-micron 
technologies, likewise they must be small for being utilized as a part of parallel processing 
systems. Since, in the customary unit, all the stages were performed with single clock cycle, yet 
the frequency of this clock was confined because of circuit constraints. Subsequently, at 
whatever point, the operation of an extensive number of values was performed, the 
conventional floating-point unit proved to be inefficient. This latency could be overcome if the 
idea of pipelining is introduced in the simple adder. The floating- point unit had been subdivided 
into four stages, which were pipelined based on the proper timing sequences. The clock 
frequency, which could be utilized for these stages, could be higher when contrasted with the 
clock frequency utilized for customary floating-point adder. Additionally, while the two inputs are 
being processed and passed on to subsequent stages, new inputs enter the introductory stage 
and the cycle proceeds. These outcomes in overall quicker operation. In this paper, the floating-
point algorithm is clearly explained and floating point unit implementation using Very Large 
Scale Integration Hardware Descriptive Language (VHDL) is described. It further deals with the 
core theory of pipelining and the enhanced potential of the floating-point unit. Simple floating-
point unit and pipelined unit have been compared in terms of speed of operation and area on 
chip. Table 1 show the bit ranges for single (32-bit) and double (64-bit) precision floating-point 
values 
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Table 1. Bit range of single, double and quadruple precision FPU 

 
 
 
2. Floating Point Representation 
 
2.1 Single Precision Floating Point Representation 

Sign bit decides the sign of the number, which is the sign of the significand also. 
Exponent is either a 8 bit signed integer from −128 to 127 (2's Complement) or a 8 bit unsigned 
integer from 0 to 255 which is the acknowledged one-sided shape in IEEE 754 binary32 
definition. In the event that the unsigned integer configuration is utilized, the exponent quality 
utilized as a part of the number-crunching is the exponent moved by a predisposition for the 
IEEE 754 binary32 case, an exponent estimation of 127 speaks to the real zero  

The genuine significand incorporates 23 fraction bits to one side of the binary point and 
a certain driving bit (to one side of the binary point) with worth 1 unless the exponent is put 
away with all zeros. Hence just 23 fraction bits of the significand show up in the memory 
organize yet the aggregate precision is 24 bits (equal to log10(224) ≈ 7.225 decimal digits) 
The bits are laid out as follows: 
 
 

 
 

Figure 1. Single Precision Floating Point Representation 
 

                                               
In IEEE-754 format, the significant bit always takes on an implied ‘1’ for the most 

significant digit assuming that the value represented is normalized. 
 
2.2 Double Precision Floating Point Representation 

Double-precision binary floating-point is a generally utilized arrangement on PCs, 
because of its more extensive territory over single-precision floating point, disregarding its 
execution and transfer speed expense. Similarly as with single-precision floating-point design, it 
needs precision on integer numbers when contrasted and an integer configuration of the same 
size. It is ordinarily referred to just as double. The IEEE 754 standard indicates a binary64 as 
having 
Sign bit: 1 bit 
Exponent width: 11 bits 
Significand precision: 53 bits (52 explicitly stored) 
 
 

 
Figure 2. Double Precision Floating Point Representation 

 
 
2.3 Quadruple Precision Floating Point Representation 

This 128 bit quadruple precision is planned not just for applications obliging results in 
higher than double precision, [1] additionally, as an essential capacity, to permit the processing 
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of double precision comes about all the more dependably and precisely by minimizing flood and 
round-off blunders in moderate figurings and scratch variables: as William Kahan, essential 
engineer of the first IEEE-754 floating point standard noted, "Until further notice the 10-byte 
Extended organization is a middle of the road bargain between the estimation of additional 
exact math and the cost of actualizing it to run quick; soon two more bytes of precision will get 
to be passable, and at last a 16-byte group. 

 
 

 
Figure 3. Quadruple Precision Floating Point Representation 

 
 
3. Floating Point Arithmetic  

The IEEE-754 standard is the most generally utilized floating point representation for 
genuine numbers on PCs. Numerous codes permit or oblige that some or all number-crunching 
be done utilizing IEEE-754 arrangements and operations. This area gives an extremely short 
outline of the standard, to help in better comprehension the proposed system.  Far reaching 
data on floating point number juggling can be found in .floating point representation basically 
speaks to genuine numbers in exploratory documentation. Experimental documentation 
communicates numbers as a base and an example. Case in point, 123.45 could be spoken to 
as 1.2345*10^2 or 12.345 * 10^1. IEEE 754 floating point numbers have three parts: the sign, 
the exponent, and the mantissa. The mantissa is made out of the portion and a verifiable driving 
digit (i.e., 1). The example base (i.e., 2) is likewise certain and require not be put away. 
Consequently, IEEE-754 gliding point numbers are spoken to as (-1)^sign *1.fraction * 
2^exponent. Table 2 demonstrates the format (the quantity of bits and the bit ranges for every 
field) for the most ordinarily utilized precisions. quadruple precision is seldom actualized in 
equipment and is typically performed by programming traps. The sign bit is 0 for positive 
numbers and 1 for negative numbers. The exponent field needs to speak to both positive and 
negative exponents. To do this, an inclination is added to the real exponent to get the put away 
exponent. For single accuracy floating-point numbers, this worth is 127. In this manner, an 
exponent of zero implies that 127 is put away in the exponent field. A put away estimation of 
200 shows an exponent of (200- 127), or 73. The mantissa speaks to the accuracy bits of the 
number. To amplify the amount of representable numbers, floating-point numbers are put away 
in standardized structure. To expand the amount of representable numbers, floating-point 
numbers are put away in standardized structure. This fundamentally puts the radix point after 
the first nonzero digit. For instance, 123.45 in floating point would be (-1)^0* 1.9289062 *2 ^6 in 
single exactness. Thusly, the put away representation would be 42F6E666 in hexadecimal 
representation. 

Finally, exponent field values of all 0s and all 1s are held by IEEE to denote special 
values in the floating point plan. Zero is a special value denoted with an exponent field of zero 
and a fraction field of zero. While -0 and +0 are particular values because of the extra sign bit, 
they both compare as equal. The values -infinity and +infinity are denoted with an exponent of 
all 1s and a fraction of all 0s. The sign bit recognizes negative infinity and positive infinity. 
Having the capacity to denote infinity as a particular value is helpful because it allows 
operations to proceed past flood situations. Operations with limitless values are very much 
characterized in the IEEE-754 standard. Finally, the value not a number (NaN) is utilized to 
speak to a value that does not speak to a real number. NaN is spoken to by a bit pattern with an 
exponent of all 1s and a nonzero fraction 

There are two categories of NaN: quiet NaN (QNaN, most significant fraction bit set, 
propagates freely through most arithmetic operations) and signaling NaN (SNaN, most 
significant fraction bit clear, signals an exception when used in operations). Semantically, QNaN 
denotes indeterminate operations, while SNaN denotes invalid operations. 
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Figure 4. Floating Point Arithmetic 
 
 
3.1 Calculating the Exponent 

In this area, we talk about the exponent estimation for each of the three sorts of FPU 
capacities, to be specific number-crunching operations, changes, and different operations. We 
take note of that the exponent is computed freely of the part operation; consequently, the 
outcome is not correct on the grounds that conceivable portion standardization may influence 
the last estimation of the exponent 

 
3.2 Arithmetic Operations 

The main classification is math operations, for example, addition, subtractions, 
multiplication, and divisions. We remind that the IEEE-754 representation of standardized 
floating-point operands is (-1)^s *1.f*2^e, where s is the sign, f is the portion, and e the 
exponent. Subsequently, exponent  
count in duplication and division is straightforward 
 

((-1)^s1*1.f1*2^e1)*((-1))^s2*1.f2*2^e2) 
   =(-1)^s1+s2 *1.f1 *1.f2 *2^e1+e2 (1) 

 
for multiplication and 
 

((-1)^s1*1.f1*2^e1)/((-1) )^s2*1.f2*2^e2) 
   =(-1)^s1+s2 *1.f1 /1.f2 *2^e1-e2 (2) 

  
for division. In this way, we just need to include (for augmentation) or subtract (for division) the 
exponents, operations which can be performed by the same equipment structure. On the off 
chance that the division floods and needs to be standardized, the exponent needs to be 
balanced in like manner. Henceforth, for number juggling operations, we can just anticipate the 
exponent of standardized results with a +or-1 precision. Therefore, if a mistaken result varies 
from the right result by 1, slip covering will happen. Then again, our guess is that in the vicinity 
of a control rationale blunder, the information way is defiled widely; henceforth, the likelihood of 
such concealing is low. 
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3.3 Conversions 
Another regular operation performed in FPUs is transformation from/to number/floating-

point representations. The exponent of the outcomes can be precisely ascertained by fittingly 
balancing the information operand. For floating point accuracy transformations (single to twofold 
and the other way around), the exponent needs to be counterbalanced by _896, in light of the 
fact that the genuine exponent is es _ 127 in single exactness and ed _ 1;023 in twofold 
accuracy. Hence, for single to twofold change, the exponent is ed = (es-127)+1023 and for 
double to singles es=(ed-1023)+127 
 
 
4. Pipelined Floating Point Arithmetic 

Pipelining, a system for attaining to speedier clock rates while relinquishing dormancy, 
offers a financial approach to acknowledge worldly parallelism in computerized frameworks. To 
accomplish pipelining, info process must be subdivided into a grouping of subtasks, each of 
which can be executed by specific equipment organize that works simultaneously with different 
stages in the pipeline. The snake outline pipelines the steps, looking at, swaping, shifting, 
addition and standardization to accomplish the summation each clock cycle. Every pipeline 
stage performs operations free of others. Data information to the snake persistently streams in. 
As is extraordinary, legitimate pipelining expands the throughput of floating-point adders . With a 
specific end goal to attain to a fitting pipelined combined floating-point add–subtract unit, the 
latencies of the segments in the proposed outline are explored. Every part is actualized in 
Verilog HDL and combined with the Nangate 45-nm innovation standard-cell library. Every 
pipeline stage is executed each cycle so that the biggest idleness decides the throughput of the 
configuration. Figure 5 demonstrates the information stream, the dormancy of every part, and 
the critical path 

 
 

 
 
 

Figure 5. Pipelined Floating Point Arithmetic 
 
 
4.1 Operations 

Cutting edge FPUs generally execute more operations, for example, total worth, 
refutation, and correlation. In every one of these operations, the exponent is exceptionally easy 
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to compute. Nullification/supreme worth operations influence just the sign (i.e., the exponent is 
the same). Correlation operation last estimation of the exponent. results are usage particular, as 
the yield result is the examination result and not a floating-point number. For instance, SPARC 
ISA characterizes the exponent field of the yield as 0, and the examination result is put away in 
the banners field.  
 
 

Table 2. Outlines the exponent operation for regular FPU operations 

 
 
 
5. RESULTS 
 
5.1 Power and area 
 
 

 
 

Figure 6. Power consumption of pipelined floating point unit 
 
 

5.2 RTL schematic 
 

 
 

Figure 7. RTL schematic for pipelined FPU 
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Figure 8. RTL schematic for pipelined FPU 
 
5.3 output 
 
 

 
 

Figure 9. Output for pipelined FPU 
 
 
6. Conclusion 

Architectures for design and implementation of floating point unit is presented. The 
floating point unit has many applications .This unit consists of number of interconnected floating 
point adders, subtracters, multipliers, and wordblock. This paper presents improved 
architectures which apply pipelining to the floating point and compares the area, latency, 
throughput, and power consumption with the traditional floating point unit. Here we are 
implementing pipelining to increase the throughput of the floating point unit .As it uses pipelining 
stages they were well balanced and throughput increases. In the pipelining technique we are 
using two buffer stages so that we can give many number of inputs when compared to 
traditional fused floating point unit .In the buffer itself the inputs were waited for one clock cycle 
.By implementing the pipelining , 40% of power is consumed. 
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