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Abstract 
 The Erythrocytes counting is part of the complete blood count test and is frequently 

suggested by the Physician to know the number of Erythrocytes in the patient’s body. At present 
mostly the counting process is performed manually which is laborious, error prone and time 
consuming. The main purpose of this study is to use the digital image processing techniques to 
automate the counting process of the Erythrocytes or Red Blood Cells in Microscopic thin Blood 
smear digital images. The automated diagnosing gain the attention of the researchers from the 
last two decades because it assist the experts to reduce the burden of errors, labour and time of 
examination. In this regard, too much research has been performed on the automation of the 
counting process of the Erythrocytes but still the test demands to be done in a proper, efficient, 
accurate and realistic way. The proposed method achieved an average True Positive Rate 
(TPR) of 95%, True Negative Rate (TNR) of 5%, average accuracy of 97% and average error of 
3%. 

  
Keywords: Counting Erythrocytes; Red Blood Cells; Health care Applications; Clustered RBC 
splitting; Complete Blood Count (CBC). 
  
 
1. Introduction 

The counting of Erythrocytes is demanding process in various blood tests because the 
deviation of number of Erythrocytes from normal range in both cases (Low and High) is an 
important indicator about any disorder in the body. The normal range of the Erythrocytes in male 
is 4.7-6.1million cells /mcl and in female is 4.2- 5.4 million cells/mcl. The number of Erythrocytes 
high then normal range indicates Kidney tumour, Heart diseases, Low Blood oxygen level etc. 
while the low number of Erythrocytes from its normal range indicates, Anaemia, Haemorrhage, 
Leukaemia, Mal-nutrition, Nutritional deficiencies like iron, foliate, copper etc [1]. Due to 
consumption of too much time, jeopardy of errors and much physical and mental labour on the 
part of haematologist increases the demand of automatic counting techniques to combat the 
mentioned problems by assisting the haematologists [2, 3]. In this connection, many 
researchers did much work but still the work needs to be more efficient, robust, accurate and 
realistic. This study considered the proposed technique in the context that it will be efficient, 
accurate, robust and realistic. Counting Erythrocytes through image processing techniques is 
not difficult task but for high accuracy it involves several other problems i.e. image pre-
processing, separation of single and clustered Erythrocytes. If theses mentioned problems are 
not addressed in proper way then the accuracy will be on compromise because the occluded or 
clustered Erythrocytes are appeared as a single area and in reality it is combination of more 
than one Erythrocyte. Further, the clustered Erythrocytes are divided into Clumped and 
Overlapped Erythrocytes. Clumps of Erythrocytes occurred in the case when iron deficiency 
exists in the blood, the Erythrocytes glued each other and formed long chains while overlapped 
Erythrocytes are formed due to improper slide preparation and is also considered as big 
problem in the manual microscopy as also mentioned by[4] because it leads to discard the slide 
and prepare another one. This study considered all these problems and after solving the given 
problems then quantify the Erythrocytes. 

Recently, too much effort have been made by researchers to develop algorithms for the 
quantification of Erythrocytes addressing the problems of splitting the clustered Erythrocytes 
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and show a high degree of success but still needs improvements to address the mentioned 
hurdles in proper way. The study made by [5], the authors mentioned that quantifying 
Erythrocytes is not a big issue in image processing but the hurdles like clustered Erythrocytes 
splitting is too important because they will affect the accuracy that’s why they did it through 
concavity points finding and splitting. However, they did not mention how to separate the single 
and clustered Erythrocytes and identification of clusters existence while the Erythrocytes are 
counted using boundaries tracing and labeling.  In the study, of [6], the authors did not consider 
the separation and clustered Erythrocytes splitting but did the counting. Erythrocytes counting 
without solving the problem of cluster Erythrocytes Splitting compromise on the accuracy. Some 
studies while counting the Erythrocytes do not consider the clumps and overlaps of Erythrocytes 
for splitting but they rely on guessing Area based estimation approaches as mentioned in the 
work of  [7-8]. The problem in this approach is that in some cases we want to note the disorder 
as well in the Erythrocyte in such case this approach will fails while also the areas of 
Erythrocytes by most of the studies considered as circular, which is not true as because 
morphology of the Erythrocytes highly changes due to any disorder. Circular Hough Transform 
based approaches for counting and splitting as mentioned  by [9-12] mainly considered the 
Erythrocytes as circles which is not true because Erythrocytes morphology is not static and 
changed by other diseases. 

The approaches adopted by previous studies to combat the problem of clumped and 
overlapped Erythrocytes splitting are divided into the following categories i.e. Morphological 
operation based includes erosion, dilation or opening closing to split the clusters of Erythrocytes 
[13-15],. However, the main problem in morphological based approach is that it works well in 
overlap of Erythrocytes not more than two cells but in reality we have some clumps of 
Erythrocytes which are very long chains. Concavity based approaches deal the problems in the 
way to find out the concavity regions and some cases the concavity points and split the 
clustered Erythrocytes through lines cuts or circles drawing or ellipses drawing as stated in the 
studies of [16-24]. The concavity based approaches gives good results but in some cases they 
are computationally very expensive. Watershed based techniques includes all form of 
watershed algorithm based etc as presented by the studies of [25-30]. Watershed based 
approach have certain degree of success but in dense clumps it results in over segmentation 
while in some cases also suffered from the problem of under segmentation. Edges or contour 
based techniques can gives solution in the form of analyzing split edges and linkages of 
contours etc as mentioned in the works of  [31-32]. This approach working well but required 
model based on some templates and complex both in execution as well as in implementation. 
Model based approach gives various models in the form of circles through various theories like 
Gestalt, geometrical theories etc as presented in the work of [35-37]. The problem in this 
approach seems to be unrealistic as due to its highly complex nature and implementation. Also 
it is too much expensive computationally. 
 
 
2. Research Method 

We performed the experimentations on Microscopic thin blood smear digital images set 
of 40 images, which are obtained from [38], which are freely available for research purposes. 
The proposed methodology started with image pre-processing by following some of the steps in 
the study of [39], then the slide image is checked for clustered Erythrocytes if existed then 
passed from splitting the clumps and overlapped Erythrocytes because without splitting the 
accuracy is compromised on the other hand if clustered Erythrocytes not existed then the 
control is directly transferred to counting the Erythrocytes. This whole process is presented as 
overall methodology of this study in Figure 1 and its simulated diagram in the form of images is 
depicted in Figure 2. 
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Figure 1. Overall Methodology 
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Figure 2. Simulated Images of the whole process 

 
 

2.1. Image Pre-processing 
As image pre-processing we only convert the input RGB image to binary image through 

Global thresholding OTSU for the purpose to reduce the processing time.[39] After conversion 
small areas are identified as noise and removed from the binary image and holes in the centres 
of the Erythrocytes, formed due to haemoglobin in the centres of the Erythrocytes and its 
similarity to the background are filled and we get the image presented in Figure 3 which is ready 
for further processing. 
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Figure 3. Matlab Results a) Original RGB Image b) Pre-processed Image 

 
 

2.2. Checking for Clustered Erythrocytes Existence 
In checking for clusters of Erythrocytes existence we applied a double check on the 

convex hulls (through equation 1) of all the Red Blood Cells. We find the areas and elongation 
of the convex hulls of the Erythrocytes as mentioned in equations1 and 2 respectively. Next 
between these two measures we find a normalize variance among all the Erythrocytes and 
empirically through much experimentation we found  that if the variance is high 0.2 in case of 
area and high than 0.5 in case of elongation will be considered as clustered Erythrocytes 
existed and non-existed otherwise as mentioned in equation 3. 

∑ 𝛼𝑖𝑥𝑖|(∀𝑖:𝛼𝑖 ≥ 0)&∑ 𝛼𝑖
|𝑋|
𝑖=1 = 1|𝑋|

𝑖=1                      (1)       
where , |X| = finite set of points, 𝑥𝑖 is point |X| while 𝛼𝑖 is weight assigned to  𝑥𝑖, the sum of the 
weights must be equal to 1 mean normalized.      

Area= No. of Pixels                                     (2) 
where, No.of Pixels= Pixels defining the convex hull object of Erythrocytes. 

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝐿𝑒𝑛𝑔𝑡ℎ
𝐵𝑟𝑒𝑎𝑑𝑡ℎ

                                            (3) 
where, Length =Major Axis and Breadth = Minor Axis 

𝜎2 =
(𝑋 − 𝜇)2

𝑁
                                                               (4) 

where, X represents the area in one case while elongation in the other case, N is the number of 
terms in distribution. 
 

2.3 Separation of Single and Clustered Erythrocytes 
Once this is decided that clusters of Erythrocytes existed then the next step is to 

separate them from Single Erythrocytes for the purpose to improve efficiency. In the same way 
in the separation we again applied the double check mentioned in equations 2 and 3, while here 
the measure of central tendency chosen is “median” in both the cases mentioned in equation 4.  
We consider median among many central tendency measure for the purpose that the median is 
the best central tendency measure in case when the data values are irregular and having some 
small while some large values. We divide the area of every convex hull of Erythrocytes with the 
median area, the result obtained if equals to 1 or near to 1 are considered as single 
Erythrocytes and are considered for mask of single Erythrocyte while the negation of the single 
Erythrocytes resulted in multi- Erythrocytes mask. Then we pass the single Erythrocytes mask 
to the pixel IDX list of the input image and obtained the image of single Erythrocytes while on 
passing the multi-mask we obtained the image of clustered Erythrocytes. In the same way we 
performed for the second check but instead of area we used elongation here. 

 
2.4 Splitting Clustered Erythrocytes 

After separation of single and clustered Erythrocytes the actual work of splitting the 
clustered Erythrocytes starts. In this regard we adopted the approach of boundary analysis. For 
increasing the accuracy we consider the convex hulls of the clustered Erythrocytes and we 
calculated the convex hulls of all the clustered Erythrocytes whether, it is clumped or overlapped 
with equation 1 and the conceptual design of this approach is presented in the simulated 
diagram depicted in Figure 4. 
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Figure 4. Coceptual Simulated Design 
 
 

After finding the convex hulls next we find out the boundaries of every clustered 
Erythrocyte as shown in Figure 4. We divide the boundaries of every clustered Erythrocyte into 
two halves using equation 5 and measure the distance between the points P1 and the mid-point 
P2 with the  equation 6 and divide the boundary into parts using equation 7. 

2
)(2 BoundaryLengthP =                (5) 

where, boundary is the boundary of clumped or overlapped Erythrocytes and index is the index 
of boundary containing its points. 

2
)()( 2

12
2

12 yyxxD −+−
=    (6) 

ofRBCsNo
DPartsofNo

.
.. =     (7) 

where, Number of Erythrocytes, we can found while dividing the convex hull area by the median 
area of single Erythrocyte. After division of boundary into parts next we draw the circle by 
finding a mid-point in the two consecutive points and using the mid-point circle algorithm with 4-
way symmetry separated from each other shown Figure 5. 
 
 

 
 

Figure 5. Matlab Results of the process 
 
 

In Figure 5 a) Presents the original binary image having clustered Erythrocytes b) 
Presents the Convex hulls of the clustered Erythrocytes and also highlights the Points P1 and 
P2 further division is based on the number of Erythrocytes in the cluster and distance calculated 
between P1and P2. Finally, c) presents the circles which cleaved clustered Erythrocytes. 

 



                 ISSN: 2303-3703 

 JTI  Vol. 3, No. 2, September 2015 :  49 – 59 

54 

2.5 Counting of Erythrocytes 
Once the Clustered Erythrocytes are cleaved into single Erythrocytes then it is not 

difficult to count them. Thus for counting we consider the Matlab built-in function bwlabel, which 
uses a binary image and produces a label matrix L having value 0 for the background pixels 
while gives greater integer values than 0 according to the number of objects in a fashion that 
assign 1 to the first object, assign 2 to the second object and in this way increase the number 
according to the number of objects in an arbitrary order and for numbering the Red Blood Cells 
we followed the study of [40]. 
 
 
3 Results and Analysis 
 In this section we analyzed the results through visual inspection and statisticall 
compared with ground truth made by experts, on microscopic thin blood smear digital image 
dataset of 40 images obtained from [37]. 

 
3.1  Analysis through Visual Insecption 

In this analysis we divide the images into two groups i.e. images having clustered 
Erythrocytes and images without clustered Erythrocytes for presentation through visual 
inspection with ground reality. 

 
3.1.1 Results without Clustered Erythrocytes 

The thin blood smear digital images having no clustered Erythrocytes are directly 
counted after conversion to binary and are by passed from clumps and overlapped or clustered 
Erythrocytes Splitting as the results are presented in Figures 6,7and 8. 

 
 

 
 

Figure 6. a) Presents Original RGB image b) Presents Counted result of Erythrocytes  
 
 

 
 

Figure 7. a) Presents Original RGB image b) Presents counted result of Erythrocytes 
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Figure 8. a) Presents Original RGB image b) Presents counted result of Erythrocytes 
 
 

All the results presented in this category are on the images without clustered Erythrocytes. The 
last figure i.e. Figure 9, is presented that how the accuracy is affected by the clustered 
Erythrocytes. 
 
 

 
 

Figure 9. a) Presents Original RGB image with clustered Erythrocytes b) Presents the binary 
image having total number of Erythrocytes is equal to 26 while the actual number is 31. 

 
 
3.1.2 Results with Clustered Erythrocytes Splitting  

In this category we performed the experimentation on the images having clustered 
Erythrocytes and we successfully cleaved the clustered Erythrocytes to single Erythrocytes and 
then performed the counting which will increase the accuracy as shown in “Fig. 10” and “Fig. 
11”.  

 
 

 
 

Figure 10. a) Presents Input  Original Image, (b) Prsents  the counting of single Erythrocytes c) 
Presents splitting and counting of Clustered Erythrocytes by the proposed method 
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Figure 10. a) Presents Input  Original Image, (b) Prsents  the counting of single Erythrocytes c) 
Presents splitting and counting of Clustered Erythrocytes by the proposed method 

 
 
3.2 Analysis through Statistical Metrics between Automatic and Manual Counting 

In this category we compared the results statistically of each slide obtained through 
manually counted erythrocytes by medical expert using visual inspection and the automatically 
counted erythrocytes using the proposed method as listed in “Tab. II”. Using the confusion 
matrix presented as “Tab. I”  we calculate the sensitivity or True Positive Rate (TPR) or Recall, 
Accuracy (AC), Error Rate (Er.R) and Specificity or True Negative Rate (TNR) with “(8)”, “(9)”, 
“(10)” and “(11)” respectively. 

 
Table 1 Confusion Matrix 

Confusion Matrix Detected 
 Positive Negative 

Actual Positive A: True +ve     B: False –ve 
Negative C: False  +ve D: True –ve 

 
 

BA
ATPR
+

=   (8) 
DCBA

DAAC
+++

+
=           (9)  

ACREr −= 1.    (10) 
DC

DTNR
+

=                    (11)        
          

 
 

Table 2. Estimated Results of Manual and Automatic Counting 
 Quantitative Analysis 
Slide No. Manual Automatic TPR AC Er.R TNR 

1 37 35 0.946 0.972 0.028 0.054 
2 55 52 0.945 0.972 0.028 0.055 
3 47 43 0.915 0.956 0.044 0.085 
4 63 60 0.952 0.976 0.024 0.048 
5 55 53 0.964 0.981 0.019 0.036 
6 45 43 0.956 0.977 0.023 0.044 
7 20 18 0.9 0.947 0.053 0.1 
8 105 99 0.943 0.971 0.029 0.057 
9 35 33 0.943 0.971 0.029 0.057 
10 26 25 0.962 0.98 0.02 0.038 
11 19 19 1 1 0 0 
12 23 21 0.913 0.955 0.045 0.087 
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 Quantitative Analysis 
Slide No. Manual Automatic TPR AC Er.R TNR 

13 29 23 0.793 0.885 0.115 0.207 
14 59 55 0.932 0.965 0.035 0.068 
15 20 17 0.85 0.919 0.081 0.15 
16 51 46 0.902 0.948 0.052 0.098 
17 40 39 0.975 0.987 0.013 0.025 
18 29 27 0.931 0.964 0.036 0.069 
19 97 90 0.928 0.963 0.037 0.072 
20 81 70 0.864 0.927 0.073 0.136 
21 48 46 0.958 0.979 0.021 0.042 
22 77 72 0.935 0.966 0.034 0.065 
23 73 73 1 1 0 0 
24 43 41 0.953 0.976 0.024 0.047 
25 22 22 1 1 0 0 

 
 
3.3 Analysis based on Correlation between Manual and Automatic Counting 
 Here we study the realiablity of the proposed technique through cheking the strength of its 
relationship with manual methods made by the expert. We presented the graphical comparison 
shown in Figure 11 on the basis of Linear Pearson’s correlation co-efficient which shows strong 
correlation as R2=0.992. 
 
 

 
Figure 11 Correlation between Manual and Automatic Counitng 

 
 

4. Conclusion 
 Counting of erythrocytes is challenging job in the case when the slides have clumped and 
overlapped or clustered erythrocytes which the proposed method deal in robust and efficient 
way by first checking for clustered erythrocytes if they exist then trimming the time by separation 
of clustered erythrocytes from single erythrocytes and passed only the clustered erythrocytes 
from splitting algorithm, in simple, effective and efficient way. On the other hand if no clustered 
erythrocytes existed, directly counting has been started. Moreover, the proposed method 
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achieved the overall average True Positive Rate of 95% and accuracy of 97% while in contrast 
to TPR and AC the proposed method achieved the overall True Negative Rate of 5% and Error 
Rate of 3% that are valuable achievements in the field. As a future suggestion there is still 
space to increase the accuracy by smoothing the boundaries of the erythrocytes when the 
convex hulls of the erythrocytes are obtained. 
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